Plan 9 from Bell Labs’s /usr/web/sources/contrib/ericvh/go-plan9/src/pkg/go/printer/nodes.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements printing of AST nodes; specifically
// expressions, statements, declarations, and files. It uses
// the print functionality implemented in printer.go.

package printer

import (
	"bytes";
	"go/ast";
	"go/token";
)


// Disabled formatting - enable eventually and remove the flag.
const (
	compositeLitBlank	= false;
	fewerSemis		= true;
	stringListMode		= exprListMode(0);	// previously: noIndent
)


// Other formatting issues:
// - replacement of expression spacing algorithm with rsc's algorithm
// - better comment formatting for /*-style comments at the end of a line (e.g. a declaration)
//   when the comment spans multiple lines; if such a comment is just two lines, formatting is
//   not idempotent
// - formatting of expression lists; especially for string lists (stringListMode)
// - blank after { and before } in one-line composite literals probably looks better
// - should use blank instead of tab to separate one-line function bodies from
//   the function header unless there is a group of consecutive one-liners


// ----------------------------------------------------------------------------
// Common AST nodes.

// Print as many newlines as necessary (but at least min and and at most
// max newlines) to get to the current line. ws is printed before the first
// line break. If newSection is set, the first line break is printed as
// formfeed. Returns true if any line break was printed; returns false otherwise.
//
// TODO(gri): Reconsider signature (provide position instead of line)
//
func (p *printer) linebreak(line, min, max int, ws whiteSpace, newSection bool) (printedBreak bool) {
	n := line - p.pos.Line;
	switch {
	case n < min:
		n = min
	case n > max:
		n = max
	}

	if n > 0 {
		p.print(ws);
		if newSection {
			p.print(formfeed);
			n--;
			printedBreak = true;
		}
	}
	for ; n > 0; n-- {
		p.print(newline);
		printedBreak = true;
	}
	return;
}


// TODO(gri): The code for printing lead and line comments
//            should be eliminated in favor of reusing the
//            comment intersperse mechanism above somehow.

// Print a list of individual comments.
func (p *printer) commentList(list []*ast.Comment) {
	for i, c := range list {
		t := c.Text;
		// TODO(gri): this needs to be styled like normal comments
		p.print(c.Pos(), t);
		if t[1] == '/' && i+1 < len(list) {
			//-style comment which is not at the end; print a newline
			p.print(newline)
		}
	}
}


// Print a lead comment followed by a newline.
func (p *printer) leadComment(d *ast.CommentGroup) {
	// Ignore the comment if we have comments interspersed (p.comment != nil).
	if p.comment == nil && d != nil {
		p.commentList(d.List);
		p.print(newline);
	}
}


// Print a tab followed by a line comment.
// A newline must be printed afterwards since
// the comment may be a //-style comment.
func (p *printer) lineComment(d *ast.CommentGroup) {
	// Ignore the comment if we have comments interspersed (p.comment != nil).
	if p.comment == nil && d != nil {
		p.print(vtab);
		p.commentList(d.List);
	}
}


// Sets multiLine to true if the identifier list spans multiple lines.
func (p *printer) identList(list []*ast.Ident, multiLine *bool) {
	// convert into an expression list so we can re-use exprList formatting
	xlist := make([]ast.Expr, len(list));
	for i, x := range list {
		xlist[i] = x
	}
	p.exprList(noPos, xlist, 1, commaSep, multiLine);
}


// Sets multiLine to true if the string list spans multiple lines.
func (p *printer) stringList(list []*ast.BasicLit, multiLine *bool) {
	// convert into an expression list so we can re-use exprList formatting
	xlist := make([]ast.Expr, len(list));
	for i, x := range list {
		xlist[i] = x
	}
	p.exprList(noPos, xlist, 1, stringListMode, multiLine);
}


type exprListMode uint

const (
	blankStart	exprListMode	= 1 << iota;	// print a blank before a non-empty list
	blankEnd;			// print a blank after a non-empty list
	commaSep;			// elements are separated by commas
	commaTerm;			// elements are terminated by comma
	noIndent;			// no extra indentation in multi-line lists
)


// Print a list of expressions. If the list spans multiple
// source lines, the original line breaks are respected between
// expressions. Sets multiLine to true if the list spans multiple
// lines.
func (p *printer) exprList(prev token.Position, list []ast.Expr, depth int, mode exprListMode, multiLine *bool) {
	if len(list) == 0 {
		return
	}

	if mode&blankStart != 0 {
		p.print(blank)
	}

	// TODO(gri): endLine may be incorrect as it is really the beginning
	//            of the last list entry. There may be only one, very long
	//            entry in which case line == endLine.
	line := list[0].Pos().Line;
	endLine := list[len(list)-1].Pos().Line;

	if prev.IsValid() && prev.Line == line && line == endLine {
		// all list entries on a single line
		for i, x := range list {
			if i > 0 {
				if mode&commaSep != 0 {
					p.print(token.COMMA)
				}
				p.print(blank);
			}
			p.expr0(x, depth, multiLine);
		}
		if mode&blankEnd != 0 {
			p.print(blank)
		}
		return;
	}

	// list entries span multiple lines;
	// use source code positions to guide line breaks

	// don't add extra indentation if noIndent is set;
	// i.e., pretend that the first line is already indented
	ws := ignore;
	if mode&noIndent == 0 {
		ws = indent
	}

	if prev.IsValid() && prev.Line < line && p.linebreak(line, 1, 2, ws, true) {
		ws = ignore;
		*multiLine = true;
	}

	for i, x := range list {
		prev := line;
		line = x.Pos().Line;
		if i > 0 {
			if mode&commaSep != 0 {
				p.print(token.COMMA)
			}
			if prev < line && prev > 0 && line > 0 {
				if p.linebreak(line, 1, 2, ws, true) {
					ws = ignore;
					*multiLine = true;
				}
			} else {
				p.print(blank)
			}
		}
		p.expr0(x, depth, multiLine);
	}

	if mode&commaTerm != 0 {
		p.print(token.COMMA);
		if ws == ignore && mode&noIndent == 0 {
			// unindent if we indented
			p.print(unindent)
		}
		p.print(formfeed);	// terminating comma needs a line break to look good
		return;
	}

	if mode&blankEnd != 0 {
		p.print(blank)
	}

	if ws == ignore && mode&noIndent == 0 {
		// unindent if we indented
		p.print(unindent)
	}
}


// Sets multiLine to true if the the parameter list spans multiple lines.
func (p *printer) parameters(list []*ast.Field, multiLine *bool) {
	p.print(token.LPAREN);
	if len(list) > 0 {
		for i, par := range list {
			if i > 0 {
				p.print(token.COMMA, blank)
			}
			if len(par.Names) > 0 {
				p.identList(par.Names, multiLine);
				p.print(blank);
			}
			p.expr(par.Type, multiLine);
		}
	}
	p.print(token.RPAREN);
}


// Returns true if a separating semicolon is optional.
// Sets multiLine to true if the signature spans multiple lines.
func (p *printer) signature(params, result []*ast.Field, multiLine *bool) (optSemi bool) {
	p.parameters(params, multiLine);
	if result != nil {
		p.print(blank);

		if len(result) == 1 && result[0].Names == nil {
			// single anonymous result; no ()'s unless it's a function type
			f := result[0];
			if _, isFtyp := f.Type.(*ast.FuncType); !isFtyp {
				optSemi = p.expr(f.Type, multiLine);
				return;
			}
		}

		p.parameters(result, multiLine);
	}
	return;
}


func identListSize(list []*ast.Ident, maxSize int) (size int) {
	for i, x := range list {
		if i > 0 {
			size += 2	// ", "


		}
		size += len(x.Value);
		if size >= maxSize {
			break
		}
	}
	return;
}


func (p *printer) isOneLineFieldList(list []*ast.Field) bool {
	if len(list) != 1 {
		return false	// allow only one field
	}
	f := list[0];
	if f.Tag != nil || f.Comment != nil {
		return false	// don't allow tags or comments
	}
	// only name(s) and type
	const maxSize = 30;	// adjust as appropriate, this is an approximate value
	namesSize := identListSize(f.Names, maxSize);
	if namesSize > 0 {
		namesSize = 1	// blank between names and types


	}
	typeSize := p.nodeSize(f.Type, maxSize);
	return namesSize+typeSize <= maxSize;
}


func (p *printer) fieldList(lbrace token.Position, list []*ast.Field, rbrace token.Position, isIncomplete bool, ctxt exprContext) {
	if !isIncomplete && !p.commentBefore(rbrace) {
		// possibly a one-line struct/interface
		if len(list) == 0 {
			// no blank between keyword and {} in this case
			p.print(lbrace, token.LBRACE, rbrace, token.RBRACE);
			return;
		} else if ctxt&(compositeLit|structType) == compositeLit|structType &&
			p.isOneLineFieldList(list) {	// for now ignore interfaces
			// small enough - print on one line
			// (don't use identList and ignore source line breaks)
			p.print(lbrace, token.LBRACE, blank);
			f := list[0];
			for i, x := range f.Names {
				if i > 0 {
					p.print(token.COMMA, blank)
				}
				p.expr(x, ignoreMultiLine);
			}
			if len(f.Names) > 0 {
				p.print(blank)
			}
			p.expr(f.Type, ignoreMultiLine);
			p.print(blank, rbrace, token.RBRACE);
			return;
		}
	}

	// at least one entry or incomplete
	p.print(blank, lbrace, token.LBRACE, indent, formfeed);
	if ctxt&structType != 0 {

		sep := vtab;
		if len(list) == 1 {
			sep = blank
		}
		var ml bool;
		for i, f := range list {
			if i > 0 {
				p.linebreak(f.Pos().Line, 1, 2, ignore, ml)
			}
			ml = false;
			extraTabs := 0;
			p.leadComment(f.Doc);
			if len(f.Names) > 0 {
				// named fields
				p.identList(f.Names, &ml);
				p.print(sep);
				p.expr(f.Type, &ml);
				extraTabs = 1;
			} else {
				// anonymous field
				p.expr(f.Type, &ml);
				extraTabs = 2;
			}
			if f.Tag != nil {
				if len(f.Names) > 0 && sep == vtab {
					p.print(sep)
				}
				p.print(sep);
				p.expr(&ast.StringList{f.Tag}, &ml);
				extraTabs = 0;
			}
			p.print(token.SEMICOLON);
			if f.Comment != nil {
				for ; extraTabs > 0; extraTabs-- {
					p.print(vtab)
				}
				p.lineComment(f.Comment);
			}
		}
		if isIncomplete {
			if len(list) > 0 {
				p.print(formfeed)
			}
			// TODO(gri): this needs to be styled like normal comments
			p.print("// contains unexported fields");
		}

	} else {	// interface

		var ml bool;
		for i, f := range list {
			if i > 0 {
				p.linebreak(f.Pos().Line, 1, 2, ignore, ml)
			}
			ml = false;
			p.leadComment(f.Doc);
			if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp {
				// method
				p.expr(f.Names[0], &ml);
				p.signature(ftyp.Params, ftyp.Results, &ml);
			} else {
				// embedded interface
				p.expr(f.Type, &ml)
			}
			p.print(token.SEMICOLON);
			p.lineComment(f.Comment);
		}
		if isIncomplete {
			if len(list) > 0 {
				p.print(formfeed)
			}
			// TODO(gri): this needs to be styled like normal comments
			p.print("// contains unexported methods");
		}

	}
	p.print(unindent, formfeed, rbrace, token.RBRACE);
}


// ----------------------------------------------------------------------------
// Expressions

// exprContext describes the syntactic environment in which an expression node is printed.
type exprContext uint

const (
	compositeLit	= 1 << iota;
	structType;
)


func walkBinary(e *ast.BinaryExpr) (has5, has6 bool, maxProblem int) {
	switch e.Op.Precedence() {
	case 5:
		has5 = true
	case 6:
		has6 = true
	}

	switch l := e.X.(type) {
	case *ast.BinaryExpr:
		if l.Op.Precedence() < e.Op.Precedence() {
			// parens will be inserted.
			// pretend this is an *ast.ParenExpr and do nothing.
			break
		}
		h5, h6, mp := walkBinary(l);
		has5 = has5 || h5;
		has6 = has6 || h6;
		if maxProblem < mp {
			maxProblem = mp
		}
	}

	switch r := e.Y.(type) {
	case *ast.BinaryExpr:
		if r.Op.Precedence() <= e.Op.Precedence() {
			// parens will be inserted.
			// pretend this is an *ast.ParenExpr and do nothing.
			break
		}
		h5, h6, mp := walkBinary(r);
		has5 = has5 || h5;
		has6 = has6 || h6;
		if maxProblem < mp {
			maxProblem = mp
		}

	case *ast.StarExpr:
		if e.Op.String() == "/" {
			maxProblem = 6
		}

	case *ast.UnaryExpr:
		switch e.Op.String() + r.Op.String() {
		case "/*":
			maxProblem = 6
		case "++", "--":
			if maxProblem < 5 {
				maxProblem = 5
			}
		}
	}
	return;
}


func cutoff(e *ast.BinaryExpr, depth int) int {
	has5, has6, maxProblem := walkBinary(e);
	if maxProblem > 0 {
		return maxProblem + 1
	}
	if has5 && has6 {
		if depth == 1 {
			return 6
		}
		return 5;
	}
	if depth == 1 {
		return 7
	}
	return 5;
}


func diffPrec(expr ast.Expr, prec int) int {
	x, ok := expr.(*ast.BinaryExpr);
	if !ok || prec != x.Op.Precedence() {
		return 1
	}
	return 0;
}


// Format the binary expression: decide the cutoff and then format.
// Let's call depth == 1 Normal mode, and depth > 1 Compact mode.
// (Algorithm suggestion by Russ Cox.)
//
// The precedences are:
//	6             *  /  %  <<  >>  &  &^
//	5             +  -  |  ^
//	4             ==  !=  <  <=  >  >=
//	3             <-
//	2             &&
//	1             ||
//
// The only decision is whether there will be spaces around levels 5 and 6.
// There are never spaces at level 7 (unary), and always spaces at levels 4 and below.
//
// To choose the cutoff, look at the whole expression but excluding primary
// expressions (function calls, parenthesized exprs), and apply these rules:
//
//	1) If there is a binary operator with a right side unary operand
//	   that would clash without a space, the cutoff must be (in order):
//
//		&^	7
//		/*	7
//		++	6
//		--	6
//
//	2) If there is a mix of level 6 and level 5 operators, then the cutoff
//	   is 6 (use spaces to distinguish precedence) in Normal mode
//	   and 5 (never use spaces) in Compact mode.
//
//	3) If there are no level 5 operators or no level 6 operators, then the
//	   cutoff is 7 (always use spaces) in Normal mode
//	   and 5 (never use spaces) in Compact mode.
//
// Sets multiLine to true if the binary expression spans multiple lines.
func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int, multiLine *bool) {
	prec := x.Op.Precedence();
	if prec < prec1 {
		// parenthesis needed
		// Note: The parser inserts an ast.ParenExpr node; thus this case
		//       can only occur if the AST is created in a different way.
		p.print(token.LPAREN);
		p.expr0(x, depth-1, multiLine);	// parentheses undo one level of depth
		p.print(token.RPAREN);
		return;
	}

	printBlank := prec < cutoff;

	ws := indent;
	p.expr1(x.X, prec, depth+diffPrec(x.X, prec), 0, multiLine);
	if printBlank {
		p.print(blank)
	}
	xline := p.pos.Line;	// before the operator (it may be on the next line!)
	yline := x.Y.Pos().Line;
	p.print(x.OpPos, x.Op);
	if xline != yline && xline > 0 && yline > 0 {
		// at least one line break, but respect an extra empty line
		// in the source
		if p.linebreak(yline, 1, 2, ws, true) {
			ws = ignore;
			*multiLine = true;
			printBlank = false;	// no blank after line break
		}
	}
	if printBlank {
		p.print(blank)
	}
	p.expr1(x.Y, prec+1, depth+1, 0, multiLine);
	if ws == ignore {
		p.print(unindent)
	}
}


func isBinary(expr ast.Expr) bool {
	_, ok := expr.(*ast.BinaryExpr);
	return ok;
}


// Returns true if a separating semicolon is optional.
// Sets multiLine to true if the expression spans multiple lines.
func (p *printer) expr1(expr ast.Expr, prec1, depth int, ctxt exprContext, multiLine *bool) (optSemi bool) {
	p.print(expr.Pos());

	switch x := expr.(type) {
	case *ast.BadExpr:
		p.print("BadExpr")

	case *ast.Ident:
		p.print(x)

	case *ast.BinaryExpr:
		if depth < 1 {
			p.internalError("depth < 1:", depth);
			depth = 1;
		}
		p.binaryExpr(x, prec1, cutoff(x, depth), depth, multiLine);

	case *ast.KeyValueExpr:
		p.expr(x.Key, multiLine);
		p.print(x.Colon, token.COLON, blank);
		p.expr(x.Value, multiLine);

	case *ast.StarExpr:
		const prec = token.UnaryPrec;
		if prec < prec1 {
			// parenthesis needed
			p.print(token.LPAREN);
			p.print(token.MUL);
			optSemi = p.expr(x.X, multiLine);
			p.print(token.RPAREN);
		} else {
			// no parenthesis needed
			p.print(token.MUL);
			optSemi = p.expr(x.X, multiLine);
		}

	case *ast.UnaryExpr:
		const prec = token.UnaryPrec;
		if prec < prec1 {
			// parenthesis needed
			p.print(token.LPAREN);
			p.expr(x, multiLine);
			p.print(token.RPAREN);
		} else {
			// no parenthesis needed
			p.print(x.Op);
			if x.Op == token.RANGE {
				p.print(blank)
			}
			p.expr1(x.X, prec, depth, 0, multiLine);
		}

	case *ast.BasicLit:
		p.print(x)

	case *ast.StringList:
		p.stringList(x.Strings, multiLine)

	case *ast.FuncLit:
		p.expr(x.Type, multiLine);
		p.funcBody(x.Body, distance(x.Type.Pos(), p.pos), true, multiLine);

	case *ast.ParenExpr:
		p.print(token.LPAREN);
		p.expr0(x.X, depth-1, multiLine);	// parentheses undo one level of depth
		p.print(x.Rparen, token.RPAREN);

	case *ast.SelectorExpr:
		p.expr1(x.X, token.HighestPrec, depth, 0, multiLine);
		p.print(token.PERIOD);
		p.expr1(x.Sel, token.HighestPrec, depth, 0, multiLine);

	case *ast.TypeAssertExpr:
		p.expr1(x.X, token.HighestPrec, depth, 0, multiLine);
		p.print(token.PERIOD, token.LPAREN);
		if x.Type != nil {
			p.expr(x.Type, multiLine)
		} else {
			p.print(token.TYPE)
		}
		p.print(token.RPAREN);

	case *ast.IndexExpr:
		// TODO(gri): should treat[] like parentheses and undo one level of depth
		p.expr1(x.X, token.HighestPrec, 1, 0, multiLine);
		p.print(token.LBRACK);
		p.expr0(x.Index, depth+1, multiLine);
		p.print(token.RBRACK);

	case *ast.SliceExpr:
		// TODO(gri): should treat[] like parentheses and undo one level of depth
		p.expr1(x.X, token.HighestPrec, 1, 0, multiLine);
		p.print(token.LBRACK);
		p.expr0(x.Index, depth+1, multiLine);
		// blanks around ":" if both sides exist and either side is a binary expression
		if depth <= 1 && x.End != nil && (isBinary(x.Index) || isBinary(x.End)) {
			p.print(blank, token.COLON, blank)
		} else {
			p.print(token.COLON)
		}
		if x.End != nil {
			p.expr0(x.End, depth+1, multiLine)
		}
		p.print(token.RBRACK);

	case *ast.CallExpr:
		if len(x.Args) > 1 {
			depth++
		}
		p.expr1(x.Fun, token.HighestPrec, depth, 0, multiLine);
		p.print(x.Lparen, token.LPAREN);
		p.exprList(x.Lparen, x.Args, depth, commaSep, multiLine);
		p.print(x.Rparen, token.RPAREN);

	case *ast.CompositeLit:
		p.expr1(x.Type, token.HighestPrec, depth, compositeLit, multiLine);
		mode := commaSep | commaTerm;
		if compositeLitBlank {
			// add blank padding around composite literal
			// contents for a less dense look
			mode |= blankStart | blankEnd;
			if x.Lbrace.Line < x.Rbrace.Line {
				// add a blank before the opening { for multi-line composites
				// TODO(gri): for now this decision is made by looking at the
				//            source code - it may not be correct if the source
				//            code was badly misformatted in the first place
				p.print(blank)
			}
		}
		p.print(x.Lbrace, token.LBRACE);
		p.exprList(x.Lbrace, x.Elts, 1, mode, multiLine);
		p.print(x.Rbrace, token.RBRACE);

	case *ast.Ellipsis:
		p.print(token.ELLIPSIS)

	case *ast.ArrayType:
		p.print(token.LBRACK);
		if x.Len != nil {
			p.expr(x.Len, multiLine)
		}
		p.print(token.RBRACK);
		optSemi = p.expr(x.Elt, multiLine);

	case *ast.StructType:
		p.print(token.STRUCT);
		p.fieldList(x.Lbrace, x.Fields, x.Rbrace, x.Incomplete, ctxt|structType);
		optSemi = true;

	case *ast.FuncType:
		p.print(token.FUNC);
		optSemi = p.signature(x.Params, x.Results, multiLine);

	case *ast.InterfaceType:
		p.print(token.INTERFACE);
		p.fieldList(x.Lbrace, x.Methods, x.Rbrace, x.Incomplete, ctxt);
		optSemi = true;

	case *ast.MapType:
		p.print(token.MAP, token.LBRACK);
		p.expr(x.Key, multiLine);
		p.print(token.RBRACK);
		optSemi = p.expr(x.Value, multiLine);

	case *ast.ChanType:
		switch x.Dir {
		case ast.SEND | ast.RECV:
			p.print(token.CHAN)
		case ast.RECV:
			p.print(token.ARROW, token.CHAN)
		case ast.SEND:
			p.print(token.CHAN, token.ARROW)
		}
		p.print(blank);
		optSemi = p.expr(x.Value, multiLine);

	default:
		panic("unreachable")
	}

	return;
}


func (p *printer) expr0(x ast.Expr, depth int, multiLine *bool) (optSemi bool) {
	return p.expr1(x, token.LowestPrec, depth, 0, multiLine)
}


// Returns true if a separating semicolon is optional.
// Sets multiLine to true if the expression spans multiple lines.
func (p *printer) expr(x ast.Expr, multiLine *bool) (optSemi bool) {
	const depth = 1;
	return p.expr1(x, token.LowestPrec, depth, 0, multiLine);
}


// ----------------------------------------------------------------------------
// Statements

const maxStmtNewlines = 2	// maximum number of newlines between statements

// Print the statement list indented, but without a newline after the last statement.
// Extra line breaks between statements in the source are respected but at most one
// empty line is printed between statements.
func (p *printer) stmtList(list []ast.Stmt, _indent int) {
	// TODO(gri): fix _indent code
	if _indent > 0 {
		p.print(indent)
	}
	var multiLine bool;
	for i, s := range list {
		// _indent == 0 only for lists of switch/select case clauses;
		// in those cases each clause is a new section
		p.linebreak(s.Pos().Line, 1, maxStmtNewlines, ignore, i == 0 || _indent == 0 || multiLine);
		multiLine = false;
		if !p.stmt(s, &multiLine) && (!fewerSemis || len(list) > 1) {
			p.print(token.SEMICOLON)
		}
	}
	if _indent > 0 {
		p.print(unindent)
	}
}


// block prints an *ast.BlockStmt; it always spans at least two lines.
func (p *printer) block(s *ast.BlockStmt, indent int) {
	p.print(s.Pos(), token.LBRACE);
	p.stmtList(s.List, indent);
	p.linebreak(s.Rbrace.Line, 1, maxStmtNewlines, ignore, true);
	p.print(s.Rbrace, token.RBRACE);
}


// TODO(gri): Decide if this should be used more broadly. The printing code
//            knows when to insert parentheses for precedence reasons, but
//            need to be careful to keep them around type expressions.
func stripParens(x ast.Expr) ast.Expr {
	if px, hasParens := x.(*ast.ParenExpr); hasParens {
		return stripParens(px.X)
	}
	return x;
}


func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) {
	p.print(blank);
	needsBlank := false;
	if init == nil && post == nil {
		// no semicolons required
		if expr != nil {
			p.expr(stripParens(expr), ignoreMultiLine);
			needsBlank = true;
		}
	} else {
		// all semicolons required
		// (they are not separators, print them explicitly)
		if init != nil {
			p.stmt(init, ignoreMultiLine)
		}
		p.print(token.SEMICOLON, blank);
		if expr != nil {
			p.expr(stripParens(expr), ignoreMultiLine);
			needsBlank = true;
		}
		if isForStmt {
			p.print(token.SEMICOLON, blank);
			needsBlank = false;
			if post != nil {
				p.stmt(post, ignoreMultiLine);
				needsBlank = true;
			}
		}
	}
	if needsBlank {
		p.print(blank)
	}
}


// Returns true if a separating semicolon is optional.
// Sets multiLine to true if the statements spans multiple lines.
func (p *printer) stmt(stmt ast.Stmt, multiLine *bool) (optSemi bool) {
	p.print(stmt.Pos());

	switch s := stmt.(type) {
	case *ast.BadStmt:
		p.print("BadStmt")

	case *ast.DeclStmt:
		p.decl(s.Decl, inStmtList, multiLine);
		optSemi = true;	// decl prints terminating semicolon if necessary

	case *ast.EmptyStmt:
		// nothing to do

	case *ast.LabeledStmt:
		// a "correcting" unindent immediately following a line break
		// is applied before the line break  if there is no comment
		// between (see writeWhitespace)
		p.print(unindent);
		p.expr(s.Label, multiLine);
		p.print(token.COLON, vtab, indent);
		p.linebreak(s.Stmt.Pos().Line, 0, 1, ignore, true);
		optSemi = p.stmt(s.Stmt, multiLine);

	case *ast.ExprStmt:
		const depth = 1;
		p.expr0(s.X, depth, multiLine);

	case *ast.IncDecStmt:
		const depth = 1;
		p.expr0(s.X, depth+1, multiLine);
		p.print(s.Tok);

	case *ast.AssignStmt:
		var depth = 1;
		if len(s.Lhs) > 1 && len(s.Rhs) > 1 {
			depth++
		}
		p.exprList(s.Pos(), s.Lhs, depth, commaSep, multiLine);
		p.print(blank, s.TokPos, s.Tok);
		p.exprList(s.TokPos, s.Rhs, depth, blankStart|commaSep, multiLine);

	case *ast.GoStmt:
		p.print(token.GO, blank);
		p.expr(s.Call, multiLine);

	case *ast.DeferStmt:
		p.print(token.DEFER, blank);
		p.expr(s.Call, multiLine);

	case *ast.ReturnStmt:
		p.print(token.RETURN);
		if s.Results != nil {
			p.exprList(s.Pos(), s.Results, 1, blankStart|commaSep, multiLine)
		}

	case *ast.BranchStmt:
		p.print(s.Tok);
		if s.Label != nil {
			p.print(blank);
			p.expr(s.Label, multiLine);
		}

	case *ast.BlockStmt:
		p.block(s, 1);
		*multiLine = true;
		optSemi = true;

	case *ast.IfStmt:
		p.print(token.IF);
		p.controlClause(false, s.Init, s.Cond, nil);
		p.block(s.Body, 1);
		*multiLine = true;
		optSemi = true;
		if s.Else != nil {
			p.print(blank, token.ELSE, blank);
			switch s.Else.(type) {
			case *ast.BlockStmt, *ast.IfStmt:
				optSemi = p.stmt(s.Else, ignoreMultiLine)
			default:
				p.print(token.LBRACE, indent, formfeed);
				p.stmt(s.Else, ignoreMultiLine);
				p.print(unindent, formfeed, token.RBRACE);
			}
		}

	case *ast.CaseClause:
		if s.Values != nil {
			p.print(token.CASE);
			p.exprList(s.Pos(), s.Values, 1, blankStart|commaSep, multiLine);
		} else {
			p.print(token.DEFAULT)
		}
		p.print(s.Colon, token.COLON);
		p.stmtList(s.Body, 1);
		optSemi = true;	// "block" without {}'s

	case *ast.SwitchStmt:
		p.print(token.SWITCH);
		p.controlClause(false, s.Init, s.Tag, nil);
		p.block(s.Body, 0);
		*multiLine = true;
		optSemi = true;

	case *ast.TypeCaseClause:
		if s.Types != nil {
			p.print(token.CASE);
			p.exprList(s.Pos(), s.Types, 1, blankStart|commaSep, multiLine);
		} else {
			p.print(token.DEFAULT)
		}
		p.print(s.Colon, token.COLON);
		p.stmtList(s.Body, 1);
		optSemi = true;	// "block" without {}'s

	case *ast.TypeSwitchStmt:
		p.print(token.SWITCH);
		if s.Init != nil {
			p.print(blank);
			p.stmt(s.Init, ignoreMultiLine);
			p.print(token.SEMICOLON);
		}
		p.print(blank);
		p.stmt(s.Assign, ignoreMultiLine);
		p.print(blank);
		p.block(s.Body, 0);
		*multiLine = true;
		optSemi = true;

	case *ast.CommClause:
		if s.Rhs != nil {
			p.print(token.CASE, blank);
			if s.Lhs != nil {
				p.expr(s.Lhs, multiLine);
				p.print(blank, s.Tok, blank);
			}
			p.expr(s.Rhs, multiLine);
		} else {
			p.print(token.DEFAULT)
		}
		p.print(s.Colon, token.COLON);
		p.stmtList(s.Body, 1);
		optSemi = true;	// "block" without {}'s

	case *ast.SelectStmt:
		p.print(token.SELECT, blank);
		p.block(s.Body, 0);
		*multiLine = true;
		optSemi = true;

	case *ast.ForStmt:
		p.print(token.FOR);
		p.controlClause(true, s.Init, s.Cond, s.Post);
		p.block(s.Body, 1);
		*multiLine = true;
		optSemi = true;

	case *ast.RangeStmt:
		p.print(token.FOR, blank);
		p.expr(s.Key, multiLine);
		if s.Value != nil {
			p.print(token.COMMA, blank);
			p.expr(s.Value, multiLine);
		}
		p.print(blank, s.TokPos, s.Tok, blank, token.RANGE, blank);
		p.expr(s.X, multiLine);
		p.print(blank);
		p.block(s.Body, 1);
		*multiLine = true;
		optSemi = true;

	default:
		panic("unreachable")
	}

	return;
}


// ----------------------------------------------------------------------------
// Declarations

type declContext uint

const (
	atTop	declContext	= iota;
	inGroup;
	inStmtList;
)

// The parameter n is the number of specs in the group; context specifies
// the surroundings of the declaration. Separating semicolons are printed
// depending on the context. Sets multiLine to true if the spec spans
// multiple lines.
//
func (p *printer) spec(spec ast.Spec, n int, context declContext, multiLine *bool) {
	var (
		optSemi		bool;			// true if a semicolon is optional
		comment		*ast.CommentGroup;	// a line comment, if any
		extraTabs	int;			// number of extra tabs before comment, if any
	)

	switch s := spec.(type) {
	case *ast.ImportSpec:
		p.leadComment(s.Doc);
		if s.Name != nil {
			p.expr(s.Name, multiLine);
			p.print(blank);
		}
		p.expr(&ast.StringList{s.Path}, multiLine);
		comment = s.Comment;

	case *ast.ValueSpec:
		p.leadComment(s.Doc);
		p.identList(s.Names, multiLine);	// always present
		if n == 1 {
			if s.Type != nil {
				p.print(blank);
				optSemi = p.expr(s.Type, multiLine);
			}
			if s.Values != nil {
				p.print(blank, token.ASSIGN);
				p.exprList(noPos, s.Values, 1, blankStart|commaSep, multiLine);
				optSemi = false;
			}
		} else {
			extraTabs = 2;
			if s.Type != nil || s.Values != nil {
				p.print(vtab)
			}
			if s.Type != nil {
				optSemi = p.expr(s.Type, multiLine);
				extraTabs = 1;
			}
			if s.Values != nil {
				p.print(vtab);
				p.print(token.ASSIGN);
				p.exprList(noPos, s.Values, 1, blankStart|commaSep, multiLine);
				optSemi = false;
				extraTabs = 0;
			}
		}
		comment = s.Comment;

	case *ast.TypeSpec:
		p.leadComment(s.Doc);
		p.expr(s.Name, multiLine);
		if n == 1 {
			p.print(blank)
		} else {
			p.print(vtab)
		}
		optSemi = p.expr(s.Type, multiLine);
		comment = s.Comment;

	default:
		panic("unreachable")
	}

	if context == inGroup || context == inStmtList && !optSemi {
		p.print(token.SEMICOLON)
	}

	if comment != nil {
		for ; extraTabs > 0; extraTabs-- {
			p.print(vtab)
		}
		p.lineComment(comment);
	}
}


// Sets multiLine to true if the declaration spans multiple lines.
func (p *printer) genDecl(d *ast.GenDecl, context declContext, multiLine *bool) {
	p.leadComment(d.Doc);
	p.print(d.Pos(), d.Tok, blank);

	if d.Lparen.IsValid() {
		// group of parenthesized declarations
		p.print(d.Lparen, token.LPAREN);
		if len(d.Specs) > 0 {
			p.print(indent, formfeed);
			var ml bool;
			for i, s := range d.Specs {
				if i > 0 {
					p.linebreak(s.Pos().Line, 1, 2, ignore, ml)
				}
				ml = false;
				p.spec(s, len(d.Specs), inGroup, &ml);
			}
			p.print(unindent, formfeed);
			*multiLine = true;
		}
		p.print(d.Rparen, token.RPAREN);

	} else {
		// single declaration
		p.spec(d.Specs[0], 1, context, multiLine)
	}
}


// nodeSize determines the size of n in chars after formatting.
// The result is <= maxSize if the node fits on one line with at
// most maxSize chars and the formatted output doesn't contain
// any control chars. Otherwise, the result is > maxSize.
//
func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) {
	size = maxSize + 1;	// assume n doesn't fit
	// nodeSize computation must be indendent of particular
	// style so that we always get the same decision; print
	// in RawFormat
	cfg := Config{Mode: RawFormat};
	var buf bytes.Buffer;
	if _, err := cfg.Fprint(&buf, n); err != nil {
		return
	}
	if buf.Len() <= maxSize {
		for _, ch := range buf.Bytes() {
			if ch < ' ' {
				return
			}
		}
		size = buf.Len();	// n fits
	}
	return;
}


func (p *printer) isOneLineFunc(b *ast.BlockStmt, headerSize int) bool {
	const maxSize = 90;	// adjust as appropriate, this is an approximate value
	bodySize := 0;
	switch {
	case len(b.List) > 1 || p.commentBefore(b.Rbrace):
		return false	// too many statements or there is a comment - all bets are off
	case len(b.List) == 1:
		bodySize = p.nodeSize(b.List[0], maxSize)
	}
	// require both headers and overall size to be not "too large"
	return headerSize <= maxSize/2 && headerSize+bodySize <= maxSize;
}


// Sets multiLine to true if the function body spans multiple lines.
func (p *printer) funcBody(b *ast.BlockStmt, headerSize int, isLit bool, multiLine *bool) {
	if b == nil {
		return
	}

	if p.isOneLineFunc(b, headerSize) {
		sep := vtab;
		if isLit {
			sep = blank
		}
		if len(b.List) > 0 {
			p.print(sep, b.Pos(), token.LBRACE, blank);
			p.stmt(b.List[0], ignoreMultiLine);
			p.print(blank, b.Rbrace, token.RBRACE);
		} else {
			p.print(sep, b.Pos(), token.LBRACE, b.Rbrace, token.RBRACE)
		}
		return;
	}

	p.print(blank);
	p.block(b, 1);
	*multiLine = true;
}


// distance returns the column difference between from and to if both
// are on the same line; if they are on different lines (or unknown)
// the result is infinity (1<<30).
func distance(from, to token.Position) int {
	if from.IsValid() && to.IsValid() && from.Line == to.Line {
		return to.Column - from.Column
	}
	return 1 << 30;
}


// Sets multiLine to true if the declaration spans multiple lines.
func (p *printer) funcDecl(d *ast.FuncDecl, multiLine *bool) {
	p.leadComment(d.Doc);
	p.print(d.Pos(), token.FUNC, blank);
	if recv := d.Recv; recv != nil {
		// method: print receiver
		p.print(token.LPAREN);
		if len(recv.Names) > 0 {
			p.expr(recv.Names[0], multiLine);
			p.print(blank);
		}
		p.expr(recv.Type, multiLine);
		p.print(token.RPAREN, blank);
	}
	p.expr(d.Name, multiLine);
	p.signature(d.Type.Params, d.Type.Results, multiLine);
	p.funcBody(d.Body, distance(d.Pos(), p.pos), false, multiLine);
}


// Sets multiLine to true if the declaration spans multiple lines.
func (p *printer) decl(decl ast.Decl, context declContext, multiLine *bool) {
	switch d := decl.(type) {
	case *ast.BadDecl:
		p.print(d.Pos(), "BadDecl")
	case *ast.GenDecl:
		p.genDecl(d, context, multiLine)
	case *ast.FuncDecl:
		p.funcDecl(d, multiLine)
	default:
		panic("unreachable")
	}
}


// ----------------------------------------------------------------------------
// Files

const maxDeclNewlines = 3	// maximum number of newlines between declarations

func declToken(decl ast.Decl) (tok token.Token) {
	tok = token.ILLEGAL;
	switch d := decl.(type) {
	case *ast.GenDecl:
		tok = d.Tok
	case *ast.FuncDecl:
		tok = token.FUNC
	}
	return;
}


func (p *printer) file(src *ast.File) {
	p.leadComment(src.Doc);
	p.print(src.Pos(), token.PACKAGE, blank);
	p.expr(src.Name, ignoreMultiLine);

	if len(src.Decls) > 0 {
		tok := token.ILLEGAL;
		for _, d := range src.Decls {
			prev := tok;
			tok = declToken(d);
			// if the declaration token changed (e.g., from CONST to TYPE)
			// print an empty line between top-level declarations
			min := 1;
			if prev != tok {
				min = 2
			}
			p.linebreak(d.Pos().Line, min, maxDeclNewlines, ignore, false);
			p.decl(d, atTop, ignoreMultiLine);
		}
	}

	p.print(newline);
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.