// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Multiprecision decimal numbers.
// For floating-point formatting only; not general purpose.
// Only operations are assign and (binary) left/right shift.
// Can do binary floating point in multiprecision decimal precisely
// because 2 divides 10; cannot do decimal floating point
// in multiprecision binary precisely.
package strconv
type decimal struct {
// TODO(rsc): Can make d[] a bit smaller and add
// truncated bool;
d [2000]byte; // digits
nd int; // number of digits used
dp int; // decimal point
}
func (a *decimal) String() string {
n := 10 + a.nd;
if a.dp > 0 {
n += a.dp
}
if a.dp < 0 {
n += -a.dp
}
buf := make([]byte, n);
w := 0;
switch {
case a.nd == 0:
return "0"
case a.dp <= 0:
// zeros fill space between decimal point and digits
buf[w] = '0';
w++;
buf[w] = '.';
w++;
w += digitZero(buf[w : w+-a.dp]);
w += copy(buf[w:w+a.nd], a.d[0:a.nd]);
case a.dp < a.nd:
// decimal point in middle of digits
w += copy(buf[w:w+a.dp], a.d[0:a.dp]);
buf[w] = '.';
w++;
w += copy(buf[w:w+a.nd-a.dp], a.d[a.dp:a.nd]);
default:
// zeros fill space between digits and decimal point
w += copy(buf[w:w+a.nd], a.d[0:a.nd]);
w += digitZero(buf[w : w+a.dp-a.nd]);
}
return string(buf[0:w]);
}
func copy(dst []byte, src []byte) int {
for i := 0; i < len(dst); i++ {
dst[i] = src[i]
}
return len(dst);
}
func digitZero(dst []byte) int {
for i := 0; i < len(dst); i++ {
dst[i] = '0'
}
return len(dst);
}
// trim trailing zeros from number.
// (They are meaningless; the decimal point is tracked
// independent of the number of digits.)
func trim(a *decimal) {
for a.nd > 0 && a.d[a.nd-1] == '0' {
a.nd--
}
if a.nd == 0 {
a.dp = 0
}
}
// Assign v to a.
func (a *decimal) Assign(v uint64) {
var buf [50]byte;
// Write reversed decimal in buf.
n := 0;
for v > 0 {
v1 := v / 10;
v -= 10 * v1;
buf[n] = byte(v + '0');
n++;
v = v1;
}
// Reverse again to produce forward decimal in a.d.
a.nd = 0;
for n--; n >= 0; n-- {
a.d[a.nd] = buf[n];
a.nd++;
}
a.dp = a.nd;
trim(a);
}
func newDecimal(i uint64) *decimal {
a := new(decimal);
a.Assign(i);
return a;
}
// Maximum shift that we can do in one pass without overflow.
// Signed int has 31 bits, and we have to be able to accomodate 9<<k.
const maxShift = 27
// Binary shift right (* 2) by k bits. k <= maxShift to avoid overflow.
func rightShift(a *decimal, k uint) {
r := 0; // read pointer
w := 0; // write pointer
// Pick up enough leading digits to cover first shift.
n := 0;
for ; n>>k == 0; r++ {
if r >= a.nd {
if n == 0 {
// a == 0; shouldn't get here, but handle anyway.
a.nd = 0;
return;
}
for n>>k == 0 {
n = n * 10;
r++;
}
break;
}
c := int(a.d[r]);
n = n*10 + c - '0';
}
a.dp -= r - 1;
// Pick up a digit, put down a digit.
for ; r < a.nd; r++ {
c := int(a.d[r]);
dig := n >> k;
n -= dig << k;
a.d[w] = byte(dig + '0');
w++;
n = n*10 + c - '0';
}
// Put down extra digits.
for n > 0 {
dig := n >> k;
n -= dig << k;
a.d[w] = byte(dig + '0');
w++;
n = n * 10;
}
a.nd = w;
trim(a);
}
// Cheat sheet for left shift: table indexed by shift count giving
// number of new digits that will be introduced by that shift.
//
// For example, leftcheats[4] = {2, "625"}. That means that
// if we are shifting by 4 (multiplying by 16), it will add 2 digits
// when the string prefix is "625" through "999", and one fewer digit
// if the string prefix is "000" through "624".
//
// Credit for this trick goes to Ken.
type leftCheat struct {
delta int; // number of new digits
cutoff string; // minus one digit if original < a.
}
var leftcheats = []leftCheat{
// Leading digits of 1/2^i = 5^i.
// 5^23 is not an exact 64-bit floating point number,
// so have to use bc for the math.
/*
seq 27 | sed 's/^/5^/' | bc |
awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," }
{
log2 = log(2)/log(10)
printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n",
int(log2*NR+1), $0, 2**NR)
}'
*/
leftCheat{0, ""},
leftCheat{1, "5"}, // * 2
leftCheat{1, "25"}, // * 4
leftCheat{1, "125"}, // * 8
leftCheat{2, "625"}, // * 16
leftCheat{2, "3125"}, // * 32
leftCheat{2, "15625"}, // * 64
leftCheat{3, "78125"}, // * 128
leftCheat{3, "390625"}, // * 256
leftCheat{3, "1953125"}, // * 512
leftCheat{4, "9765625"}, // * 1024
leftCheat{4, "48828125"}, // * 2048
leftCheat{4, "244140625"}, // * 4096
leftCheat{4, "1220703125"}, // * 8192
leftCheat{5, "6103515625"}, // * 16384
leftCheat{5, "30517578125"}, // * 32768
leftCheat{5, "152587890625"}, // * 65536
leftCheat{6, "762939453125"}, // * 131072
leftCheat{6, "3814697265625"}, // * 262144
leftCheat{6, "19073486328125"}, // * 524288
leftCheat{7, "95367431640625"}, // * 1048576
leftCheat{7, "476837158203125"}, // * 2097152
leftCheat{7, "2384185791015625"}, // * 4194304
leftCheat{7, "11920928955078125"}, // * 8388608
leftCheat{8, "59604644775390625"}, // * 16777216
leftCheat{8, "298023223876953125"}, // * 33554432
leftCheat{8, "1490116119384765625"}, // * 67108864
leftCheat{9, "7450580596923828125"}, // * 134217728
}
// Is the leading prefix of b lexicographically less than s?
func prefixIsLessThan(b []byte, s string) bool {
for i := 0; i < len(s); i++ {
if i >= len(b) {
return true
}
if b[i] != s[i] {
return b[i] < s[i]
}
}
return false;
}
// Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow.
func leftShift(a *decimal, k uint) {
delta := leftcheats[k].delta;
if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) {
delta--
}
r := a.nd; // read index
w := a.nd + delta; // write index
n := 0;
// Pick up a digit, put down a digit.
for r--; r >= 0; r-- {
n += (int(a.d[r]) - '0') << k;
quo := n / 10;
rem := n - 10*quo;
w--;
a.d[w] = byte(rem + '0');
n = quo;
}
// Put down extra digits.
for n > 0 {
quo := n / 10;
rem := n - 10*quo;
w--;
a.d[w] = byte(rem + '0');
n = quo;
}
a.nd += delta;
a.dp += delta;
trim(a);
}
// Binary shift left (k > 0) or right (k < 0).
// Returns receiver for convenience.
func (a *decimal) Shift(k int) *decimal {
switch {
case a.nd == 0:
// nothing to do: a == 0
case k > 0:
for k > maxShift {
leftShift(a, maxShift);
k -= maxShift;
}
leftShift(a, uint(k));
case k < 0:
for k < -maxShift {
rightShift(a, maxShift);
k += maxShift;
}
rightShift(a, uint(-k));
}
return a;
}
// If we chop a at nd digits, should we round up?
func shouldRoundUp(a *decimal, nd int) bool {
if nd <= 0 || nd >= a.nd {
return false
}
if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even
return (a.d[nd-1]-'0')%2 != 0
}
// not halfway - digit tells all
return a.d[nd] >= '5';
}
// Round a to nd digits (or fewer).
// Returns receiver for convenience.
func (a *decimal) Round(nd int) *decimal {
if nd <= 0 || nd >= a.nd {
return a
}
if shouldRoundUp(a, nd) {
return a.RoundUp(nd)
}
return a.RoundDown(nd);
}
// Round a down to nd digits (or fewer).
// Returns receiver for convenience.
func (a *decimal) RoundDown(nd int) *decimal {
if nd <= 0 || nd >= a.nd {
return a
}
a.nd = nd;
trim(a);
return a;
}
// Round a up to nd digits (or fewer).
// Returns receiver for convenience.
func (a *decimal) RoundUp(nd int) *decimal {
if nd <= 0 || nd >= a.nd {
return a
}
// round up
for i := nd - 1; i >= 0; i-- {
c := a.d[i];
if c < '9' { // can stop after this digit
a.d[i]++;
a.nd = i + 1;
return a;
}
}
// Number is all 9s.
// Change to single 1 with adjusted decimal point.
a.d[0] = '1';
a.nd = 1;
a.dp++;
return a;
}
// Extract integer part, rounded appropriately.
// No guarantees about overflow.
func (a *decimal) RoundedInteger() uint64 {
if a.dp > 20 {
return 0xFFFFFFFFFFFFFFFF
}
var i int;
n := uint64(0);
for i = 0; i < a.dp && i < a.nd; i++ {
n = n*10 + uint64(a.d[i]-'0')
}
for ; i < a.dp; i++ {
n *= 10
}
if shouldRoundUp(a, a.dp) {
n++
}
return n;
}
|