/*
(c) Copyright 1998-2000 - Tord Jansson
======================================
This file is part of the BladeEnc MP3 Encoder, based on
ISO's reference code for MPEG Layer 3 compression, and might
contain smaller or larger sections that are directly taken
from ISO's reference code.
All changes to the ISO reference code herein are either
copyrighted by Tord Jansson (tord.jansson@swipnet.se)
or sublicensed to Tord Jansson by a third party.
BladeEnc is free software; you can redistribute this file
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
------------ Changes ------------
2000-11-04 Andre Piotrowski
- some cosmetics
- included "l3psy.h" to use the defined block type constants
- negligible speed up of mdct_sub()
- speed up of mdct()
2000-12-10 ap
- speed up of mdct_sub() and mdct() - MDCT_CHANGE_LEVEL 5
*/
/**********************************************************************
* ISO MPEG Audio Subgroup Software Simulation Group (1996)
* ISO 13818-3 MPEG-2 Audio Encoder - Lower Sampling Frequency Extension
*
* $Id: mdct.c,v 1.1 1996/02/14 04:04:23 rowlands Exp $
*
* $Log: mdct.c,v $
* Revision 1.1 1996/02/14 04:04:23 rowlands
* Initial revision
*
* Received from Mike Coleman
**********************************************************************/
#include "common.h"
#include <assert.h>
#include "l3side.h"
#include "l3psy.h"
#include "mdct.h"
/*
This is table B.9: coefficients for aliasing reduction
*/
static double c[8] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 };
int gr_idx[3] = {0,1,2};
#if 0
static double ca[8];
#endif
static double cs[8];
int fInit_mdct_sub;
void mdct_sub
(
L3SBS (*sb_sample),
double (*mdct_freq)[2][576],
int stereo,
III_side_info_t *l3_side,
int mode_gr
)
{
gr_info *cod_info;
#if MDCT_CHANGE_LEVEL < 5
double mdct_in[36];
#endif
int gr, ch, band, k, j;
double bu, bd;
int block_type;
double (*mdct_enc_long)[2][32][18] = (double (*)[2][32][18]) mdct_freq;
if (!fInit_mdct_sub)
{
/* prepare the aliasing reduction butterflies */
for (k = 0; k < 8; k++)
{
double sq = sqrt (1.0 + c[k]*c[k]);
#if 0
ca[k] = c[k] / sq;
#endif
cs[k] = 1.0 / sq;
}
fInit_mdct_sub++;
}
for (gr = 0; gr < mode_gr; gr++)
{
int pre_gr = gr_idx[gr ];
int cur_gr = gr_idx[gr+1];
for (ch = 0; ch < stereo; ch++)
{
double (*mdct_enc)[18] = mdct_enc_long[gr][ch];
cod_info = &l3_side->gr[gr].ch[ch].tt;
block_type = cod_info->block_type;
/* Compensate for inversion in the analysis filter */
for (k = 1; k < 18; k++)
if (k & 1)
for (band = 1; band < 32; band++)
if (band & 1)
(*sb_sample)[ch][cur_gr][k][band] *= -1.0;
/*
Perform imdct of 18 previous subband samples
+ 18 current subband samples
*/
for (band = 0; band < 32; band++)
{
#if MDCT_CHANGE_LEVEL < 5
for (k = 0; k < 18; k++)
{
mdct_in[k] = (*sb_sample)[ch][pre_gr][k][band];
mdct_in[k+18] = (*sb_sample)[ch][cur_gr][k][band];
}
if (cod_info->mixed_block_flag && (band < 2))
block_type = NORM_TYPE; /* AND WHEN WILL THE BLOCK_TYPE BE SWITCHED BACK? */
/* &mdct_enc[gr][ch][band][0] */
mdct (mdct_in, mdct_enc/*[gr][ch]*/[band], block_type);
#else
mdct ((*sb_sample)[ch][pre_gr], (*sb_sample)[ch][cur_gr], band, mdct_enc[band], block_type);
#endif
}
/*
Perform aliasing reduction butterfly
on long blocks
*/
if (block_type != SHORT_TYPE)
for (band = 0; band < 31; band++)
for (k = 0; k < 8; k++)
{
#if 1 /* This is faster because the calculation can be done more sequential */
bu = (mdct_enc[band ][17-k] + mdct_enc[band+1][ k] * c[k]) * cs[k];
bd = (mdct_enc[band+1][ k] - mdct_enc[band ][17-k] * c[k]) * cs[k];
mdct_enc[band ][17-k] = bu;
mdct_enc[band+1][ k] = bd;
#else
bu = mdct_enc[band ][17-k] * cs[k] + mdct_enc[band+1][ k] * ca[k];
bd = mdct_enc[band+1][ k] * cs[k] - mdct_enc[band ][17-k] * ca[k];
mdct_enc[band ][17-k] = bu;
mdct_enc[band+1][ k] = bd;
#endif
}
}
}
/*
Save latest granule's subband samples to be used in
the next mdct call
*/
j = gr_idx[mode_gr];
for (k = mode_gr; k > 0; k--)
gr_idx[k] = gr_idx[k-1];
gr_idx[0] = j;
}
/*-------------------------------------------------------------------*/
/* */
/* Function: Calculation of the MDCT */
/* In the case of long blocks ( block_type 0,1,3 ) there are */
/* 36 coefficents in the time domain and 18 in the frequency */
/* domain. */
/* In the case of short blocks (block_type 2 ) there are 3 */
/* transformations with short length. This leads to 12 coefficents */
/* in the time and 6 in the frequency domain. In this case the */
/* results are stored side by side in the vector out[]. */
/* */
/* New layer3 */
/* */
/*-------------------------------------------------------------------*/
int fInit_mdct;
#if MDCT_CHANGE_LEVEL == 5
void mdct
(
double inA[18][32],
double inB[18][32],
int band,
double *out,
int block_type
)
{
static double cos_l[18][18];
static double cos_s[ 6][ 6];
static double winNorm [18];
static double winShort[ 6];
int k, m, N;
double t1, t2, t3, t4, t5, t6, u1, u2;
if (!fInit_mdct)
{
N = 36;
for (k = 0; k < N/2; k++) winNorm [k] = sin (PI/36 * (k+0.5));
for (k = 0; k < N/4; k++) for (m = 0; m < N/2; m++) cos_l[k][m] = cos((PI/(2*N)) * (2* k +1+N/2) * (2*m+1)) / (N/4);
for ( ; k < N/2; k++) for (m = 0; m < N/2; m++) cos_l[k][m] = cos((PI/(2*N)) * (2*(k+N/4)+1+N/2) * (2*m+1)) / (N/4);
N = 12;
for (k = 0; k < N/2; k++) winShort[k] = sin (PI/12 * (k+0.5));
for (k = 0; k < N/4; k++) for (m = 0; m < N/2; m++) cos_s[k][m] = cos((PI/(2*N)) * (2*k +1+N/2) * (2*m+1)) / (N/4);
for ( ; k < N/2; k++) for (m = 0; m < N/2; m++) cos_s[k][m] = cos((PI/(2*N)) * (2*(k+N/4)+1+N/2) * (2*m+1)) / (N/4);
fInit_mdct++;
}
for (m = 0; m < 18; m++) out[m] = 0.0;
switch (block_type)
{
case NORM_TYPE:
for (k = 0; k < 9; k++)
{
t1 = winNorm [ k] * inA[k][band] - winNorm [17-k] * inA[17-k][band];
t2 = winNorm [17-k] * inB[k][band] + winNorm [ k] * inB[17-k][band];
for (m = 0; m < 18; m++)
out[m] += t1 * cos_l[k][m] + t2 * cos_l[k+9][m];
}
break;
case START_TYPE:
for (k = 0; k < 6; k++)
{
t1 = winNorm [ k] * inA[k][band] - winNorm [17-k] * inA[17-k][band];
t2 = inB[k][band];
for (m = 0; m < 18; m++)
out[m] += t1 * cos_l[k][m] + t2 * cos_l[k+9][m];
}
for (k = 6; k < 9; k++)
{
t1 = winNorm [ k] * inA[k][band] - winNorm [17-k] * inA[17-k][band];
t2 = winShort[11-k] * inB[k][band] + winShort[k- 6] * inB[17-k][band];
for (m = 0; m < 18; m++)
out[m] += t1 * cos_l[k][m] + t2 * cos_l[k+9][m];
}
break;
case STOP_TYPE:
for (k = 0; k < 6; k++)
{
t1 = -inA[17-k][band];
t2 = winNorm [17-k] * inB[k][band] + winNorm [ k] * inB[17-k][band];
for (m = 0; m < 18; m++)
out[m] += t1 * cos_l[k][m] + t2 * cos_l[k+9][m];
}
for (k = 6; k < 9; k++)
{
t1 = winShort[k- 6] * inA[k][band] - winShort[11-k] * inA[17-k][band];
t2 = winNorm [17-k] * inB[k][band] + winNorm [ k] * inB[17-k][band];
for (m = 0; m < 18; m++)
out[m] += t1 * cos_l[k][m] + t2 * cos_l[k+9][m];
}
break;
case SHORT_TYPE:
for (k = 0; k < 3; k++)
{
u1 = winShort[k]; u2 = winShort[5-k];
t1 = u1 * inA[k+ 6][band] - u2 * inA[11-k][band];
t2 = u2 * inA[k+12][band] + u1 * inA[17-k][band];
t3 = u1 * inA[k+12][band] - u2 * inA[17-k][band];
t4 = u2 * inB[k ][band] + u1 * inB[ 5-k][band];
t5 = u1 * inB[k ][band] - u2 * inB[ 5-k][band];
t6 = u2 * inB[k+ 6][band] + u1 * inB[11-k][band];
for (m = 0; m < 6; m++)
{
u1 = cos_s[k][m]; u2 = cos_s[k+3][m];
out[3*m ] += t1 * u1 + t2 * u2;
out[3*m+1] += t3 * u1 + t4 * u2;
out[3*m+2] += t5 * u1 + t6 * u2;
}
}
}
}
#elif MDCT_CHANGE_LEVEL == 4 /* reduce number of multiplications to nearly the half once more! (cos_x[9+k][m] = -cos_x[9-k][m] and cos_x[35+k][m] = cos_x[35-k][m]) */
void mdct
(
double *in,
double *out,
int block_type
)
{
static double cos_l[36][18];
static double cos_s[12][ 6];
static double winNorm [36];
static double winShort[12];
static double *winStart = winShort-18;
static double *winStop = winShort- 6;
int l, k, m, N;
double temp;
if (!fInit_mdct)
{
N = 36;
for (k = 0; k < N; k++) winNorm [k] = sin (PI/36 * (k+0.5));
for (k = 0; k < N; k++) for (m = 0; m < N/2; m++) cos_l[k][m] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
N = 12;
for (k = 0; k < N; k++) winShort[k] = sin (PI/12 * (k+0.5));
for (k = 0; k < N; k++) for (m = 0; m < N/2; m++) cos_s[k][m] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
fInit_mdct++;
}
for (m = 0; m < 18; m++) out[m] = 0.0;
switch (block_type)
{
case NORM_TYPE:
for (k = 0; k < 9; k++) {temp = (winNorm [k] * in[k] - winNorm [17-k] * in[17-k]); for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 18; k < 27; k++) {temp = (winNorm [k] * in[k] + winNorm [53-k] * in[53-k]); for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
break;
case START_TYPE:
for (k = 0; k < 9; k++) {temp = (winNorm [k] * in[k] - winNorm [17-k] * in[17-k]); for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 18; k < 24; k++) {temp = in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 24; k < 27; k++) {temp = (winStart[k] * in[k] + winStart[53-k] * in[53-k]); for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
break;
case STOP_TYPE:
for (k = 6; k < 9; k++) {temp = (winStop [k] * in[k] - winStop [17-k] * in[17-k]); for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 12; k < 18; k++) {temp = in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 18; k < 27; k++) {temp = (winNorm [k] * in[k] + winNorm [53-k] * in[53-k]); for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
break;
case SHORT_TYPE:
for (l = 0; l < 3; l++)
{
for (k = 0; k < 3; k++) {temp = (winShort[k] * in[k+6+l*6] - winShort[ 5-k] * in[ 5-k+6+l*6]); for (m = 0; m < 6; m++) out[3*m+l] += temp * cos_s[k][m];}
for (k = 6; k < 9; k++) {temp = (winShort[k] * in[k+6+l*6] + winShort[17-k] * in[17-k+6+l*6]); for (m = 0; m < 6; m++) out[3*m+l] += temp * cos_s[k][m];}
}
}
}
#elif MDCT_CHANGE_LEVEL == 3 /* reduce number of multiplications to nearly the half (win_x[k]*in[k] is constant in m-loop)! flip cos_x components for faster access */
void mdct
(
double *in,
double *out,
int block_type
)
{
static double cos_l[36][18];
static double cos_s[12][ 6];
static double winNorm [36];
static double winShort[12];
static double *winStart = winShort-18;
static double *winStop = winShort- 6;
int l, k, m, N;
double temp;
if (!fInit_mdct)
{
N = 36;
for (k = 0; k < N; k++) winNorm [k] = sin (PI/36 * (k+0.5));
for (k = 0; k < N; k++) for (m = 0; m < N/2; m++) cos_l[k][m] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
N = 12;
for (k = 0; k < N; k++) winShort[k] = sin (PI/12 * (k+0.5));
for (k = 0; k < N; k++) for (m = 0; m < N/2; m++) cos_s[k][m] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
fInit_mdct++;
}
for (m = 0; m < 18; m++) out[m] = 0.0;
switch (block_type)
{
case NORM_TYPE:
for (k = 0; k < 36; k++) {temp = winNorm [k] * in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
break;
case START_TYPE:
for (k = 0; k < 18; k++) {temp = winNorm [k] * in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 18; k < 24; k++) {temp = in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 24; k < 30; k++) {temp = winStart[k] * in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
break;
case STOP_TYPE:
for (k = 6; k < 12; k++) {temp = winStop [k] * in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 12; k < 18; k++) {temp = in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
for (k = 18; k < 36; k++) {temp = winNorm [k] * in[k]; for (m = 0; m < 18; m++) out[m] += temp * cos_l[k][m];}
break;
case SHORT_TYPE:
for (l = 0; l < 3; l++)
for (k = 0; k < 12; k++) {temp = winShort[k] * in[k+6+l*6]; for (m = 0; m < 6; m++) out[3*m+l] += temp * cos_s[k][m];}
}
}
#elif MDCT_CHANGE_LEVEL == 2 /* avoid calculating of some redundant values; take care for some special values */
void mdct
(
double *in,
double *out,
int block_type
)
{
static double cos_l[18][36];
static double cos_s[ 6][12];
static double winNorm [36];
static double winShort[12];
static double *winStart = winShort-18;
static double *winStop = winShort- 6;
int l, k, m, N;
double sum;
if (!fInit_mdct)
{
for (k = 0; k < 36; k++) winNorm [k] = sin (PI/36 * (k+0.5));
for (k = 0; k < 12; k++) winShort[k] = sin (PI/12 * (k+0.5));
N = 36; for (m = 0; m < N/2; m++) for (k = 0; k < N; k++) cos_l[m][k] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
N = 12; for (m = 0; m < N/2; m++) for (k = 0; k < N; k++) cos_s[m][k] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
fInit_mdct++;
}
switch (block_type)
{
case NORM_TYPE:
for (m = 0; m < 18; m++)
{
sum = 0.0;
for (k = 0; k < 36; k++) sum += winNorm [k] * in[k] * cos_l[m][k];
out[m] = sum;
}
break;
case START_TYPE:
for (m = 0; m < 18; m++)
{
sum = 0.0;
for (k = 0; k < 18; k++) sum += winNorm [k] * in[k] * cos_l[m][k];
for (k = 18; k < 24; k++) sum += in[k] * cos_l[m][k];
for (k = 24; k < 30; k++) sum += winStart[k] * in[k] * cos_l[m][k];
out[m] = sum;
}
break;
case STOP_TYPE:
for (m = 0; m < 18; m++)
{
sum = 0.0;
for (k = 6; k < 12; k++) sum += winStop [k] * in[k] * cos_l[m][k];
for (k = 12; k < 18; k++) sum += in[k] * cos_l[m][k];
for (k = 18; k < 36; k++) sum += winNorm [k] * in[k] * cos_l[m][k];
out[m] = sum;
}
break;
case SHORT_TYPE:
for (l = 0; l < 3; l++)
{
for (m = 0; m < 6; m++)
{
sum = 0.0;
for (k = 0; k < 12; k++) sum += winShort[k] * in[k+6+l*6] * cos_s[m][k];
out[3*m+l] = sum;
}
}
}
}
#elif MDCT_CHANGE_LEVEL == 1 /* reformatted for better overview; use block type constants */
void mdct
(
double *in,
double *out,
int block_type
)
{
static double cos_l[18][36];
static double cos_s[ 6][12];
static double winNorm [36];
static double winShort[12];
static double winStart[36];
static double winStop [36];
int l, k, m, N;
double sum;
if (!fInit_mdct)
{
/* type 0 -- NORM_TYPE */
for (k = 0; k < 36; k++) winNorm [k] = sin (PI/36 * (k+0.5));
/* type 1 -- START_TYPE */
for (k = 0; k < 18; k++) winStart[k] = sin (PI/36 * (k+0.5));
for (k = 18; k < 24; k++) winStart[k] = 1.0;
for (k = 24; k < 30; k++) winStart[k] = sin (PI/12 * (k+0.5 - 18));
for (k = 30; k < 36; k++) winStart[k] = 0.0;
/* type 3 -- STOP_TYPE */
for (k = 0; k < 6; k++) winStop [k] = 0.0;
for (k = 6; k < 12; k++) winStop [k] = sin (PI/12 * (k+0.5 - 6));
for (k = 12; k < 18; k++) winStop [k] = 1.0;
for (k = 18; k < 36; k++) winStop [k] = sin (PI/36 * (k+0.5));
/* type 2 -- SHORT_TYPE */
for (k = 0; k < 12; k++) winShort[k] = sin (PI/12 * (k+0.5));
N = 12; for (m = 0; m < N/2; m++) for (k = 0; k < N; k++) cos_s[m][k] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
N = 36; for (m = 0; m < N/2; m++) for (k = 0; k < N; k++) cos_l[m][k] = cos((PI/(2*N)) * (2*k+1+N/2) * (2*m+1)) / (N/4);
fInit_mdct++;
}
switch (block_type)
{
case NORM_TYPE: N = 36; for (m = 0; m < N/2; m++) {sum = 0.0; for (k = 0; k < N; k++) sum += winNorm [k] * in[k ] * cos_l[m][k]; out[ m ] = sum;} break;
case START_TYPE: N = 36; for (m = 0; m < N/2; m++) {sum = 0.0; for (k = 0; k < N; k++) sum += winStart[k] * in[k ] * cos_l[m][k]; out[ m ] = sum;} break;
case STOP_TYPE: N = 36; for (m = 0; m < N/2; m++) {sum = 0.0; for (k = 0; k < N; k++) sum += winStop [k] * in[k ] * cos_l[m][k]; out[ m ] = sum;} break;
case SHORT_TYPE: N = 12; for (l = 0; l < 3; l++) {for (m = 0; m < N/2; m++) {sum = 0.0; for (k = 0; k < N; k++) sum += winShort[k] * in[k+6+l*6] * cos_s[m][k]; out[3*m+l] = sum;}}
}
}
#endif /* MDCT_CHANGE_LEVEL */
|