// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ogle
import (
"debug/gosym";
"debug/proc";
"fmt";
"os";
)
// A Frame represents a single frame on a remote call stack.
type Frame struct {
// pc is the PC of the next instruction that will execute in
// this frame. For lower frames, this is the instruction
// following the CALL instruction.
pc, sp, fp proc.Word;
// The runtime.Stktop of the active stack segment
stk remoteStruct;
// The function this stack frame is in
fn *gosym.Func;
// The path and line of the CALL or current instruction. Note
// that this differs slightly from the meaning of Frame.pc.
path string;
line int;
// The inner and outer frames of this frame. outer is filled
// in lazily.
inner, outer *Frame;
}
// newFrame returns the top-most Frame of the given g's thread.
func newFrame(g remoteStruct) (*Frame, os.Error) {
var f *Frame;
err := try(func(a aborter) { f = aNewFrame(a, g) });
return f, err;
}
func aNewFrame(a aborter, g remoteStruct) *Frame {
p := g.r.p;
var pc, sp proc.Word;
// Is this G alive?
switch g.field(p.f.G.Status).(remoteInt).aGet(a) {
case p.runtime.Gidle, p.runtime.Gmoribund, p.runtime.Gdead:
return nil
}
// Find the OS thread for this G
// TODO(austin) Ideally, we could look at the G's state and
// figure out if it's on an OS thread or not. However, this
// is difficult because the state isn't updated atomically
// with scheduling changes.
for _, t := range p.proc.Threads() {
regs, err := t.Regs();
if err != nil {
// TODO(austin) What to do?
continue
}
thisg := p.G(regs);
if thisg == g.addr().base {
// Found this G's OS thread
pc = regs.PC();
sp = regs.SP();
// If this thread crashed, try to recover it
if pc == 0 {
pc = p.peekUintptr(a, pc);
sp += 8;
}
break;
}
}
if pc == 0 && sp == 0 {
// G is not mapped to an OS thread. Use the
// scheduler's stored PC and SP.
sched := g.field(p.f.G.Sched).(remoteStruct);
pc = proc.Word(sched.field(p.f.Gobuf.Pc).(remoteUint).aGet(a));
sp = proc.Word(sched.field(p.f.Gobuf.Sp).(remoteUint).aGet(a));
}
// Get Stktop
stk := g.field(p.f.G.Stackbase).(remotePtr).aGet(a).(remoteStruct);
return prepareFrame(a, pc, sp, stk, nil);
}
// prepareFrame creates a Frame from the PC and SP within that frame,
// as well as the active stack segment. This function takes care of
// traversing stack breaks and unwinding closures.
func prepareFrame(a aborter, pc, sp proc.Word, stk remoteStruct, inner *Frame) *Frame {
// Based on src/pkg/runtime/amd64/traceback.c:traceback
p := stk.r.p;
top := inner == nil;
// Get function
var path string;
var line int;
var fn *gosym.Func;
for i := 0; i < 100; i++ {
// Traverse segmented stack breaks
if p.sys.lessstack != nil && pc == proc.Word(p.sys.lessstack.Value) {
// Get stk->gobuf.pc
pc = proc.Word(stk.field(p.f.Stktop.Gobuf).(remoteStruct).field(p.f.Gobuf.Pc).(remoteUint).aGet(a));
// Get stk->gobuf.sp
sp = proc.Word(stk.field(p.f.Stktop.Gobuf).(remoteStruct).field(p.f.Gobuf.Sp).(remoteUint).aGet(a));
// Get stk->stackbase
stk = stk.field(p.f.Stktop.Stackbase).(remotePtr).aGet(a).(remoteStruct);
continue;
}
// Get the PC of the call instruction
callpc := pc;
if !top && (p.sys.goexit == nil || pc != proc.Word(p.sys.goexit.Value)) {
callpc--
}
// Look up function
path, line, fn = p.syms.PCToLine(uint64(callpc));
if fn != nil {
break
}
// Closure?
var buf = make([]byte, p.ClosureSize());
if _, err := p.Peek(pc, buf); err != nil {
break
}
spdelta, ok := p.ParseClosure(buf);
if ok {
sp += proc.Word(spdelta);
pc = p.peekUintptr(a, sp-proc.Word(p.PtrSize()));
}
}
if fn == nil {
return nil
}
// Compute frame pointer
var fp proc.Word;
if fn.FrameSize < p.PtrSize() {
fp = sp + proc.Word(p.PtrSize())
} else {
fp = sp + proc.Word(fn.FrameSize)
}
// TODO(austin) To really figure out if we're in the prologue,
// we need to disassemble the function and look for the call
// to morestack. For now, just special case the entry point.
//
// TODO(austin) What if we're in the call to morestack in the
// prologue? Then top == false.
if top && pc == proc.Word(fn.Entry) {
// We're in the function prologue, before SP
// has been adjusted for the frame.
fp -= proc.Word(fn.FrameSize - p.PtrSize())
}
return &Frame{pc, sp, fp, stk, fn, path, line, inner, nil};
}
// Outer returns the Frame that called this Frame, or nil if this is
// the outermost frame.
func (f *Frame) Outer() (*Frame, os.Error) {
var fr *Frame;
err := try(func(a aborter) { fr = f.aOuter(a) });
return fr, err;
}
func (f *Frame) aOuter(a aborter) *Frame {
// Is there a cached outer frame
if f.outer != nil {
return f.outer
}
p := f.stk.r.p;
sp := f.fp;
if f.fn == p.sys.newproc && f.fn == p.sys.deferproc {
// TODO(rsc) The compiler inserts two push/pop's
// around calls to go and defer. Russ says this
// should get fixed in the compiler, but we account
// for it for now.
sp += proc.Word(2 * p.PtrSize())
}
pc := p.peekUintptr(a, f.fp-proc.Word(p.PtrSize()));
if pc < 0x1000 {
return nil
}
// TODO(austin) Register this frame for shoot-down.
f.outer = prepareFrame(a, pc, sp, f.stk, f);
return f.outer;
}
// Inner returns the Frame called by this Frame, or nil if this is the
// innermost frame.
func (f *Frame) Inner() *Frame { return f.inner }
func (f *Frame) String() string {
res := f.fn.Name;
if f.pc > proc.Word(f.fn.Value) {
res += fmt.Sprintf("+%#x", f.pc-proc.Word(f.fn.Entry))
}
return res + fmt.Sprintf(" %s:%d", f.path, f.line);
}
|