// Copyright (c) 1996 Barry Silverman, Brian Silverman, Vadim Gerasimov.
// Portions Copyright (c) 2009 The Go Authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This package and spacewar.go implement a simple PDP-1 emulator
// complete enough to run the original PDP-1 video game Spacewar!
// See ../../nacl/README for details on running them.
//
// They are a translation of the Java emulator pdp1.java in
// http://spacewar.oversigma.com/sources/sources.zip.
//
// See also the PDP-1 handbook at http://www.dbit.com/~greeng3/pdp1/pdp1.html
//
// http://spacewar.oversigma.com/readme.html reads:
//
// Spacewar! was conceived in 1961 by Martin Graetz, Stephen Russell,
// and Wayne Wiitanen. It was first realized on the PDP-1 in 1962 by
// Stephen Russell, Peter Samson, Dan Edwards, and Martin Graetz,
// together with Alan Kotok, Steve Piner, and Robert A Saunders.
// Spacewar! is in the public domain, but this credit paragraph must
// accompany all distributed versions of the program.
//
// This is the original version! Martin Graetz provided us with a
// printed version of the source. We typed in in again - it was about
// 40 pages long - and re-assembled it with a PDP-1 assembler written
// in PERL. The resulting binary runs on a PDP-1 emulator written as
// a Java applet. The code is extremely faithful to the original. There
// are only two changes. 1)The spaceships have been made bigger and
// 2) The overall timing has been special cased to deal with varying
// machine speeds.
//
// The "a", "s", "d", "f" keys control one of the spaceships. The "k",
// "l", ";", "'" keys control the other. The controls are spin one
// way, spin the other, thrust, and fire.
//
// Barry Silverman
// Brian Silverman
// Vadim Gerasimov
//
package pdp1
import (
"bufio";
"fmt";
"os";
"io";
)
type Word uint32
const mask = 0777777
const sign = 0400000
const (
_ = iota; // 00
opAND;
opIOR;
opXOR;
opXCT;
_;
_;
opCALJDA;
opLAC; // 10
opLIO;
opDAC;
opDAP;
_;
opDIO;
opDZM;
_;
opADD; // 20
opSUB;
opIDX;
opISP;
opSAD;
opSAS;
opMUS;
opDIS;
opJMP; // 30
opJSP;
opSKP;
opSFT;
opLAW;
opIOT;
_;
opOPR;
)
// A Trapper represents an object with a Trap method.
// The machine calls the Trap method to implement the
// PDP-1 IOT instruction.
type Trapper interface {
Trap(y Word);
}
// An M represents the machine state of a PDP-1.
// Clients can set Display to install an output device.
type M struct {
AC, IO, PC, OV Word;
Mem [010000]Word;
Flag [7]bool;
Sense [7]bool;
Halt bool;
}
// Step runs a single machine instruction.
func (m *M) Step(t Trapper) os.Error {
inst := m.Mem[m.PC];
m.PC++;
return m.run(inst, t);
}
// Normalize actual 32-bit integer i to 18-bit ones-complement integer.
// Interpret mod 0777777, because 0777777 == -0 == +0 == 0000000.
func norm(i Word) Word {
i += i >> 18;
i &= mask;
if i == mask {
i = 0
}
return i;
}
type UnknownInstrError struct {
Inst Word;
PC Word;
}
func (e UnknownInstrError) String() string {
return fmt.Sprintf("unknown instruction %06o at %06o", e.Inst, e.PC)
}
type HaltError Word
func (e HaltError) String() string {
return fmt.Sprintf("executed HLT instruction at %06o", e)
}
type LoopError Word
func (e LoopError) String() string { return fmt.Sprintf("indirect load looping at %06o", e) }
func (m *M) run(inst Word, t Trapper) os.Error {
ib, y := (inst>>12)&1, inst&07777;
op := inst >> 13;
if op < opSKP && op != opCALJDA {
for n := 0; ib != 0; n++ {
if n > 07777 {
return LoopError(m.PC - 1)
}
ib = (m.Mem[y] >> 12) & 1;
y = m.Mem[y] & 07777;
}
}
switch op {
case opAND:
m.AC &= m.Mem[y]
case opIOR:
m.AC |= m.Mem[y]
case opXOR:
m.AC ^= m.Mem[y]
case opXCT:
m.run(m.Mem[y], t)
case opCALJDA:
a := y;
if ib == 0 {
a = 64
}
m.Mem[a] = m.AC;
m.AC = (m.OV << 17) + m.PC;
m.PC = a + 1;
case opLAC:
m.AC = m.Mem[y]
case opLIO:
m.IO = m.Mem[y]
case opDAC:
m.Mem[y] = m.AC
case opDAP:
m.Mem[y] = m.Mem[y]&0770000 | m.AC&07777
case opDIO:
m.Mem[y] = m.IO
case opDZM:
m.Mem[y] = 0
case opADD:
m.AC += m.Mem[y];
m.OV = m.AC >> 18;
m.AC = norm(m.AC);
case opSUB:
diffSigns := (m.AC^m.Mem[y])>>17 == 1;
m.AC += m.Mem[y] ^ mask;
m.AC = norm(m.AC);
if diffSigns && m.Mem[y]>>17 == m.AC>>17 {
m.OV = 1
}
case opIDX:
m.AC = norm(m.Mem[y] + 1);
m.Mem[y] = m.AC;
case opISP:
m.AC = norm(m.Mem[y] + 1);
m.Mem[y] = m.AC;
if m.AC&sign == 0 {
m.PC++
}
case opSAD:
if m.AC != m.Mem[y] {
m.PC++
}
case opSAS:
if m.AC == m.Mem[y] {
m.PC++
}
case opMUS:
if m.IO&1 == 1 {
m.AC += m.Mem[y];
m.AC = norm(m.AC);
}
m.IO = (m.IO>>1 | m.AC<<17) & mask;
m.AC >>= 1;
case opDIS:
m.AC, m.IO = (m.AC<<1|m.IO>>17)&mask,
((m.IO<<1|m.AC>>17)&mask)^1;
if m.IO&1 == 1 {
m.AC = m.AC + (m.Mem[y] ^ mask)
} else {
m.AC = m.AC + 1 + m.Mem[y]
}
m.AC = norm(m.AC);
case opJMP:
m.PC = y
case opJSP:
m.AC = (m.OV << 17) + m.PC;
m.PC = y;
case opSKP:
cond := y&0100 == 0100 && m.AC == 0 ||
y&0200 == 0200 && m.AC>>17 == 0 ||
y&0400 == 0400 && m.AC>>17 == 1 ||
y&01000 == 01000 && m.OV == 0 ||
y&02000 == 02000 && m.IO>>17 == 0 ||
y&7 != 0 && !m.Flag[y&7] ||
y&070 != 0 && !m.Sense[(y&070)>>3] ||
y&070 == 010;
if (ib == 0) == cond {
m.PC++
}
if y&01000 == 01000 {
m.OV = 0
}
case opSFT:
for count := inst & 0777; count != 0; count >>= 1 {
if count&1 == 0 {
continue
}
switch (inst >> 9) & 017 {
case 001: // rotate AC left
m.AC = (m.AC<<1 | m.AC>>17) & mask
case 002: // rotate IO left
m.IO = (m.IO<<1 | m.IO>>17) & mask
case 003: // rotate AC and IO left.
w := uint64(m.AC)<<18 | uint64(m.IO);
w = w<<1 | w>>35;
m.AC = Word(w>>18) & mask;
m.IO = Word(w) & mask;
case 005: // shift AC left (excluding sign bit)
m.AC = (m.AC<<1|m.AC>>17)&mask&^sign | m.AC&sign
case 006: // shift IO left (excluding sign bit)
m.IO = (m.IO<<1|m.IO>>17)&mask&^sign | m.IO&sign
case 007: // shift AC and IO left (excluding AC's sign bit)
w := uint64(m.AC)<<18 | uint64(m.IO);
w = w<<1 | w>>35;
m.AC = Word(w>>18)&mask&^sign | m.AC&sign;
m.IO = Word(w)&mask&^sign | m.AC&sign;
case 011: // rotate AC right
m.AC = (m.AC>>1 | m.AC<<17) & mask
case 012: // rotate IO right
m.IO = (m.IO>>1 | m.IO<<17) & mask
case 013: // rotate AC and IO right
w := uint64(m.AC)<<18 | uint64(m.IO);
w = w>>1 | w<<35;
m.AC = Word(w>>18) & mask;
m.IO = Word(w) & mask;
case 015: // shift AC right (excluding sign bit)
m.AC = m.AC>>1 | m.AC&sign
case 016: // shift IO right (excluding sign bit)
m.IO = m.IO>>1 | m.IO&sign
case 017: // shift AC and IO right (excluding AC's sign bit)
w := uint64(m.AC)<<18 | uint64(m.IO);
w = w >> 1;
m.AC = Word(w>>18) | m.AC&sign;
m.IO = Word(w) & mask;
default:
goto Unknown
}
}
case opLAW:
if ib == 0 {
m.AC = y
} else {
m.AC = y ^ mask
}
case opIOT:
t.Trap(y)
case opOPR:
if y&0200 == 0200 {
m.AC = 0
}
if y&04000 == 04000 {
m.IO = 0
}
if y&01000 == 01000 {
m.AC ^= mask
}
if y&0400 == 0400 {
m.PC--;
return HaltError(m.PC);
}
switch i, f := y&7, y&010 == 010; {
case i == 7:
for i := 2; i < 7; i++ {
m.Flag[i] = f
}
case i >= 2:
m.Flag[i] = f
}
default:
Unknown:
return UnknownInstrError{inst, m.PC - 1}
}
return nil;
}
// Load loads the machine's memory from a text input file
// listing octal address-value pairs, one per line, matching the
// regular expression ^[ +]([0-7]+)\t([0-7]+).
func (m *M) Load(r io.Reader) os.Error {
b := bufio.NewReader(r);
for {
line, err := b.ReadString('\n');
if err != nil {
if err != os.EOF {
return err
}
break;
}
// look for ^[ +]([0-9]+)\t([0-9]+)
if line[0] != ' ' && line[0] != '+' {
continue
}
i := 1;
a := Word(0);
for ; i < len(line) && '0' <= line[i] && line[i] <= '7'; i++ {
a = a*8 + Word(line[i]-'0')
}
if i >= len(line) || line[i] != '\t' || i == 1 {
continue
}
v := Word(0);
j := i;
for i++; i < len(line) && '0' <= line[i] && line[i] <= '7'; i++ {
v = v*8 + Word(line[i]-'0')
}
if i == j {
continue
}
m.Mem[a] = v;
}
return nil;
}
|