// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This package implements RSA encryption as specified in PKCS#1.
package rsa
// TODO(agl): Add support for PSS padding.
import (
"big";
"crypto/subtle";
"hash";
"io";
"os";
)
var bigZero = big.NewInt(0)
var bigOne = big.NewInt(1)
// randomSafePrime returns a number, p, of the given size, such that p and
// (p-1)/2 are both prime with high probability.
func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
if bits < 1 {
err = os.EINVAL
}
bytes := make([]byte, (bits+7)/8);
p = new(big.Int);
p2 := new(big.Int);
for {
_, err = io.ReadFull(rand, bytes);
if err != nil {
return
}
// Don't let the value be too small.
bytes[0] |= 0x80;
// Make the value odd since an even number this large certainly isn't prime.
bytes[len(bytes)-1] |= 1;
p.SetBytes(bytes);
if big.ProbablyPrime(p, 20) {
p2.Rsh(p, 1); // p2 = (p - 1)/2
if big.ProbablyPrime(p2, 20) {
return
}
}
}
return;
}
// randomNumber returns a uniform random value in [0, max).
func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
k := (max.Len() + 7) / 8;
// r is the number of bits in the used in the most significant byte of
// max.
r := uint(max.Len() % 8);
if r == 0 {
r = 8
}
bytes := make([]byte, k);
n = new(big.Int);
for {
_, err = io.ReadFull(rand, bytes);
if err != nil {
return
}
// Clear bits in the first byte to increase the probability
// that the candidate is < max.
bytes[0] &= uint8(int(1<<r) - 1);
n.SetBytes(bytes);
if n.Cmp(max) < 0 {
return
}
}
return;
}
// A PublicKey represents the public part of an RSA key.
type PublicKey struct {
N *big.Int; // modulus
E int; // public exponent
}
// A PrivateKey represents an RSA key
type PrivateKey struct {
PublicKey; // public part.
D *big.Int; // private exponent
P, Q *big.Int; // prime factors of N
}
// Validate performs basic sanity checks on the key.
// It returns nil if the key is valid, or else an os.Error describing a problem.
func (priv PrivateKey) Validate() os.Error {
// Check that p and q are prime. Note that this is just a sanity
// check. Since the random witnesses chosen by ProbablyPrime are
// deterministic, given the candidate number, it's easy for an attack
// to generate composites that pass this test.
if !big.ProbablyPrime(priv.P, 20) {
return os.ErrorString("P is composite")
}
if !big.ProbablyPrime(priv.Q, 20) {
return os.ErrorString("Q is composite")
}
// Check that p*q == n.
modulus := new(big.Int).Mul(priv.P, priv.Q);
if modulus.Cmp(priv.N) != 0 {
return os.ErrorString("invalid modulus")
}
// Check that e and totient(p, q) are coprime.
pminus1 := new(big.Int).Sub(priv.P, bigOne);
qminus1 := new(big.Int).Sub(priv.Q, bigOne);
totient := new(big.Int).Mul(pminus1, qminus1);
e := big.NewInt(int64(priv.E));
gcd := new(big.Int);
x := new(big.Int);
y := new(big.Int);
big.GcdInt(gcd, x, y, totient, e);
if gcd.Cmp(bigOne) != 0 {
return os.ErrorString("invalid public exponent E")
}
// Check that de ≡ 1 (mod totient(p, q))
de := new(big.Int).Mul(priv.D, e);
de.Mod(de, totient);
if de.Cmp(bigOne) != 0 {
return os.ErrorString("invalid private exponent D")
}
return nil;
}
// GenerateKeyPair generates an RSA keypair of the given bit size.
func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
priv = new(PrivateKey);
// Smaller public exponents lead to faster public key
// operations. Since the exponent must be coprime to
// (p-1)(q-1), the smallest possible value is 3. Some have
// suggested that a larger exponent (often 2**16+1) be used
// since previous implementation bugs[1] were avoided when this
// was the case. However, there are no current reasons not to use
// small exponents.
// [1] http://marc.info/?l=cryptography&m=115694833312008&w=2
priv.E = 3;
pminus1 := new(big.Int);
qminus1 := new(big.Int);
totient := new(big.Int);
for {
p, err := randomSafePrime(rand, bits/2);
if err != nil {
return nil, err
}
q, err := randomSafePrime(rand, bits/2);
if err != nil {
return nil, err
}
if p.Cmp(q) == 0 {
continue
}
n := new(big.Int).Mul(p, q);
pminus1.Sub(p, bigOne);
qminus1.Sub(q, bigOne);
totient.Mul(pminus1, qminus1);
g := new(big.Int);
priv.D = new(big.Int);
y := new(big.Int);
e := big.NewInt(int64(priv.E));
big.GcdInt(g, priv.D, y, e, totient);
if g.Cmp(bigOne) == 0 {
priv.D.Add(priv.D, totient);
priv.P = p;
priv.Q = q;
priv.N = n;
break;
}
}
return;
}
// incCounter increments a four byte, big-endian counter.
func incCounter(c *[4]byte) {
if c[3]++; c[3] != 0 {
return
}
if c[2]++; c[2] != 0 {
return
}
if c[1]++; c[1] != 0 {
return
}
c[0]++;
}
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
// specified in PKCS#1 v2.1.
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
var counter [4]byte;
done := 0;
for done < len(out) {
hash.Write(seed);
hash.Write(counter[0:4]);
digest := hash.Sum();
hash.Reset();
for i := 0; i < len(digest) && done < len(out); i++ {
out[done] ^= digest[i];
done++;
}
incCounter(&counter);
}
}
// MessageTooLongError is returned when attempting to encrypt a message which
// is too large for the size of the public key.
type MessageTooLongError struct{}
func (MessageTooLongError) String() string {
return "message too long for RSA public key size"
}
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
e := big.NewInt(int64(pub.E));
c.Exp(m, e, pub.N);
return c;
}
// EncryptOAEP encrypts the given message with RSA-OAEP.
// The message must be no longer than the length of the public modulus less
// twice the hash length plus 2.
func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
hash.Reset();
k := (pub.N.Len() + 7) / 8;
if len(msg) > k-2*hash.Size()-2 {
err = MessageTooLongError{};
return;
}
hash.Write(label);
lHash := hash.Sum();
hash.Reset();
em := make([]byte, k);
seed := em[1 : 1+hash.Size()];
db := em[1+hash.Size():];
copy(db[0:hash.Size()], lHash);
db[len(db)-len(msg)-1] = 1;
copy(db[len(db)-len(msg):], msg);
_, err = io.ReadFull(rand, seed);
if err != nil {
return
}
mgf1XOR(db, hash, seed);
mgf1XOR(seed, hash, db);
m := new(big.Int);
m.SetBytes(em);
c := encrypt(new(big.Int), pub, m);
out = c.Bytes();
return;
}
// A DecryptionError represents a failure to decrypt a message.
// It is deliberately vague to avoid adaptive attacks.
type DecryptionError struct{}
func (DecryptionError) String() string { return "RSA decryption error" }
// A VerificationError represents a failure to verify a signature.
// It is deliberately vague to avoid adaptive attacks.
type VerificationError struct{}
func (VerificationError) String() string { return "RSA verification error" }
// modInverse returns ia, the inverse of a in the multiplicative group of prime
// order n. It requires that a be a member of the group (i.e. less than n).
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
g := new(big.Int);
x := new(big.Int);
y := new(big.Int);
big.GcdInt(g, x, y, a, n);
if g.Cmp(bigOne) != 0 {
// In this case, a and n aren't coprime and we cannot calculate
// the inverse. This happens because the values of n are nearly
// prime (being the product of two primes) rather than truly
// prime.
return
}
if x.Cmp(bigOne) < 0 {
// 0 is not the multiplicative inverse of any element so, if x
// < 1, then x is negative.
x.Add(x, n)
}
return x, true;
}
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
// TODO(agl): can we get away with reusing blinds?
if c.Cmp(priv.N) > 0 {
err = DecryptionError{};
return;
}
var ir *big.Int;
if rand != nil {
// Blinding enabled. Blinding involves multiplying c by r^e.
// Then the decryption operation performs (m^e * r^e)^d mod n
// which equals mr mod n. The factor of r can then be removed
// by multipling by the multiplicative inverse of r.
var r *big.Int;
for {
r, err = randomNumber(rand, priv.N);
if err != nil {
return
}
if r.Cmp(bigZero) == 0 {
r = bigOne
}
var ok bool;
ir, ok = modInverse(r, priv.N);
if ok {
break
}
}
bigE := big.NewInt(int64(priv.E));
rpowe := new(big.Int).Exp(r, bigE, priv.N);
c.Mul(c, rpowe);
c.Mod(c, priv.N);
}
m = new(big.Int).Exp(c, priv.D, priv.N);
if ir != nil {
// Unblind.
m.Mul(m, ir);
m.Mod(m, priv.N);
}
return;
}
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
k := (priv.N.Len() + 7) / 8;
if len(ciphertext) > k ||
k < hash.Size()*2+2 {
err = DecryptionError{};
return;
}
c := new(big.Int).SetBytes(ciphertext);
m, err := decrypt(rand, priv, c);
if err != nil {
return
}
hash.Write(label);
lHash := hash.Sum();
hash.Reset();
// Converting the plaintext number to bytes will strip any
// leading zeros so we may have to left pad. We do this unconditionally
// to avoid leaking timing information. (Although we still probably
// leak the number of leading zeros. It's not clear that we can do
// anything about this.)
em := leftPad(m.Bytes(), k);
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0);
seed := em[1 : hash.Size()+1];
db := em[hash.Size()+1:];
mgf1XOR(seed, hash, db);
mgf1XOR(db, hash, seed);
lHash2 := db[0:hash.Size()];
// We have to validate the plaintext in contanst time in order to avoid
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
// v2.0. In J. Kilian, editor, Advances in Cryptology.
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2);
// The remainder of the plaintext must be zero or more 0x00, followed
// by 0x01, followed by the message.
// lookingForIndex: 1 iff we are still looking for the 0x01
// index: the offset of the first 0x01 byte
// invalid: 1 iff we saw a non-zero byte before the 0x01.
var lookingForIndex, index, invalid int;
lookingForIndex = 1;
rest := db[hash.Size():];
for i := 0; i < len(rest); i++ {
equals0 := subtle.ConstantTimeByteEq(rest[i], 0);
equals1 := subtle.ConstantTimeByteEq(rest[i], 1);
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index);
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex);
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid);
}
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
err = DecryptionError{};
return;
}
msg = rest[index+1:];
return;
}
// leftPad returns a new slice of length size. The contents of input are right
// aligned in the new slice.
func leftPad(input []byte, size int) (out []byte) {
n := len(input);
if n > size {
n = size
}
out = make([]byte, size);
copy(out[len(out)-n:], input);
return;
}
|