Plan 9 from Bell Labs’s /usr/web/sources/contrib/ericvh/go-plan9/src/pkg/math/log.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package math


// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
// and came with this notice.  The go code is a simpler
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// __ieee754_log(x)
// Return the logrithm of x
//
// Method :
//   1. Argument Reduction: find k and f such that
//			x = 2^k * (1+f),
//	   where  sqrt(2)/2 < 1+f < sqrt(2) .
//
//   2. Approximation of log(1+f).
//	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
//		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
//	     	 = 2s + s*R
//      We use a special Reme algorithm on [0,0.1716] to generate
//	a polynomial of degree 14 to approximate R.  The maximum error
//	of this polynomial approximation is bounded by 2**-58.45. In
//	other words,
//		        2      4      6      8      10      12      14
//	    R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s
//	(the values of L1 to L7 are listed in the program) and
//	    |      2          14          |     -58.45
//	    | L1*s +...+L7*s    -  R(z) | <= 2
//	    |                             |
//	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
//	In order to guarantee error in log below 1ulp, we compute log by
//		log(1+f) = f - s*(f - R)		(if f is not too large)
//		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
//
//	3. Finally,  log(x) = k*Ln2 + log(1+f).
//			    = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
//	   Here Ln2 is split into two floating point number:
//			Ln2_hi + Ln2_lo,
//	   where n*Ln2_hi is always exact for |n| < 2000.
//
// Special cases:
//	log(x) is NaN with signal if x < 0 (including -INF) ;
//	log(+INF) is +INF; log(0) is -INF with signal;
//	log(NaN) is that NaN with no signal.
//
// Accuracy:
//	according to an error analysis, the error is always less than
//	1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.

// Log returns the natural logarithm of x.
//
// Special cases are:
//	Log(+Inf) = +Inf
//	Log(0) = -Inf
//	Log(x < 0) = NaN
//	Log(NaN) = NaN
func Log(x float64) float64 {
	const (
		Ln2Hi	= 6.93147180369123816490e-01;	/* 3fe62e42 fee00000 */
		Ln2Lo	= 1.90821492927058770002e-10;	/* 3dea39ef 35793c76 */
		L1	= 6.666666666666735130e-01;	/* 3FE55555 55555593 */
		L2	= 3.999999999940941908e-01;	/* 3FD99999 9997FA04 */
		L3	= 2.857142874366239149e-01;	/* 3FD24924 94229359 */
		L4	= 2.222219843214978396e-01;	/* 3FCC71C5 1D8E78AF */
		L5	= 1.818357216161805012e-01;	/* 3FC74664 96CB03DE */
		L6	= 1.531383769920937332e-01;	/* 3FC39A09 D078C69F */
		L7	= 1.479819860511658591e-01;	/* 3FC2F112 DF3E5244 */
	)

	// special cases
	switch {
	case IsNaN(x) || IsInf(x, 1):
		return x
	case x < 0:
		return NaN()
	case x == 0:
		return Inf(-1)
	}

	// reduce
	f1, ki := Frexp(x);
	if f1 < Sqrt2/2 {
		f1 *= 2;
		ki--;
	}
	f := f1 - 1;
	k := float64(ki);

	// compute
	s := f / (2 + f);
	s2 := s * s;
	s4 := s2 * s2;
	t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)));
	t2 := s4 * (L2 + s4*(L4+s4*L6));
	R := t1 + t2;
	hfsq := 0.5 * f * f;
	return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f);
}

// Log10 returns the decimal logarithm of x.
// The special cases are the same as for Log.
func Log10(x float64) float64 {
	if x <= 0 {
		return NaN()
	}
	return Log(x) * (1 / Ln10);
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.