// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements signed multi-precision integers.
package big
// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
type Int struct {
neg bool; // sign
abs []Word; // absolute value of the integer
}
// New allocates and returns a new Int set to x.
func (z *Int) New(x int64) *Int {
z.neg = false;
if x < 0 {
z.neg = true;
x = -x;
}
z.abs = newN(z.abs, uint64(x));
return z;
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int { return new(Int).New(x) }
// Set sets z to x.
func (z *Int) Set(x *Int) *Int {
z.neg = x.neg;
z.abs = setN(z.abs, x.abs);
return z;
}
// Add computes z = x+y.
func (z *Int) Add(x, y *Int) *Int {
if x.neg == y.neg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.neg = x.neg;
z.abs = addNN(z.abs, x.abs, y.abs);
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if cmpNN(x.abs, y.abs) >= 0 {
z.neg = x.neg;
z.abs = subNN(z.abs, x.abs, y.abs);
} else {
z.neg = !x.neg;
z.abs = subNN(z.abs, y.abs, x.abs);
}
}
if len(z.abs) == 0 {
z.neg = false // 0 has no sign
}
return z;
}
// Sub computes z = x-y.
func (z *Int) Sub(x, y *Int) *Int {
if x.neg != y.neg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.neg = x.neg;
z.abs = addNN(z.abs, x.abs, y.abs);
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if cmpNN(x.abs, y.abs) >= 0 {
z.neg = x.neg;
z.abs = subNN(z.abs, x.abs, y.abs);
} else {
z.neg = !x.neg;
z.abs = subNN(z.abs, y.abs, x.abs);
}
}
if len(z.abs) == 0 {
z.neg = false // 0 has no sign
}
return z;
}
// Mul computes z = x*y.
func (z *Int) Mul(x, y *Int) *Int {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
z.abs = mulNN(z.abs, x.abs, y.abs);
z.neg = len(z.abs) > 0 && x.neg != y.neg; // 0 has no sign
return z;
}
// Div calculates q = (x-r)/y where 0 <= r < y. The receiver is set to q.
func (z *Int) Div(x, y *Int) (q, r *Int) {
q = z;
r = new(Int);
div(q, r, x, y);
return;
}
// Mod calculates q = (x-r)/y and returns r.
func (z *Int) Mod(x, y *Int) (r *Int) {
q := new(Int);
r = z;
div(q, r, x, y);
return;
}
func div(q, r, x, y *Int) {
q.neg = x.neg != y.neg;
r.neg = x.neg;
q.abs, r.abs = divNN(q.abs, r.abs, x.abs, y.abs);
return;
}
// Neg computes z = -x.
func (z *Int) Neg(x *Int) *Int {
z.abs = setN(z.abs, x.abs);
z.neg = len(z.abs) > 0 && !x.neg; // 0 has no sign
return z;
}
// Cmp compares x and y. The result is
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Int) Cmp(y *Int) (r int) {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
switch {
case x.neg == y.neg:
r = cmpNN(x.abs, y.abs);
if x.neg {
r = -r
}
case x.neg:
r = -1
default:
r = 1
}
return;
}
func (z *Int) String() string {
s := "";
if z.neg {
s = "-"
}
return s + stringN(z.abs, 10);
}
// SetString sets z to the value of s, interpreted in the given base.
// If base is 0 then SetString attempts to detect the base by at the prefix of
// s. '0x' implies base 16, '0' implies base 8. Otherwise base 10 is assumed.
func (z *Int) SetString(s string, base int) (*Int, bool) {
var scanned int;
if base == 1 || base > 16 {
goto Error
}
if len(s) == 0 {
goto Error
}
if s[0] == '-' {
z.neg = true;
s = s[1:];
} else {
z.neg = false
}
z.abs, _, scanned = scanN(z.abs, s, base);
if scanned != len(s) {
goto Error
}
return z, true;
Error:
z.neg = false;
z.abs = nil;
return nil, false;
}
// SetBytes interprets b as the bytes of a big-endian, unsigned integer and
// sets x to that value.
func (z *Int) SetBytes(b []byte) *Int {
s := int(_S);
z.abs = makeN(z.abs, (len(b)+s-1)/s, false);
z.neg = false;
j := 0;
for len(b) >= s {
var w Word;
for i := s; i > 0; i-- {
w <<= 8;
w |= Word(b[len(b)-i]);
}
z.abs[j] = w;
j++;
b = b[0 : len(b)-s];
}
if len(b) > 0 {
var w Word;
for i := len(b); i > 0; i-- {
w <<= 8;
w |= Word(b[len(b)-i]);
}
z.abs[j] = w;
}
z.abs = normN(z.abs);
return z;
}
// Bytes returns the absolute value of x as a big-endian byte array.
func (z *Int) Bytes() []byte {
s := int(_S);
b := make([]byte, len(z.abs)*s);
for i, w := range z.abs {
wordBytes := b[(len(z.abs)-i-1)*s : (len(z.abs)-i)*s];
for j := s - 1; j >= 0; j-- {
wordBytes[j] = byte(w);
w >>= 8;
}
}
i := 0;
for i < len(b) && b[i] == 0 {
i++
}
return b[i:];
}
// Len returns the length of the absolute value of x in bits. Zero is
// considered to have a length of one.
func (z *Int) Len() int {
if len(z.abs) == 0 {
return 0
}
return len(z.abs)*_W - int(leadingZeros(z.abs[len(z.abs)-1]));
}
// Exp sets z = x**y mod m. If m is nil, z = x**y.
// See Knuth, volume 2, section 4.6.3.
func (z *Int) Exp(x, y, m *Int) *Int {
if y.neg || len(y.abs) == 0 {
z.New(1);
z.neg = x.neg;
return z;
}
var mWords []Word;
if m != nil {
mWords = m.abs
}
z.abs = expNNN(z.abs, x.abs, y.abs, mWords);
z.neg = x.neg && y.abs[0]&1 == 1;
return z;
}
// GcdInt sets d to the greatest common divisor of a and b, which must be
// positive numbers.
// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y.
// If either a or b is not positive, GcdInt sets d = x = y = 0.
func GcdInt(d, x, y, a, b *Int) {
if a.neg || b.neg {
d.New(0);
if x != nil {
x.New(0)
}
if y != nil {
y.New(0)
}
return;
}
A := new(Int).Set(a);
B := new(Int).Set(b);
X := new(Int);
Y := new(Int).New(1);
lastX := new(Int).New(1);
lastY := new(Int);
q := new(Int);
temp := new(Int);
for len(B.abs) > 0 {
q, r := q.Div(A, B);
A, B = B, r;
temp.Set(X);
X.Mul(X, q);
X.neg = !X.neg;
X.Add(X, lastX);
lastX.Set(temp);
temp.Set(Y);
Y.Mul(Y, q);
Y.neg = !Y.neg;
Y.Add(Y, lastY);
lastY.Set(temp);
}
if x != nil {
*x = *lastX
}
if y != nil {
*y = *lastY
}
*d = *A;
}
// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
// If it returns true, z is prime with probability 1 - 1/4^n.
// If it returns false, z is not prime.
func ProbablyPrime(z *Int, reps int) bool { return !z.neg && probablyPrime(z.abs, reps) }
// Rsh sets z = x >> s and returns z.
func (z *Int) Rsh(x *Int, n int) *Int {
removedWords := n / _W;
z.abs = makeN(z.abs, len(x.abs)-removedWords, false);
z.neg = x.neg;
shiftRight(z.abs, x.abs[removedWords:], n%_W);
z.abs = normN(z.abs);
return z;
}
|