// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// The method is based on a paper by Naoki Shibata: "Efficient evaluation
// methods of elementary functions suitable for SIMD computation", Proc.
// of International Supercomputing Conference 2010 (ISC'10), pp. 25 -- 32
// (May 2010). The paper is available at
// https://www.springerlink.com/content/340228x165742104/
//
// The original code and the constants below are from the author's
// implementation available at http://freshmeat.net/projects/sleef.
// The README file says, "The software is in public domain.
// You can use the software without any obligation."
//
// This code is a simplified version of the original.
#define LN2 0.6931471805599453094172321214581766 // log_e(2)
#define LOG2E 1.4426950408889634073599246810018920 // 1/LN2
#define LN2U 0.69314718055966295651160180568695068359375 // upper half LN2
#define LN2L 0.28235290563031577122588448175013436025525412068e-12 // lower half LN2
#define PosInf 0x7FF0000000000000
#define NegInf 0xFFF0000000000000
#define Overflow 7.09782712893384e+02
DATA exprodata<>+0(SB)/8, $0.5
DATA exprodata<>+8(SB)/8, $1.0
DATA exprodata<>+16(SB)/8, $2.0
DATA exprodata<>+24(SB)/8, $1.6666666666666666667e-1
DATA exprodata<>+32(SB)/8, $4.1666666666666666667e-2
DATA exprodata<>+40(SB)/8, $8.3333333333333333333e-3
DATA exprodata<>+48(SB)/8, $1.3888888888888888889e-3
DATA exprodata<>+56(SB)/8, $1.9841269841269841270e-4
DATA exprodata<>+64(SB)/8, $2.4801587301587301587e-5
GLOBL exprodata<>+0(SB), RODATA, $72
// func Exp(x float64) float64
TEXT ·Exp(SB),NOSPLIT,$0
// test bits for not-finite
MOVQ x+0(FP), BX
MOVQ $~(1<<63), AX // sign bit mask
MOVQ BX, DX
ANDQ AX, DX
MOVQ $PosInf, AX
CMPQ AX, DX
JLE notFinite
// check if argument will overflow
MOVQ BX, X0
MOVSD $Overflow, X1
COMISD X1, X0
JA overflow
MOVSD $LOG2E, X1
MULSD X0, X1
CVTSD2SL X1, BX // BX = exponent
CVTSL2SD BX, X1
CMPB ·useFMA(SB), $1
JE avxfma
MOVSD $LN2U, X2
MULSD X1, X2
SUBSD X2, X0
MOVSD $LN2L, X2
MULSD X1, X2
SUBSD X2, X0
// reduce argument
MULSD $0.0625, X0
// Taylor series evaluation
MOVSD exprodata<>+64(SB), X1
MULSD X0, X1
ADDSD exprodata<>+56(SB), X1
MULSD X0, X1
ADDSD exprodata<>+48(SB), X1
MULSD X0, X1
ADDSD exprodata<>+40(SB), X1
MULSD X0, X1
ADDSD exprodata<>+32(SB), X1
MULSD X0, X1
ADDSD exprodata<>+24(SB), X1
MULSD X0, X1
ADDSD exprodata<>+0(SB), X1
MULSD X0, X1
ADDSD exprodata<>+8(SB), X1
MULSD X1, X0
MOVSD exprodata<>+16(SB), X1
ADDSD X0, X1
MULSD X1, X0
MOVSD exprodata<>+16(SB), X1
ADDSD X0, X1
MULSD X1, X0
MOVSD exprodata<>+16(SB), X1
ADDSD X0, X1
MULSD X1, X0
MOVSD exprodata<>+16(SB), X1
ADDSD X0, X1
MULSD X1, X0
ADDSD exprodata<>+8(SB), X0
// return fr * 2**exponent
ldexp:
ADDL $0x3FF, BX // add bias
JLE denormal
CMPL BX, $0x7FF
JGE overflow
lastStep:
SHLQ $52, BX
MOVQ BX, X1
MULSD X1, X0
MOVSD X0, ret+8(FP)
RET
notFinite:
// test bits for -Inf
MOVQ $NegInf, AX
CMPQ AX, BX
JNE notNegInf
// -Inf, return 0
underflow: // return 0
MOVQ $0, ret+8(FP)
RET
overflow: // return +Inf
MOVQ $PosInf, BX
notNegInf: // NaN or +Inf, return x
MOVQ BX, ret+8(FP)
RET
denormal:
CMPL BX, $-52
JL underflow
ADDL $0x3FE, BX // add bias - 1
SHLQ $52, BX
MOVQ BX, X1
MULSD X1, X0
MOVQ $1, BX
JMP lastStep
avxfma:
MOVSD $LN2U, X2
VFNMADD231SD X2, X1, X0
MOVSD $LN2L, X2
VFNMADD231SD X2, X1, X0
// reduce argument
MULSD $0.0625, X0
// Taylor series evaluation
MOVSD exprodata<>+64(SB), X1
VFMADD213SD exprodata<>+56(SB), X0, X1
VFMADD213SD exprodata<>+48(SB), X0, X1
VFMADD213SD exprodata<>+40(SB), X0, X1
VFMADD213SD exprodata<>+32(SB), X0, X1
VFMADD213SD exprodata<>+24(SB), X0, X1
VFMADD213SD exprodata<>+0(SB), X0, X1
VFMADD213SD exprodata<>+8(SB), X0, X1
MULSD X1, X0
VADDSD exprodata<>+16(SB), X0, X1
MULSD X1, X0
VADDSD exprodata<>+16(SB), X0, X1
MULSD X1, X0
VADDSD exprodata<>+16(SB), X0, X1
MULSD X1, X0
VADDSD exprodata<>+16(SB), X0, X1
VFMADD213SD exprodata<>+8(SB), X1, X0
JMP ldexp
|