/*
Via Rhine driver, written for VT6102.
Uses the ethermii to control PHY.
Currently always copies on both, tx and rx.
rx side could be copy-free, and tx-side might be made
(almost) copy-free by using (possibly) two descriptors (if it allows
arbitrary tx lengths, which it should..): first for alignment and
second for rest of the frame. Rx-part should be worth doing.
*/
#include "u.h"
#include "lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
typedef struct QLock { int r; } QLock;
#define qlock(i) while(0)
#define qunlock(i) while(0)
#define iprint print
#include "etherif.h"
#include "ethermii.h"
enum {
Ntxd = 4,
Nrxd = 4,
Nwait = 50,
BIGSTR = 8192,
};
typedef struct Desc Desc;
typedef struct Ctlr Ctlr;
struct Desc {
ulong stat;
ulong size;
ulong addr;
ulong next;
char *buf;
ulong pad[3];
};
struct Ctlr {
Pcidev *pci;
int attached;
int txused;
int txhead;
int txtail;
int rxtail;
ulong port;
Mii mii;
Desc *txd; /* wants to be aligned on 16-byte boundary */
Desc *rxd;
QLock attachlck;
Lock tlock;
};
#define ior8(c, r) (inb((c)->port+(r)))
#define iow8(c, r, b) (outb((c)->port+(r), (int)(b)))
#define ior16(c, r) (ins((c)->port+(r)))
#define ior32(c, r) (inl((c)->port+(r)))
#define iow16(c, r, w) (outs((c)->port+(r), (ushort)(w)))
#define iow32(c, r, l) (outl((c)->port+(r), (ulong)(l)))
/* names used everywhere else */
#define csr8r ior8
#define csr8w iow8
#define csr16r ior16
#define csr16w iow16
#define csr32r ior32
#define csr32w iow32
enum Regs {
Eaddr = 0x0,
Rcr = 0x6,
Tcr = 0x7,
Cr = 0x8,
Isr = 0xc,
Imr = 0xe,
McastAddr = 0x10,
RxdAddr = 0x18,
TxdAddr = 0x1C,
Bcr0 = 0x6E, /* Bus Control */
Bcr1 = 0x6F,
RhineMiiPhy = 0x6C,
RhineMiiSr = 0x6D,
RhineMiiCr = 0x70,
RhineMiiAddr = 0x71,
RhineMiiData = 0x72,
Eecsr = 0x74,
ConfigB = 0x79,
ConfigD = 0x7B,
MiscCr = 0x80,
Stickhw = 0x83, /* Sticky Hardware Control */
MiscIsr = 0x84,
MiscImr = 0x86,
WolCrSet = 0xA0,
WolCfgSet = 0xA1,
WolCgSet = 0xA3,
Wolcrclr = 0xA4,
PwrCfgClr = 0xA5,
Wolcgclr = 0xA7,
Pwrcsrclr = 0xAC,
};
enum { /* Rcr */
Sep = 0x01, /* Accept Error Packets */
Ar = 0x02, /* Accept Small Packets */
Am = 0x04, /* Accept Multicast */
Ab = 0x08, /* Accept Broadcast */
RxBcast = Ab,
Prom = 0x10, /* Accept Physical Address Packets */
RxProm = Prom,
RrftMASK = 0xE0, /* Receive FIFO Threshold */
RrftSHIFT = 5,
Rrft64 = 0<<RrftSHIFT,
Rrft32 = 1<<RrftSHIFT,
Rrft128 = 2<<RrftSHIFT,
Rrft256 = 3<<RrftSHIFT,
Rrft512 = 4<<RrftSHIFT,
Rrft768 = 5<<RrftSHIFT,
Rrft1024 = 6<<RrftSHIFT,
RrftSAF = 7<<RrftSHIFT,
};
enum { /* Tcr */
Lb0 = 0x02, /* Loopback Mode */
Lb1 = 0x04,
Ofset = 0x08, /* Back-off Priority Selection */
RtsfMASK = 0xE0, /* Transmit FIFO Threshold */
RtsfSHIFT = 5,
Rtsf128 = 0<<RtsfSHIFT,
Rtsf256 = 1<<RtsfSHIFT,
Rtsf512 = 2<<RtsfSHIFT,
Rtsf1024 = 3<<RtsfSHIFT,
RtsfSAF = 7<<RtsfSHIFT,
};
enum Crbits {
Init = 1<<0,
Start = 1<<1,
Stop = 1<<2,
RxOn = 1<<3,
TxOn = 1<<4,
Tdmd = 1<<5,
Rdmd = 1<<6,
EarlyRx = 1<<8,
Reserved0 = 1<<9,
FullDuplex = 1<<10,
NoAutoPoll = 1<<11,
Reserved1 = 1<<12,
Tdmd1 = 1<<13,
Rdmd1 = 1<<14,
Reset = 1<<15,
};
enum Isrbits {
RxOk = 1<<0,
TxOk = 1<<1,
RxErr = 1<<2,
TxErr = 1<<3,
TxBufUdf = 1<<4,
RxBufLinkErr = 1<<5,
BusErr = 1<<6,
CrcOvf = 1<<7,
EarlyRxInt = 1<<8,
TxFifoUdf = 1<<9,
RxFifoOvf = 1<<10,
TxPktRace = 1<<11,
NoRxbuf = 1<<12,
TxCollision = 1<<13,
PortCh = 1<<14,
GPInt = 1<<15,
};
enum { /* Bcr0 */
DmaMASK = 0x07, /* DMA Length */
DmaSHIFT = 0,
Dma32 = 0<<DmaSHIFT,
Dma64 = 1<<DmaSHIFT,
Dma128 = 2<<DmaSHIFT,
Dma256 = 3<<DmaSHIFT,
Dma512 = 4<<DmaSHIFT,
Dma1024 = 5<<DmaSHIFT,
DmaSAF = 7<<DmaSHIFT,
CrftMASK = 0x38, /* Rx FIFO Threshold */
CrftSHIFT = 3,
Crft64 = 1<<CrftSHIFT,
Crft128 = 2<<CrftSHIFT,
Crft256 = 3<<CrftSHIFT,
Crft512 = 4<<CrftSHIFT,
Crft1024 = 5<<CrftSHIFT,
CrftSAF = 7<<CrftSHIFT,
Extled = 0x40, /* Extra LED Support Control */
Med2 = 0x80, /* Medium Select Control */
};
enum { /* Bcr1 */
PotMASK = 0x07, /* Polling Timer Interval */
PotSHIFT = 0,
CtftMASK = 0x38, /* Tx FIFO Threshold */
CtftSHIFT = 3,
Ctft64 = 1<<CtftSHIFT,
Ctft128 = 2<<CtftSHIFT,
Ctft256 = 3<<CtftSHIFT,
Ctft512 = 4<<CtftSHIFT,
Ctft1024 = 5<<CtftSHIFT,
CtftSAF = 7<<CtftSHIFT,
};
enum Eecsrbits {
EeAutoLoad = 1<<5,
};
enum Descbits {
OwnNic = 1<<31, /* stat */
TxAbort = 1<<8, /* stat */
TxError = 1<<15, /* stat */
RxChainbuf = 1<<10, /* stat */
RxChainStart = 1<<9, /* stat */
RxChainEnd = 1<<8, /* stat */
Chainbuf = 1<<15, /* size rx & tx*/
TxDisableCrc = 1<<16, /* size */
TxChainStart = 1<<21, /* size */
TxChainEnd = 1<<22, /* size */
TxInt = 1<<23, /* size */
};
enum RhineMiiCrbits {
Mdc = 1<<0,
Mdi = 1<<1,
Mdo = 1<<2,
Mdout = 1<<3,
Mdpm = 1<<4,
Wcmd = 1<<5,
Rcmd = 1<<6,
Mauto = 1<<7,
};
static void
attach(Ether *edev)
{
Ctlr *ctlr;
Desc *txd, *rxd, *td, *rd;
Mii *mi;
MiiPhy *phy;
int i, s;
ctlr = edev->ctlr;
qlock(&ctlr->attachlck);
if (ctlr->attached == 0) {
txd = ctlr->txd;
rxd = ctlr->rxd;
for (i = 0; i < Ntxd; ++i) {
td = &txd[i];
td->next = PCIWADDR(&txd[(i+1) % Ntxd]);
td->buf = xspanalloc(sizeof(Etherpkt)+4, 4, 0);
td->addr = PCIWADDR(td->buf);
td->size = 0;
coherence();
td->stat = 0;
}
for (i = 0; i < Nrxd; ++i) {
rd = &rxd[i];
rd->next = PCIWADDR(&rxd[(i+1) % Nrxd]);
rd->buf = xspanalloc(sizeof(Etherpkt)+4, 4, 0);
rd->addr = PCIWADDR(rd->buf);
rd->size = sizeof(Etherpkt)+4;
coherence();
rd->stat = OwnNic;
}
ctlr->txhead = ctlr->txtail = ctlr->rxtail = 0;
mi = &ctlr->mii;
miistatus(mi);
phy = mi->curphy;
s = splhi();
iow32(ctlr, TxdAddr, PCIWADDR(&txd[0]));
iow32(ctlr, RxdAddr, PCIWADDR(&rxd[0]));
iow16(ctlr, Cr, (phy->fd? FullDuplex: 0) | NoAutoPoll | TxOn |
RxOn | Start | Rdmd);
iow16(ctlr, Isr, 0xFFFF);
iow16(ctlr, Imr, 0xFFFF);
iow8(ctlr, MiscIsr, 0xFF);
iow8(ctlr, MiscImr, ~(3<<5));
splx(s);
ctlr->attached = 1;
}
qunlock(&ctlr->attachlck);
}
static void
txstart(Ether *edev)
{
Ctlr *ctlr;
Desc *txd, *td;
int i, txused, n;
RingBuf *tb;
ctlr = edev->ctlr;
txd = ctlr->txd;
i = ctlr->txhead;
n = 0;
for (txused = ctlr->txused; txused < Ntxd; txused++) {
tb = &edev->tb[edev->ti];
if(tb->owner != Interface)
break;
td = &txd[i];
memmove(td->buf, tb->pkt, tb->len);
/* could reduce number of intrs here */
td->size = tb->len | TxChainStart | TxChainEnd | TxInt;
coherence();
td->stat = OwnNic;
i = (i + 1) % Ntxd;
n++;
tb->owner = Host;
edev->ti = NEXT(edev->ti, edev->ntb);
}
if (n)
iow16(ctlr, Cr, ior16(ctlr, Cr) | Tdmd);
ctlr->txhead = i;
ctlr->txused = txused;
}
static void
transmit(Ether *edev)
{
Ctlr *ctlr;
ctlr = edev->ctlr;
ilock(&ctlr->tlock);
txstart(edev);
iunlock(&ctlr->tlock);
}
static void
txcomplete(Ether *edev)
{
Ctlr *ctlr;
Desc *txd, *td;
int i, txused;
ulong stat;
ctlr = edev->ctlr;
txd = ctlr->txd;
i = ctlr->txtail;
for (txused = ctlr->txused; txused > 0; txused--) {
td = &txd[i];
stat = td->stat;
if (stat & OwnNic)
break;
i = (i + 1) % Ntxd;
}
ctlr->txused = txused;
ctlr->txtail = i;
if (txused <= Ntxd/2)
txstart(edev);
}
static void
interrupt(Ureg *, void *arg)
{
Ether *edev;
Ctlr *ctlr;
ushort isr, misr;
ulong stat;
Desc *rxd, *rd;
int i, n, size;
edev = (Ether*)arg;
ctlr = edev->ctlr;
iow16(ctlr, Imr, 0);
isr = ior16(ctlr, Isr);
iow16(ctlr, Isr, 0xFFFF);
/* don't care about used defined intrs */
misr = ior16(ctlr, MiscIsr) & ~(3<<5);
if (isr & RxOk) {
rxd = ctlr->rxd;
i = ctlr->rxtail;
n = 0;
while ((rxd[i].stat & OwnNic) == 0) {
rd = &rxd[i];
stat = rd->stat;
if (stat & 0xFF)
iprint("rx: %lux\n", stat & 0xFF);
size = ((rd->stat>>16) & (2048-1)) - 4;
toringbuf(edev, rd->buf, size);
rd->size = sizeof(Etherpkt)+4;
coherence();
rd->stat = OwnNic;
i = (i + 1) % Nrxd;
n++;
}
if (n)
iow16(ctlr, Cr, ior16(ctlr, Cr) | Rdmd);
ctlr->rxtail = i;
isr &= ~RxOk;
}
if (isr & TxOk) {
txcomplete(edev);
isr &= ~TxOk;
}
if (isr | misr)
iprint("etherrhine: unhandled irq(s). isr:%x misr:%x\n",
isr, misr);
iow16(ctlr, Imr, 0xFFFF);
}
static int
miiread(Mii *mii, int phy, int reg)
{
Ctlr *ctlr;
int n;
ctlr = mii->ctlr;
n = Nwait;
while (n-- && ior8(ctlr, RhineMiiCr) & (Rcmd | Wcmd))
microdelay(1);
if (n == Nwait)
iprint("etherrhine: miiread: timeout\n");
iow8(ctlr, RhineMiiCr, 0);
iow8(ctlr, RhineMiiPhy, phy);
iow8(ctlr, RhineMiiAddr, reg);
iow8(ctlr, RhineMiiCr, Rcmd);
n = Nwait;
while (n-- && ior8(ctlr, RhineMiiCr) & Rcmd)
microdelay(1);
if (n == Nwait)
iprint("etherrhine: miiread: timeout\n");
return ior16(ctlr, RhineMiiData);
}
static int
miiwrite(Mii *mii, int phy, int reg, int data)
{
int n;
Ctlr *ctlr;
ctlr = mii->ctlr;
n = Nwait;
while (n-- && ior8(ctlr, RhineMiiCr) & (Rcmd | Wcmd))
microdelay(1);
if (n == Nwait)
iprint("etherrhine: miiwrite: timeout\n");
iow8(ctlr, RhineMiiCr, 0);
iow8(ctlr, RhineMiiPhy, phy);
iow8(ctlr, RhineMiiAddr, reg);
iow16(ctlr, RhineMiiData, data);
iow8(ctlr, RhineMiiCr, Wcmd);
n = Nwait;
while (n-- && ior8(ctlr, RhineMiiCr) & Wcmd)
microdelay(1);
if (n == Nwait)
iprint("etherrhine: miiwrite: timeout\n");
return 0;
}
static void
reset(Ctlr* ctlr)
{
int r, timeo, revid;
/*
* Reset power management registers.
*/
revid = pcicfgr8(ctlr->pci, PciRID);
if(revid >= 0x40){
/* Set power state D0. */
csr8w(ctlr, Stickhw, csr8r(ctlr, Stickhw) & 0xFC);
/* Disable force PME-enable. */
csr8w(ctlr, Wolcgclr, 0x80);
/* Clear WOL config and status bits. */
csr8w(ctlr, Wolcrclr, 0xFF);
csr8w(ctlr, Pwrcsrclr, 0xFF);
}
/*
* Soft reset the controller.
*/
csr16w(ctlr, Cr, Stop);
csr16w(ctlr, Cr, Stop|Reset);
for(timeo = 0; timeo < 10000; timeo++){
if(!(csr16r(ctlr, Cr) & Reset))
break;
microdelay(1);
}
if(timeo >= 1000)
return;
/*
* Load the MAC address into the PAR[01]
* registers.
*/
r = csr8r(ctlr, Eecsr);
csr8w(ctlr, Eecsr, EeAutoLoad|r);
for(timeo = 0; timeo < 100; timeo++){
if(!(csr8r(ctlr, Cr) & EeAutoLoad))
break;
microdelay(1);
}
if(timeo >= 100)
return;
/*
* Configure DMA and Rx/Tx thresholds.
* If the Rx/Tx threshold bits in Bcr[01] are 0 then
* the thresholds are determined by Rcr/Tcr.
*/
r = csr8r(ctlr, Bcr0) & ~(CrftMASK|DmaMASK);
csr8w(ctlr, Bcr0, r|Crft64|Dma64);
r = csr8r(ctlr, Bcr1) & ~CtftMASK;
csr8w(ctlr, Bcr1, r|Ctft64);
r = csr8r(ctlr, Rcr) & ~(RrftMASK|Prom|Ar|Sep);
csr8w(ctlr, Rcr, r|Ab|Am);
r = csr8r(ctlr, Tcr) & ~(RtsfMASK|Ofset|Lb1|Lb0);
csr8w(ctlr, Tcr, r);
}
static void
detach(Ether* edev)
{
reset(edev->ctlr);
}
static void
init(Ether *edev)
{
Ctlr *ctlr;
int i;
ctlr = edev->ctlr;
ilock(&ctlr->tlock);
pcisetbme(ctlr->pci);
reset(ctlr);
iow8(ctlr, Eecsr, ior8(ctlr, Eecsr) | EeAutoLoad);
for (i = 0; i < Nwait; ++i) {
if ((ior8(ctlr, Eecsr) & EeAutoLoad) == 0)
break;
delay(5);
}
if (i >= Nwait)
iprint("etherrhine: eeprom autoload timeout\n");
for (i = 0; i < Eaddrlen; ++i)
edev->ea[i] = ior8(ctlr, Eaddr + i);
ctlr->mii.mir = miiread;
ctlr->mii.miw = miiwrite;
ctlr->mii.ctlr = ctlr;
if(mii(&ctlr->mii, ~0) == 0 || ctlr->mii.curphy == nil){
iunlock(&ctlr->tlock);
iprint("etherrhine: init mii failure\n");
return;
}
for (i = 0; i < NMiiPhy; ++i)
if (ctlr->mii.phy[i])
if (ctlr->mii.phy[i]->oui != 0xFFFFF)
ctlr->mii.curphy = ctlr->mii.phy[i];
miistatus(&ctlr->mii);
iow16(ctlr, Imr, 0);
iow16(ctlr, Cr, ior16(ctlr, Cr) | Stop);
iunlock(&ctlr->tlock);
}
static Pcidev *
rhinematch(ulong)
{
static int nrhines = 0;
int nfound = 0;
Pcidev *p = nil;
while(p = pcimatch(p, 0x1106, 0)){
if(p->ccrb != Pcibcnet || p->ccru != Pciscether)
continue;
switch((p->did<<16)|p->vid){
default:
continue;
case (0x3053<<16)|0x1106: /* Rhine III vt6105m (Soekris) */
case (0x3065<<16)|0x1106: /* Rhine II */
case (0x3106<<16)|0x1106: /* Rhine III */
if (++nfound > nrhines) {
nrhines++;
return p;
}
break;
}
}
return p;
}
int
rhinepnp(Ether *edev)
{
Pcidev *p;
Ctlr *ctlr;
ulong port;
if (edev->attach)
return 0;
p = rhinematch(edev->port);
if (p == nil)
return -1;
port = p->mem[0].bar & ~1;
if ((ctlr = malloc(sizeof(Ctlr))) == nil) {
print("etherrhine: couldn't allocate memory for ctlr\n");
return -1;
}
memset(ctlr, 0, sizeof(Ctlr));
ctlr->txd = xspanalloc(sizeof(Desc) * Ntxd, 16, 0);
ctlr->rxd = xspanalloc(sizeof(Desc) * Nrxd, 16, 0);
ctlr->pci = p;
ctlr->port = port;
edev->ctlr = ctlr;
edev->port = ctlr->port;
edev->irq = p->intl;
edev->tbdf = p->tbdf;
init(edev);
edev->attach = attach;
edev->transmit = transmit;
edev->interrupt = interrupt;
edev->detach = detach;
return 0;
}
int
vt6102pnp(Ether *edev)
{
return rhinepnp(edev);
}
|