// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"bytes"
"container/heap"
"fmt"
)
// Package initialization
//
// Here we implement the algorithm for ordering package-level variable
// initialization. The spec is written in terms of variable
// initialization, but multiple variables initialized by a single
// assignment are handled together, so here we instead focus on
// ordering initialization assignments. Conveniently, this maps well
// to how we represent package-level initializations using the Node
// AST.
//
// Assignments are in one of three phases: NotStarted, Pending, or
// Done. For assignments in the Pending phase, we use Xoffset to
// record the number of unique variable dependencies whose
// initialization assignment is not yet Done. We also maintain a
// "blocking" map that maps assignments back to all of the assignments
// that depend on it.
//
// For example, for an initialization like:
//
// var x = f(a, b, b)
// var a, b = g()
//
// the "x = f(a, b, b)" assignment depends on two variables (a and b),
// so its Xoffset will be 2. Correspondingly, the "a, b = g()"
// assignment's "blocking" entry will have two entries back to x's
// assignment.
//
// Logically, initialization works by (1) taking all NotStarted
// assignments, calculating their dependencies, and marking them
// Pending; (2) adding all Pending assignments with Xoffset==0 to a
// "ready" priority queue (ordered by variable declaration position);
// and (3) iteratively processing the next Pending assignment from the
// queue, decreasing the Xoffset of assignments it's blocking, and
// adding them to the queue if decremented to 0.
//
// As an optimization, we actually apply each of these three steps for
// each assignment. This yields the same order, but keeps queue size
// down and thus also heap operation costs.
// Static initialization phase.
// These values are stored in two bits in Node.flags.
const (
InitNotStarted = iota
InitDone
InitPending
)
type InitOrder struct {
// blocking maps initialization assignments to the assignments
// that depend on it.
blocking map[*Node][]*Node
// ready is the queue of Pending initialization assignments
// that are ready for initialization.
ready declOrder
}
// initOrder computes initialization order for a list l of
// package-level declarations (in declaration order) and outputs the
// corresponding list of statements to include in the init() function
// body.
func initOrder(l []*Node) []*Node {
s := InitSchedule{
initplans: make(map[*Node]*InitPlan),
inittemps: make(map[*Node]*Node),
}
o := InitOrder{
blocking: make(map[*Node][]*Node),
}
// Process all package-level assignment in declaration order.
for _, n := range l {
switch n.Op {
case OAS, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
o.processAssign(n)
o.flushReady(s.staticInit)
case ODCLCONST, ODCLFUNC, ODCLTYPE:
// nop
default:
Fatalf("unexpected package-level statement: %v", n)
}
}
// Check that all assignments are now Done; if not, there must
// have been a dependency cycle.
for _, n := range l {
switch n.Op {
case OAS, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
if n.Initorder() != InitDone {
// If there have already been errors
// printed, those errors may have
// confused us and there might not be
// a loop. Let the user fix those
// first.
if nerrors > 0 {
errorexit()
}
findInitLoopAndExit(firstLHS(n), new([]*Node))
Fatalf("initialization unfinished, but failed to identify loop")
}
}
}
// Invariant consistency check. If this is non-zero, then we
// should have found a cycle above.
if len(o.blocking) != 0 {
Fatalf("expected empty map: %v", o.blocking)
}
return s.out
}
func (o *InitOrder) processAssign(n *Node) {
if n.Initorder() != InitNotStarted || n.Xoffset != BADWIDTH {
Fatalf("unexpected state: %v, %v, %v", n, n.Initorder(), n.Xoffset)
}
n.SetInitorder(InitPending)
n.Xoffset = 0
// Compute number of variable dependencies and build the
// inverse dependency ("blocking") graph.
for dep := range collectDeps(n, true) {
defn := dep.Name.Defn
// Skip dependencies on functions (PFUNC) and
// variables already initialized (InitDone).
if dep.Class() != PEXTERN || defn.Initorder() == InitDone {
continue
}
n.Xoffset++
o.blocking[defn] = append(o.blocking[defn], n)
}
if n.Xoffset == 0 {
heap.Push(&o.ready, n)
}
}
// flushReady repeatedly applies initialize to the earliest (in
// declaration order) assignment ready for initialization and updates
// the inverse dependency ("blocking") graph.
func (o *InitOrder) flushReady(initialize func(*Node)) {
for o.ready.Len() != 0 {
n := heap.Pop(&o.ready).(*Node)
if n.Initorder() != InitPending || n.Xoffset != 0 {
Fatalf("unexpected state: %v, %v, %v", n, n.Initorder(), n.Xoffset)
}
initialize(n)
n.SetInitorder(InitDone)
n.Xoffset = BADWIDTH
blocked := o.blocking[n]
delete(o.blocking, n)
for _, m := range blocked {
m.Xoffset--
if m.Xoffset == 0 {
heap.Push(&o.ready, m)
}
}
}
}
// findInitLoopAndExit searches for an initialization loop involving variable
// or function n. If one is found, it reports the loop as an error and exits.
//
// path points to a slice used for tracking the sequence of
// variables/functions visited. Using a pointer to a slice allows the
// slice capacity to grow and limit reallocations.
func findInitLoopAndExit(n *Node, path *[]*Node) {
// We implement a simple DFS loop-finding algorithm. This
// could be faster, but initialization cycles are rare.
for i, x := range *path {
if x == n {
reportInitLoopAndExit((*path)[i:])
return
}
}
// There might be multiple loops involving n; by sorting
// references, we deterministically pick the one reported.
refers := collectDeps(n.Name.Defn, false).Sorted(func(ni, nj *Node) bool {
return ni.Pos.Before(nj.Pos)
})
*path = append(*path, n)
for _, ref := range refers {
// Short-circuit variables that were initialized.
if ref.Class() == PEXTERN && ref.Name.Defn.Initorder() == InitDone {
continue
}
findInitLoopAndExit(ref, path)
}
*path = (*path)[:len(*path)-1]
}
// reportInitLoopAndExit reports and initialization loop as an error
// and exits. However, if l is not actually an initialization loop, it
// simply returns instead.
func reportInitLoopAndExit(l []*Node) {
// Rotate loop so that the earliest variable declaration is at
// the start.
i := -1
for j, n := range l {
if n.Class() == PEXTERN && (i == -1 || n.Pos.Before(l[i].Pos)) {
i = j
}
}
if i == -1 {
// False positive: loop only involves recursive
// functions. Return so that findInitLoop can continue
// searching.
return
}
l = append(l[i:], l[:i]...)
// TODO(mdempsky): Method values are printed as "T.m-fm"
// rather than "T.m". Figure out how to avoid that.
var msg bytes.Buffer
fmt.Fprintf(&msg, "initialization loop:\n")
for _, n := range l {
fmt.Fprintf(&msg, "\t%v: %v refers to\n", n.Line(), n)
}
fmt.Fprintf(&msg, "\t%v: %v", l[0].Line(), l[0])
yyerrorl(l[0].Pos, msg.String())
errorexit()
}
// collectDeps returns all of the package-level functions and
// variables that declaration n depends on. If transitive is true,
// then it also includes the transitive dependencies of any depended
// upon functions (but not variables).
func collectDeps(n *Node, transitive bool) NodeSet {
d := initDeps{transitive: transitive}
switch n.Op {
case OAS:
d.inspect(n.Right)
case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
d.inspect(n.Rlist.First())
case ODCLFUNC:
d.inspectList(n.Nbody)
default:
Fatalf("unexpected Op: %v", n.Op)
}
return d.seen
}
type initDeps struct {
transitive bool
seen NodeSet
}
func (d *initDeps) inspect(n *Node) { inspect(n, d.visit) }
func (d *initDeps) inspectList(l Nodes) { inspectList(l, d.visit) }
// visit calls foundDep on any package-level functions or variables
// referenced by n, if any.
func (d *initDeps) visit(n *Node) bool {
switch n.Op {
case ONAME:
if n.isMethodExpression() {
d.foundDep(asNode(n.Type.FuncType().Nname))
return false
}
switch n.Class() {
case PEXTERN, PFUNC:
d.foundDep(n)
}
case OCLOSURE:
d.inspectList(n.Func.Closure.Nbody)
case ODOTMETH, OCALLPART:
d.foundDep(asNode(n.Type.FuncType().Nname))
}
return true
}
// foundDep records that we've found a dependency on n by adding it to
// seen.
func (d *initDeps) foundDep(n *Node) {
// Can happen with method expressions involving interface
// types; e.g., fixedbugs/issue4495.go.
if n == nil {
return
}
// Names without definitions aren't interesting as far as
// initialization ordering goes.
if n.Name.Defn == nil {
return
}
if d.seen.Has(n) {
return
}
d.seen.Add(n)
if d.transitive && n.Class() == PFUNC {
d.inspectList(n.Name.Defn.Nbody)
}
}
// declOrder implements heap.Interface, ordering assignment statements
// by the position of their first LHS expression.
//
// N.B., the Pos of the first LHS expression is used because because
// an OAS node's Pos may not be unique. For example, given the
// declaration "var a, b = f(), g()", "a" must be ordered before "b",
// but both OAS nodes use the "=" token's position as their Pos.
type declOrder []*Node
func (s declOrder) Len() int { return len(s) }
func (s declOrder) Less(i, j int) bool { return firstLHS(s[i]).Pos.Before(firstLHS(s[j]).Pos) }
func (s declOrder) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *declOrder) Push(x interface{}) { *s = append(*s, x.(*Node)) }
func (s *declOrder) Pop() interface{} {
n := (*s)[len(*s)-1]
*s = (*s)[:len(*s)-1]
return n
}
// firstLHS returns the first expression on the left-hand side of
// assignment n.
func firstLHS(n *Node) *Node {
switch n.Op {
case OAS:
return n.Left
case OAS2DOTTYPE, OAS2FUNC, OAS2RECV, OAS2MAPR:
return n.List.First()
}
Fatalf("unexpected Op: %v", n.Op)
return nil
}
|