Plan 9 from Bell Labs’s /usr/web/sources/contrib/btdn/src/pgp/rsaref/source/r_keygen.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


/* R_KEYGEN.C - key-pair generation for RSAREF
 */

/* Copyright (C) 1991-2 RSA Laboratories, a division of RSA Data
   Security, Inc. All rights reserved.
 */

#include "global.h"
#include "rsaref.h"
#include "r_random.h"
#include "nn.h"
#include "prime.h"

static int GenerateDigits PROTO_LIST
  ((NN_DIGIT *, unsigned int, R_RANDOM_STRUCT *));

/* Generates an RSA key pair with a given length and public exponent.
 */
int R_GeneratePEMKeys (publicKey, privateKey, protoKey, randomStruct)
R_RSA_PUBLIC_KEY *publicKey;                          /* new RSA public key */
R_RSA_PRIVATE_KEY *privateKey;                       /* new RSA private key */
R_RSA_PROTO_KEY *protoKey;                             /* RSA prototype key */
R_RANDOM_STRUCT *randomStruct;                          /* random structure */
{
  NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
    e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
    pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
    qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
  int status;
  unsigned int nDigits, pDigits;
  
  if ((protoKey->bits < MIN_RSA_MODULUS_BITS) || 
      (protoKey->bits > MAX_RSA_MODULUS_BITS))
    return (RE_MODULUS_LEN);
  nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;
  pDigits = (nDigits + 1) / 2;
  
  /* Generate random RSA primes p and q so that product has correct length.
   */
  if ((status = GenerateDigits (p, pDigits, randomStruct)) ||
      (status = GenerateDigits (q, pDigits, randomStruct)))
    return (status);

  /* NOTE: for 65537, this assumes NN_DIGIT is at least 17 bits. */
  NN_ASSIGN_DIGIT
    (e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);
  FindRSAPrime (p, (protoKey->bits + 1) / 2, p, pDigits, e, 1);
  FindRSAPrime (q, protoKey->bits / 2, q, pDigits, e, 1);
  
  /* Sort so that p > q. (p = q case is extremely unlikely.)
   */
  if (NN_Cmp (p, q, pDigits) < 0) {
    NN_Assign (t, p, pDigits);
    NN_Assign (p, q, pDigits);
    NN_Assign (q, t, pDigits);
  }

  /* Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),
     dP = d mod p-1, dQ = d mod q-1.
   */
  NN_Mult (n, p, q, pDigits);
  NN_ModInv (qInv, q, p, pDigits);
  
  NN_ASSIGN_DIGIT (t, 1, pDigits);
  NN_Sub (pMinus1, p, t, pDigits);
  NN_Sub (qMinus1, q, t, pDigits);
  NN_Mult (phiN, pMinus1, qMinus1, pDigits);

  NN_ModInv (d, e, phiN, nDigits);
  NN_Mod (dP, d, nDigits, pMinus1, pDigits);
  NN_Mod (dQ, d, nDigits, qMinus1, pDigits);
  
  publicKey->bits = privateKey->bits = protoKey->bits;
  NN_Encode (publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
  NN_Encode (publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);
  R_memcpy 
    ((POINTER)privateKey->modulus, (POINTER)publicKey->modulus,
     MAX_RSA_MODULUS_LEN);
  R_memcpy
    ((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent,
     MAX_RSA_MODULUS_LEN);
  NN_Encode (privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
  NN_Encode (privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
  NN_Encode (privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
  NN_Encode (privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
  NN_Encode (privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
  NN_Encode (privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);
   
  /* Zeroize sensitive information.
   */
  R_memset ((POINTER)d, 0, sizeof (d));
  R_memset ((POINTER)dP, 0, sizeof (dP));
  R_memset ((POINTER)dQ, 0, sizeof (dQ));
  R_memset ((POINTER)p, 0, sizeof (p));
  R_memset ((POINTER)phiN, 0, sizeof (phiN));
  R_memset ((POINTER)pMinus1, 0, sizeof (pMinus1));
  R_memset ((POINTER)q, 0, sizeof (q));
  R_memset ((POINTER)qInv, 0, sizeof (qInv));
  R_memset ((POINTER)qMinus1, 0, sizeof (qMinus1));
  R_memset ((POINTER)t, 0, sizeof (t));
  
  return (0);
}

static int GenerateDigits (a, digits, randomStruct)
NN_DIGIT *a;
R_RANDOM_STRUCT *randomStruct;
unsigned int digits;
{
  int status;
  unsigned char t[MAX_RSA_MODULUS_LEN];

  if (status = R_GenerateBytes (t, digits * NN_DIGIT_LEN, randomStruct))
    return (status);
  NN_Decode (a, digits, t, digits * NN_DIGIT_LEN);
  
  /* Zeroize sensitive information.
   */
  R_memset ((POINTER)t, 0, sizeof (t));
  
  return (0);
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.