// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package quick implements utility functions to help with black box testing.
//
// The testing/quick package is frozen and is not accepting new features.
package quick
import (
"flag"
"fmt"
"math"
"math/rand"
"reflect"
"strings"
"time"
)
var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check")
// A Generator can generate random values of its own type.
type Generator interface {
// Generate returns a random instance of the type on which it is a
// method using the size as a size hint.
Generate(rand *rand.Rand, size int) reflect.Value
}
// randFloat32 generates a random float taking the full range of a float32.
func randFloat32(rand *rand.Rand) float32 {
f := rand.Float64() * math.MaxFloat32
if rand.Int()&1 == 1 {
f = -f
}
return float32(f)
}
// randFloat64 generates a random float taking the full range of a float64.
func randFloat64(rand *rand.Rand) float64 {
f := rand.Float64() * math.MaxFloat64
if rand.Int()&1 == 1 {
f = -f
}
return f
}
// randInt64 returns a random int64.
func randInt64(rand *rand.Rand) int64 {
return int64(rand.Uint64())
}
// complexSize is the maximum length of arbitrary values that contain other
// values.
const complexSize = 50
// Value returns an arbitrary value of the given type.
// If the type implements the Generator interface, that will be used.
// Note: To create arbitrary values for structs, all the fields must be exported.
func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) {
return sizedValue(t, rand, complexSize)
}
// sizedValue returns an arbitrary value of the given type. The size
// hint is used for shrinking as a function of indirection level so
// that recursive data structures will terminate.
func sizedValue(t reflect.Type, rand *rand.Rand, size int) (value reflect.Value, ok bool) {
if m, ok := reflect.Zero(t).Interface().(Generator); ok {
return m.Generate(rand, size), true
}
v := reflect.New(t).Elem()
switch concrete := t; concrete.Kind() {
case reflect.Bool:
v.SetBool(rand.Int()&1 == 0)
case reflect.Float32:
v.SetFloat(float64(randFloat32(rand)))
case reflect.Float64:
v.SetFloat(randFloat64(rand))
case reflect.Complex64:
v.SetComplex(complex(float64(randFloat32(rand)), float64(randFloat32(rand))))
case reflect.Complex128:
v.SetComplex(complex(randFloat64(rand), randFloat64(rand)))
case reflect.Int16:
v.SetInt(randInt64(rand))
case reflect.Int32:
v.SetInt(randInt64(rand))
case reflect.Int64:
v.SetInt(randInt64(rand))
case reflect.Int8:
v.SetInt(randInt64(rand))
case reflect.Int:
v.SetInt(randInt64(rand))
case reflect.Uint16:
v.SetUint(uint64(randInt64(rand)))
case reflect.Uint32:
v.SetUint(uint64(randInt64(rand)))
case reflect.Uint64:
v.SetUint(uint64(randInt64(rand)))
case reflect.Uint8:
v.SetUint(uint64(randInt64(rand)))
case reflect.Uint:
v.SetUint(uint64(randInt64(rand)))
case reflect.Uintptr:
v.SetUint(uint64(randInt64(rand)))
case reflect.Map:
numElems := rand.Intn(size)
v.Set(reflect.MakeMap(concrete))
for i := 0; i < numElems; i++ {
key, ok1 := sizedValue(concrete.Key(), rand, size)
value, ok2 := sizedValue(concrete.Elem(), rand, size)
if !ok1 || !ok2 {
return reflect.Value{}, false
}
v.SetMapIndex(key, value)
}
case reflect.Ptr:
if rand.Intn(size) == 0 {
v.Set(reflect.Zero(concrete)) // Generate nil pointer.
} else {
elem, ok := sizedValue(concrete.Elem(), rand, size)
if !ok {
return reflect.Value{}, false
}
v.Set(reflect.New(concrete.Elem()))
v.Elem().Set(elem)
}
case reflect.Slice:
numElems := rand.Intn(size)
sizeLeft := size - numElems
v.Set(reflect.MakeSlice(concrete, numElems, numElems))
for i := 0; i < numElems; i++ {
elem, ok := sizedValue(concrete.Elem(), rand, sizeLeft)
if !ok {
return reflect.Value{}, false
}
v.Index(i).Set(elem)
}
case reflect.Array:
for i := 0; i < v.Len(); i++ {
elem, ok := sizedValue(concrete.Elem(), rand, size)
if !ok {
return reflect.Value{}, false
}
v.Index(i).Set(elem)
}
case reflect.String:
numChars := rand.Intn(complexSize)
codePoints := make([]rune, numChars)
for i := 0; i < numChars; i++ {
codePoints[i] = rune(rand.Intn(0x10ffff))
}
v.SetString(string(codePoints))
case reflect.Struct:
n := v.NumField()
// Divide sizeLeft evenly among the struct fields.
sizeLeft := size
if n > sizeLeft {
sizeLeft = 1
} else if n > 0 {
sizeLeft /= n
}
for i := 0; i < n; i++ {
elem, ok := sizedValue(concrete.Field(i).Type, rand, sizeLeft)
if !ok {
return reflect.Value{}, false
}
v.Field(i).Set(elem)
}
default:
return reflect.Value{}, false
}
return v, true
}
// A Config structure contains options for running a test.
type Config struct {
// MaxCount sets the maximum number of iterations.
// If zero, MaxCountScale is used.
MaxCount int
// MaxCountScale is a non-negative scale factor applied to the
// default maximum.
// A count of zero implies the default, which is usually 100
// but can be set by the -quickchecks flag.
MaxCountScale float64
// Rand specifies a source of random numbers.
// If nil, a default pseudo-random source will be used.
Rand *rand.Rand
// Values specifies a function to generate a slice of
// arbitrary reflect.Values that are congruent with the
// arguments to the function being tested.
// If nil, the top-level Value function is used to generate them.
Values func([]reflect.Value, *rand.Rand)
}
var defaultConfig Config
// getRand returns the *rand.Rand to use for a given Config.
func (c *Config) getRand() *rand.Rand {
if c.Rand == nil {
return rand.New(rand.NewSource(time.Now().UnixNano()))
}
return c.Rand
}
// getMaxCount returns the maximum number of iterations to run for a given
// Config.
func (c *Config) getMaxCount() (maxCount int) {
maxCount = c.MaxCount
if maxCount == 0 {
if c.MaxCountScale != 0 {
maxCount = int(c.MaxCountScale * float64(*defaultMaxCount))
} else {
maxCount = *defaultMaxCount
}
}
return
}
// A SetupError is the result of an error in the way that check is being
// used, independent of the functions being tested.
type SetupError string
func (s SetupError) Error() string { return string(s) }
// A CheckError is the result of Check finding an error.
type CheckError struct {
Count int
In []interface{}
}
func (s *CheckError) Error() string {
return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In))
}
// A CheckEqualError is the result CheckEqual finding an error.
type CheckEqualError struct {
CheckError
Out1 []interface{}
Out2 []interface{}
}
func (s *CheckEqualError) Error() string {
return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2))
}
// Check looks for an input to f, any function that returns bool,
// such that f returns false. It calls f repeatedly, with arbitrary
// values for each argument. If f returns false on a given input,
// Check returns that input as a *CheckError.
// For example:
//
// func TestOddMultipleOfThree(t *testing.T) {
// f := func(x int) bool {
// y := OddMultipleOfThree(x)
// return y%2 == 1 && y%3 == 0
// }
// if err := quick.Check(f, nil); err != nil {
// t.Error(err)
// }
// }
func Check(f interface{}, config *Config) error {
if config == nil {
config = &defaultConfig
}
fVal, fType, ok := functionAndType(f)
if !ok {
return SetupError("argument is not a function")
}
if fType.NumOut() != 1 {
return SetupError("function does not return one value")
}
if fType.Out(0).Kind() != reflect.Bool {
return SetupError("function does not return a bool")
}
arguments := make([]reflect.Value, fType.NumIn())
rand := config.getRand()
maxCount := config.getMaxCount()
for i := 0; i < maxCount; i++ {
err := arbitraryValues(arguments, fType, config, rand)
if err != nil {
return err
}
if !fVal.Call(arguments)[0].Bool() {
return &CheckError{i + 1, toInterfaces(arguments)}
}
}
return nil
}
// CheckEqual looks for an input on which f and g return different results.
// It calls f and g repeatedly with arbitrary values for each argument.
// If f and g return different answers, CheckEqual returns a *CheckEqualError
// describing the input and the outputs.
func CheckEqual(f, g interface{}, config *Config) error {
if config == nil {
config = &defaultConfig
}
x, xType, ok := functionAndType(f)
if !ok {
return SetupError("f is not a function")
}
y, yType, ok := functionAndType(g)
if !ok {
return SetupError("g is not a function")
}
if xType != yType {
return SetupError("functions have different types")
}
arguments := make([]reflect.Value, xType.NumIn())
rand := config.getRand()
maxCount := config.getMaxCount()
for i := 0; i < maxCount; i++ {
err := arbitraryValues(arguments, xType, config, rand)
if err != nil {
return err
}
xOut := toInterfaces(x.Call(arguments))
yOut := toInterfaces(y.Call(arguments))
if !reflect.DeepEqual(xOut, yOut) {
return &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut}
}
}
return nil
}
// arbitraryValues writes Values to args such that args contains Values
// suitable for calling f.
func arbitraryValues(args []reflect.Value, f reflect.Type, config *Config, rand *rand.Rand) (err error) {
if config.Values != nil {
config.Values(args, rand)
return
}
for j := 0; j < len(args); j++ {
var ok bool
args[j], ok = Value(f.In(j), rand)
if !ok {
err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j))
return
}
}
return
}
func functionAndType(f interface{}) (v reflect.Value, t reflect.Type, ok bool) {
v = reflect.ValueOf(f)
ok = v.Kind() == reflect.Func
if !ok {
return
}
t = v.Type()
return
}
func toInterfaces(values []reflect.Value) []interface{} {
ret := make([]interface{}, len(values))
for i, v := range values {
ret[i] = v.Interface()
}
return ret
}
func toString(interfaces []interface{}) string {
s := make([]string, len(interfaces))
for i, v := range interfaces {
s[i] = fmt.Sprintf("%#v", v)
}
return strings.Join(s, ", ")
}
|