// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86
import (
"cmd/internal/obj"
"errors"
"fmt"
"strings"
)
// evexBits stores EVEX prefix info that is used during instruction encoding.
type evexBits struct {
b1 byte // [W1mmLLpp]
b2 byte // [NNNbbZRS]
// Associated instruction opcode.
opcode byte
}
// newEVEXBits creates evexBits object from enc bytes at z position.
func newEVEXBits(z int, enc *opBytes) evexBits {
return evexBits{
b1: enc[z+0],
b2: enc[z+1],
opcode: enc[z+2],
}
}
// P returns EVEX.pp value.
func (evex evexBits) P() byte { return (evex.b1 & evexP) >> 0 }
// L returns EVEX.L'L value.
func (evex evexBits) L() byte { return (evex.b1 & evexL) >> 2 }
// M returns EVEX.mm value.
func (evex evexBits) M() byte { return (evex.b1 & evexM) >> 4 }
// W returns EVEX.W value.
func (evex evexBits) W() byte { return (evex.b1 & evexW) >> 7 }
// BroadcastEnabled reports whether BCST suffix is permitted.
func (evex evexBits) BroadcastEnabled() bool {
return evex.b2&evexBcst != 0
}
// ZeroingEnabled reports whether Z suffix is permitted.
func (evex evexBits) ZeroingEnabled() bool {
return (evex.b2&evexZeroing)>>2 != 0
}
// RoundingEnabled reports whether RN_SAE, RZ_SAE, RD_SAE and RU_SAE suffixes
// are permitted.
func (evex evexBits) RoundingEnabled() bool {
return (evex.b2&evexRounding)>>1 != 0
}
// SaeEnabled reports whether SAE suffix is permitted.
func (evex evexBits) SaeEnabled() bool {
return (evex.b2&evexSae)>>0 != 0
}
// DispMultiplier returns displacement multiplier that is calculated
// based on tuple type, EVEX.W and input size.
// If embedded broadcast is used, bcst should be true.
func (evex evexBits) DispMultiplier(bcst bool) int32 {
if bcst {
switch evex.b2 & evexBcst {
case evexBcstN4:
return 4
case evexBcstN8:
return 8
}
return 1
}
switch evex.b2 & evexN {
case evexN1:
return 1
case evexN2:
return 2
case evexN4:
return 4
case evexN8:
return 8
case evexN16:
return 16
case evexN32:
return 32
case evexN64:
return 64
case evexN128:
return 128
}
return 1
}
// EVEX is described by using 2-byte sequence.
// See evexBits for more details.
const (
evexW = 0x80 // b1[W... ....]
evexWIG = 0 << 7
evexW0 = 0 << 7
evexW1 = 1 << 7
evexM = 0x30 // b2[..mm ...]
evex0F = 1 << 4
evex0F38 = 2 << 4
evex0F3A = 3 << 4
evexL = 0x0C // b1[.... LL..]
evexLIG = 0 << 2
evex128 = 0 << 2
evex256 = 1 << 2
evex512 = 2 << 2
evexP = 0x03 // b1[.... ..pp]
evex66 = 1 << 0
evexF3 = 2 << 0
evexF2 = 3 << 0
// Precalculated Disp8 N value.
// N acts like a multiplier for 8bit displacement.
// Note that some N are not used, but their bits are reserved.
evexN = 0xE0 // b2[NNN. ....]
evexN1 = 0 << 5
evexN2 = 1 << 5
evexN4 = 2 << 5
evexN8 = 3 << 5
evexN16 = 4 << 5
evexN32 = 5 << 5
evexN64 = 6 << 5
evexN128 = 7 << 5
// Disp8 for broadcasts.
evexBcst = 0x18 // b2[...b b...]
evexBcstN4 = 1 << 3
evexBcstN8 = 2 << 3
// Flags that permit certain AVX512 features.
// It's semantically illegal to combine evexZeroing and evexSae.
evexZeroing = 0x4 // b2[.... .Z..]
evexZeroingEnabled = 1 << 2
evexRounding = 0x2 // b2[.... ..R.]
evexRoundingEnabled = 1 << 1
evexSae = 0x1 // b2[.... ...S]
evexSaeEnabled = 1 << 0
)
// compressedDisp8 calculates EVEX compressed displacement, if applicable.
func compressedDisp8(disp, elemSize int32) (disp8 byte, ok bool) {
if disp%elemSize == 0 {
v := disp / elemSize
if v >= -128 && v <= 127 {
return byte(v), true
}
}
return 0, false
}
// evexZcase reports whether given Z-case belongs to EVEX group.
func evexZcase(zcase uint8) bool {
return zcase > Zevex_first && zcase < Zevex_last
}
// evexSuffixBits carries instruction EVEX suffix set flags.
//
// Examples:
// "RU_SAE.Z" => {rounding: 3, zeroing: true}
// "Z" => {zeroing: true}
// "BCST" => {broadcast: true}
// "SAE.Z" => {sae: true, zeroing: true}
type evexSuffix struct {
rounding byte
sae bool
zeroing bool
broadcast bool
}
// Rounding control values.
// Match exact value for EVEX.L'L field (with exception of rcUnset).
const (
rcRNSAE = 0 // Round towards nearest
rcRDSAE = 1 // Round towards -Inf
rcRUSAE = 2 // Round towards +Inf
rcRZSAE = 3 // Round towards zero
rcUnset = 4
)
// newEVEXSuffix returns proper zero value for evexSuffix.
func newEVEXSuffix() evexSuffix {
return evexSuffix{rounding: rcUnset}
}
// evexSuffixMap maps obj.X86suffix to its decoded version.
// Filled during init().
var evexSuffixMap [255]evexSuffix
func init() {
// Decode all valid suffixes for later use.
for i := range opSuffixTable {
suffix := newEVEXSuffix()
parts := strings.Split(opSuffixTable[i], ".")
for j := range parts {
switch parts[j] {
case "Z":
suffix.zeroing = true
case "BCST":
suffix.broadcast = true
case "SAE":
suffix.sae = true
case "RN_SAE":
suffix.rounding = rcRNSAE
case "RD_SAE":
suffix.rounding = rcRDSAE
case "RU_SAE":
suffix.rounding = rcRUSAE
case "RZ_SAE":
suffix.rounding = rcRZSAE
}
}
evexSuffixMap[i] = suffix
}
}
// toDisp8 tries to convert disp to proper 8-bit displacement value.
func toDisp8(disp int32, p *obj.Prog, asmbuf *AsmBuf) (disp8 byte, ok bool) {
if asmbuf.evexflag {
bcst := evexSuffixMap[p.Scond].broadcast
elemSize := asmbuf.evex.DispMultiplier(bcst)
return compressedDisp8(disp, elemSize)
}
return byte(disp), disp >= -128 && disp < 128
}
// EncodeRegisterRange packs [reg0-reg1] list into 64-bit value that
// is intended to be stored inside obj.Addr.Offset with TYPE_REGLIST.
func EncodeRegisterRange(reg0, reg1 int16) int64 {
return (int64(reg0) << 0) |
(int64(reg1) << 16) |
obj.RegListX86Lo
}
// decodeRegisterRange unpacks [reg0-reg1] list from 64-bit value created by EncodeRegisterRange.
func decodeRegisterRange(list int64) (reg0, reg1 int) {
return int((list >> 0) & 0xFFFF),
int((list >> 16) & 0xFFFF)
}
// ParseSuffix handles the special suffix for the 386/AMD64.
// Suffix bits are stored into p.Scond.
//
// Leading "." in cond is ignored.
func ParseSuffix(p *obj.Prog, cond string) error {
cond = strings.TrimPrefix(cond, ".")
suffix := newOpSuffix(cond)
if !suffix.IsValid() {
return inferSuffixError(cond)
}
p.Scond = uint8(suffix)
return nil
}
// inferSuffixError returns non-nil error that describes what could be
// the cause of suffix parse failure.
//
// At the point this function is executed there is already assembly error,
// so we can burn some clocks to construct good error message.
//
// Reported issues:
// - duplicated suffixes
// - illegal rounding/SAE+broadcast combinations
// - unknown suffixes
// - misplaced suffix (e.g. wrong Z suffix position)
func inferSuffixError(cond string) error {
suffixSet := make(map[string]bool) // Set for duplicates detection.
unknownSet := make(map[string]bool) // Set of unknown suffixes.
hasBcst := false
hasRoundSae := false
var msg []string // Error message parts
suffixes := strings.Split(cond, ".")
for i, suffix := range suffixes {
switch suffix {
case "Z":
if i != len(suffixes)-1 {
msg = append(msg, "Z suffix should be the last")
}
case "BCST":
hasBcst = true
case "SAE", "RN_SAE", "RZ_SAE", "RD_SAE", "RU_SAE":
hasRoundSae = true
default:
if !unknownSet[suffix] {
msg = append(msg, fmt.Sprintf("unknown suffix %q", suffix))
}
unknownSet[suffix] = true
}
if suffixSet[suffix] {
msg = append(msg, fmt.Sprintf("duplicate suffix %q", suffix))
}
suffixSet[suffix] = true
}
if hasBcst && hasRoundSae {
msg = append(msg, "can't combine rounding/SAE and broadcast")
}
if len(msg) == 0 {
return errors.New("bad suffix combination")
}
return errors.New(strings.Join(msg, "; "))
}
// opSuffixTable is a complete list of possible opcode suffix combinations.
// It "maps" uint8 suffix bits to their string representation.
// With the exception of first and last elements, order is not important.
var opSuffixTable = [...]string{
"", // Map empty suffix to empty string.
"Z",
"SAE",
"SAE.Z",
"RN_SAE",
"RZ_SAE",
"RD_SAE",
"RU_SAE",
"RN_SAE.Z",
"RZ_SAE.Z",
"RD_SAE.Z",
"RU_SAE.Z",
"BCST",
"BCST.Z",
"<bad suffix>",
}
// opSuffix represents instruction opcode suffix.
// Compound (multi-part) suffixes expressed with single opSuffix value.
//
// uint8 type is used to fit obj.Prog.Scond.
type opSuffix uint8
// badOpSuffix is used to represent all invalid suffix combinations.
const badOpSuffix = opSuffix(len(opSuffixTable) - 1)
// newOpSuffix returns opSuffix object that matches suffixes string.
//
// If no matching suffix is found, special "invalid" suffix is returned.
// Use IsValid method to check against this case.
func newOpSuffix(suffixes string) opSuffix {
for i := range opSuffixTable {
if opSuffixTable[i] == suffixes {
return opSuffix(i)
}
}
return badOpSuffix
}
// IsValid reports whether suffix is valid.
// Empty suffixes are valid.
func (suffix opSuffix) IsValid() bool {
return suffix != badOpSuffix
}
// String returns suffix printed representation.
//
// It matches the string that was used to create suffix with NewX86Suffix()
// for valid suffixes.
// For all invalid suffixes, special marker is returned.
func (suffix opSuffix) String() string {
return opSuffixTable[suffix]
}
|