Plan 9 from Bell Labs’s /usr/web/sources/contrib/steve/root/sys/src/cmd/tex/web2c/orig/mf.web

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


% This program is copyright (C) 1984 by D. E. Knuth; all rights are reserved.
% Copying of this file is authorized only if (1) you are D. E. Knuth, or if
% (2) you make absolutely no changes to your copy. (The WEB system provides
% for alterations via an auxiliary file; the master file should stay intact.)
% In other words, METAFONT is under essentially the same ground rules as TeX.

% TeX is a trademark of the American Mathematical Society.
% METAFONT is a trademark of Addison-Wesley Publishing Company.

% Version 0 was completed on July 28, 1984.
% Version 1 was completed on January 4, 1986; it corresponds to "Volume D".
% Version 1.1 trivially corrected the punctuation in one message (June 1986).
% Version 1.2 corrected an arithmetic overflow problem (July 1986).
% Version 1.3 improved rounding when elliptical pens are made (November 1986).
% Version 1.4 corrected scan_declared_variable timing (May 1988).
% Version 1.5 fixed negative halving in allocator when mem_min<0 (June 1988).
% Version 1.6 kept open_log_file from calling fatal_error (November 1988).
% Version 1.7 solved that problem a better way (December 1988).
% Version 1.8 introduced major changes for 8-bit extensions (September 1989).
% Version 1.9 improved skimping and was edited for style (December 1989).
% Version 2.0 fixed bug in addto; released with TeX version 3.0 (March 1990).
% Version 2.7 made consistent with TeX version 3.1 (September 1990).
% Version 2.71 fixed bug in draw, allowed unprintable filenames (March 1992).
% Version 2.718 fixed bug in <Choose a dependent...> (March 1995).
% A few "harmless" optimizations have been made without changing versions.

% A reward of $327.68 will be paid to the first finder of any remaining bug,
% except bugs introduced after August 1989.

% Although considerable effort has been expended to make the METAFONT program
% correct and reliable, no warranty is implied; the author disclaims any
% obligation or liability for damages, including but not limited to
% special, indirect, or consequential damages arising out of or in
% connection with the use or performance of this software. This work has
% been a ``labor of love'' and the author hopes that users enjoy it.

% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\noindent\ignorespaces}
\def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like SAIL
\def\PASCAL{Pascal}
\def\ph{\hbox{Pascal-H}}
\def\psqrt#1{\sqrt{\mathstrut#1}}
\def\k{_{k+1}}
\def\pct!{{\char`\%}} % percent sign in ordinary text
\font\tenlogo=logo10 % font used for the METAFONT logo
\font\logos=logosl10
\font\eightlogo=logo8
\def\MF{{\tenlogo META}\-{\tenlogo FONT}}
\def\<#1>{$\langle#1\rangle$}
\def\section{\mathhexbox278}
\let\swap=\leftrightarrow
\def\round{\mathop{\rm round}\nolimits}

\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>

\outer\def\N#1. \[#2]#3.{\MN#1.\vfil\eject % begin starred section
  \def\rhead{PART #2:\uppercase{#3}} % define running headline
  \message{*\modno} % progress report
  \edef\next{\write\cont{\Z{\?#2]#3}{\modno}{\the\pageno}}}\next
  \ifon\startsection{\bf\ignorespaces#3.\quad}\ignorespaces}
\let\?=\relax % we want to be able to \write a \?

\def\title{{\eightlogo METAFONT}}
\def\topofcontents{\hsize 5.5in
  \vglue -30pt plus 1fil minus 1.5in
  \def\?##1]{\hbox to 1in{\hfil##1.\ }}
  }
\def\botofcontents{\vskip 0pt plus 1fil minus 1.5in}
\pageno=3
\def\glob{13} % this should be the section number of "<Global...>"
\def\gglob{20, 26} % this should be the next two sections of "<Global...>"

@* \[1] Introduction.
This is \MF, a font compiler intended to produce typefaces of high quality.
The \PASCAL\ program that follows is the definition of \MF84, a standard
@:PASCAL}{\PASCAL@>
@!@:METAFONT84}{\MF84@>
version of \MF\ that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers. The conventions
of \MF84 are the same as those of \TeX82.

The main purpose of the following program is to explain the algorithms of \MF\
as clearly as possible. As a result, the program will not necessarily be very
efficient when a particular \PASCAL\ compiler has translated it into a
particular machine language. However, the program has been written so that it
can be tuned to run efficiently in a wide variety of operating environments
by making comparatively few changes. Such flexibility is possible because
the documentation that follows is written in the \.{WEB} language, which is
at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
to \PASCAL\ is able to introduce most of the necessary refinements.
Semi-automatic translation to other languages is also feasible, because the
program below does not make extensive use of features that are peculiar to
\PASCAL.

A large piece of software like \MF\ has inherent complexity that cannot
be reduced below a certain level of difficulty, although each individual
part is fairly simple by itself. The \.{WEB} language is intended to make
the algorithms as readable as possible, by reflecting the way the
individual program pieces fit together and by providing the
cross-references that connect different parts. Detailed comments about
what is going on, and about why things were done in certain ways, have
been liberally sprinkled throughout the program.  These comments explain
features of the implementation, but they rarely attempt to explain the
\MF\ language itself, since the reader is supposed to be familiar with
{\sl The {\logos METAFONT\/}book}.
@.WEB@>
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>

@ The present implementation has a long ancestry, beginning in the spring
of~1977, when its author wrote a prototype set of subroutines and macros
@^Knuth, Donald Ervin@>
that were used to develop the first Computer Modern fonts.
This original proto-\MF\ required the user to recompile a {\mc SAIL} program
whenever any character was changed, because it was not a ``language'' for
font design; the language was {\mc SAIL}. After several hundred characters
had been designed in that way, the author developed an interpretable language
called \MF, in which it was possible to express the Computer Modern programs
less cryptically. A complete \MF\ processor was designed and coded by the
author in 1979. This program, written in {\mc SAIL}, was adapted for use
with a variety of typesetting equipment and display terminals by Leo Guibas,
Lyle Ramshaw, and David Fuchs.
@^Guibas, Leonidas Ioannis@>
@^Ramshaw, Lyle Harold@>
@^Fuchs, David Raymond@>
Major improvements to the design of Computer Modern fonts were made in the
spring of 1982, after which it became clear that a new language would
better express the needs of letterform designers. Therefore an entirely
new \MF\ language and system were developed in 1984; the present system
retains the name and some of the spirit of \MF79, but all of the details
have changed.

No doubt there still is plenty of room for improvement, but the author
is firmly committed to keeping \MF84 ``frozen'' from now on; stability
and reliability are to be its main virtues.

On the other hand, the \.{WEB} description can be extended without changing
the core of \MF84 itself, and the program has been designed so that such
extensions are not extremely difficult to make.
The |banner| string defined here should be changed whenever \MF\
undergoes any modifications, so that it will be clear which version of
\MF\ might be the guilty party when a problem arises.
@^extensions to \MF@>
@^system dependencies@>

If this program is changed, the resulting system should not be called
`\MF\kern.5pt'; the official name `\MF\kern.5pt' by itself is reserved
for software systems that are fully compatible with each other.
A special test suite called the ``\.{TRAP} test'' is available for
helping to determine whether an implementation deserves to be
known as `\MF\kern.5pt' [cf.~Stanford Computer Science report CS1095,
January 1986].

@d banner=='This is METAFONT, Version 2.718' {printed when \MF\ starts}

@ Different \PASCAL s have slightly different conventions, and the present
@!@:PASCAL H}{\ph@>
program expresses \MF\ in terms of the \PASCAL\ that was
available to the author in 1984. Constructions that apply to
this particular compiler, which we shall call \ph, should help the
reader see how to make an appropriate interface for other systems
if necessary. (\ph\ is Charles Hedrick's modification of a compiler
@^Hedrick, Charles Locke@>
for the DECsystem-10 that was originally developed at the University of
Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
29--42. The \MF\ program below is intended to be adaptable, without
extensive changes, to most other versions of \PASCAL, so it does not fully
use the admirable features of \ph. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard
\PASCAL\ itself, so that most of the code can be translated mechanically
into other high-level languages. For example, the `\&{with}' and `\\{new}'
features are not used, nor are pointer types, set types, or enumerated
scalar types; there are no `\&{var}' parameters, except in the case of files;
there are no tag fields on variant records; there are no |real| variables;
no procedures are declared local to other procedures.)

The portions of this program that involve system-dependent code, where
changes might be necessary because of differences between \PASCAL\ compilers
and/or differences between
operating systems, can be identified by looking at the sections whose
numbers are listed under `system dependencies' in the index. Furthermore,
the index entries for `dirty \PASCAL' list all places where the restrictions
of \PASCAL\ have not been followed perfectly, for one reason or another.
@!@^system dependencies@>
@!@^dirty \PASCAL@>

@ The program begins with a normal \PASCAL\ program heading, whose
components will be filled in later, using the conventions of \.{WEB}.
@.WEB@>
For example, the portion of the program called `\X\glob:Global
variables\X' below will be replaced by a sequence of variable declarations
that starts in $\section\glob$ of this documentation. In this way, we are able
to define each individual global variable when we are prepared to
understand what it means; we do not have to define all of the globals at
once.  Cross references in $\section\glob$, where it says ``See also
sections \gglob, \dots,'' also make it possible to look at the set of
all global variables, if desired.  Similar remarks apply to the other
portions of the program heading.

Actually the heading shown here is not quite normal: The |program| line
does not mention any |output| file, because \ph\ would ask the \MF\ user
to specify a file name if |output| were specified here.
@^system dependencies@>

@d mtype==t@&y@&p@&e {this is a \.{WEB} coding trick:}
@f mtype==type {`\&{mtype}' will be equivalent to `\&{type}'}
@f type==true {but `|type|' will not be treated as a reserved word}

@p @t\4@>@<Compiler directives@>@/
program MF; {all file names are defined dynamically}
label @<Labels in the outer block@>@/
const @<Constants in the outer block@>@/
mtype @<Types in the outer block@>@/
var @<Global variables@>@/
@#
procedure initialize; {this procedure gets things started properly}
  var @<Local variables for initialization@>@/
  begin @<Set initial values of key variables@>@/
  end;@#
@t\4@>@<Basic printing procedures@>@/
@t\4@>@<Error handling procedures@>@/

@ The overall \MF\ program begins with the heading just shown, after which
comes a bunch of procedure declarations and function declarations.
Finally we will get to the main program, which begins with the
comment `|start_here|'. If you want to skip down to the
main program now, you can look up `|start_here|' in the index.
But the author suggests that the best way to understand this program
is to follow pretty much the order of \MF's components as they appear in the
\.{WEB} description you are now reading, since the present ordering is
intended to combine the advantages of the ``bottom up'' and ``top down''
approaches to the problem of understanding a somewhat complicated system.

@ Three labels must be declared in the main program, so we give them
symbolic names.

@d start_of_MF=1 {go here when \MF's variables are initialized}
@d end_of_MF=9998 {go here to close files and terminate gracefully}
@d final_end=9999 {this label marks the ending of the program}

@<Labels in the out...@>=
start_of_MF@t\hskip-2pt@>, end_of_MF@t\hskip-2pt@>,@,final_end;
  {key control points}

@ Some of the code below is intended to be used only when diagnosing the
strange behavior that sometimes occurs when \MF\ is being installed or
when system wizards are fooling around with \MF\ without quite knowing
what they are doing. Such code will not normally be compiled; it is
delimited by the codewords `$|debug|\ldots|gubed|$', with apologies
to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by
`$|stat|\ldots|tats|$' that is intended for use when statistics are to be
kept about \MF's memory usage.  The |stat| $\ldots$ |tats| code also
implements special diagnostic information that is printed when
$\\{tracingedges}>1$.
@^debugging@>

@d debug==@{ {change this to `$\\{debug}\equiv\null$' when debugging}
@d gubed==@t@>@} {change this to `$\\{gubed}\equiv\null$' when debugging}
@f debug==begin
@f gubed==end
@#
@d stat==@{ {change this to `$\\{stat}\equiv\null$' when gathering
  usage statistics}
@d tats==@t@>@} {change this to `$\\{tats}\equiv\null$' when gathering
  usage statistics}
@f stat==begin
@f tats==end

@ This program has two important variations: (1) There is a long and slow
version called \.{INIMF}, which does the extra calculations needed to
@.INIMF@>
initialize \MF's internal tables; and (2)~there is a shorter and faster
production version, which cuts the initialization to a bare minimum.
Parts of the program that are needed in (1) but not in (2) are delimited by
the codewords `$|init|\ldots|tini|$'.

@d init== {change this to `$\\{init}\equiv\.{@@\{}$' in the production version}
@d tini== {change this to `$\\{tini}\equiv\.{@@\}}$' in the production version}
@f init==begin
@f tini==end

@ If the first character of a \PASCAL\ comment is a dollar sign,
\ph\ treats the comment as a list of ``compiler directives'' that will
affect the translation of this program into machine language.  The
directives shown below specify full checking and inclusion of the \PASCAL\
debugger when \MF\ is being debugged, but they cause range checking and other
redundant code to be eliminated when the production system is being generated.
Arithmetic overflow will be detected in all cases.
@^system dependencies@>
@^Overflow in arithmetic@>

@<Compiler directives@>=
@{@&$C-,A+,D-@} {no range check, catch arithmetic overflow, no debug overhead}
@!debug @{@&$C+,D+@}@+ gubed {but turn everything on when debugging}

@ This \MF\ implementation conforms to the rules of the {\sl Pascal User
@:PASCAL}{\PASCAL@>
@^system dependencies@>
Manual} published by Jensen and Wirth in 1975, except where system-dependent
@^Wirth, Niklaus@>
@^Jensen, Kathleen@>
code is necessary to make a useful system program, and except in another
respect where such conformity would unnecessarily obscure the meaning
and clutter up the code: We assume that |case| statements may include a
default case that applies if no matching label is found. Thus, we shall use
constructions like
$$\vbox{\halign{\ignorespaces#\hfil\cr
|case x of|\cr
1: $\langle\,$code for $x=1\,\rangle$;\cr
3: $\langle\,$code for $x=3\,\rangle$;\cr
|othercases| $\langle\,$code for |x<>1| and |x<>3|$\,\rangle$\cr
|endcases|\cr}}$$
since most \PASCAL\ compilers have plugged this hole in the language by
incorporating some sort of default mechanism. For example, the \ph\
compiler allows `|others|:' as a default label, and other \PASCAL s allow
syntaxes like `\&{else}' or `\&{otherwise}' or `\\{otherwise}:', etc. The
definitions of |othercases| and |endcases| should be changed to agree with
local conventions.  Note that no semicolon appears before |endcases| in
this program, so the definition of |endcases| should include a semicolon
if the compiler wants one. (Of course, if no default mechanism is
available, the |case| statements of \MF\ will have to be laboriously
extended by listing all remaining cases. People who are stuck with such
\PASCAL s have, in fact, done this, successfully but not happily!)

@d othercases == others: {default for cases not listed explicitly}
@d endcases == @+end {follows the default case in an extended |case| statement}
@f othercases == else
@f endcases == end

@ The following parameters can be changed at compile time to extend or
reduce \MF's capacity. They may have different values in \.{INIMF} and
in production versions of \MF.
@.INIMF@>
@^system dependencies@>

@<Constants...@>=
@!mem_max=30000; {greatest index in \MF's internal |mem| array;
  must be strictly less than |max_halfword|;
  must be equal to |mem_top| in \.{INIMF}, otherwise |>=mem_top|}
@!max_internal=100; {maximum number of internal quantities}
@!buf_size=500; {maximum number of characters simultaneously present in
  current lines of open files; must not exceed |max_halfword|}
@!error_line=72; {width of context lines on terminal error messages}
@!half_error_line=42; {width of first lines of contexts in terminal
  error messages; should be between 30 and |error_line-15|}
@!max_print_line=79; {width of longest text lines output; should be at least 60}
@!screen_width=768; {number of pixels in each row of screen display}
@!screen_depth=1024; {number of pixels in each column of screen display}
@!stack_size=30; {maximum number of simultaneous input sources}
@!max_strings=2000; {maximum number of strings; must not exceed |max_halfword|}
@!string_vacancies=8000; {the minimum number of characters that should be
  available for the user's identifier names and strings,
  after \MF's own error messages are stored}
@!pool_size=32000; {maximum number of characters in strings, including all
  error messages and help texts, and the names of all identifiers;
  must exceed |string_vacancies| by the total
  length of \MF's own strings, which is currently about 22000}
@!move_size=5000; {space for storing moves in a single octant}
@!max_wiggle=300; {number of autorounded points per cycle}
@!gf_buf_size=800; {size of the output buffer, must be a multiple of 8}
@!file_name_size=40; {file names shouldn't be longer than this}
@!pool_name='MFbases:MF.POOL                         ';
  {string of length |file_name_size|; tells where the string pool appears}
@.MFbases@>
@!path_size=300; {maximum number of knots between breakpoints of a path}
@!bistack_size=785; {size of stack for bisection algorithms;
  should probably be left at this value}
@!header_size=100; {maximum number of \.{TFM} header words, times~4}
@!lig_table_size=5000; {maximum number of ligature/kern steps, must be
  at least 255 and at most 32510}
@!max_kerns=500; {maximum number of distinct kern amounts}
@!max_font_dimen=50; {maximum number of \&{fontdimen} parameters}

@ Like the preceding parameters, the following quantities can be changed
at compile time to extend or reduce \MF's capacity. But if they are changed,
it is necessary to rerun the initialization program \.{INIMF}
@.INIMF@>
to generate new tables for the production \MF\ program.
One can't simply make helter-skelter changes to the following constants,
since certain rather complex initialization
numbers are computed from them. They are defined here using
\.{WEB} macros, instead of being put into \PASCAL's |const| list, in order to
emphasize this distinction.

@d mem_min=0 {smallest index in the |mem| array, must not be less
  than |min_halfword|}
@d mem_top==30000 {largest index in the |mem| array dumped by \.{INIMF};
  must be substantially larger than |mem_min|
  and not greater than |mem_max|}
@d hash_size=2100 {maximum number of symbolic tokens,
  must be less than |max_halfword-3*param_size|}
@d hash_prime=1777 {a prime number equal to about 85\pct! of |hash_size|}
@d max_in_open=6 {maximum number of input files and error insertions that
  can be going on simultaneously}
@d param_size=150 {maximum number of simultaneous macro parameters}
@^system dependencies@>

@ In case somebody has inadvertently made bad settings of the ``constants,''
\MF\ checks them using a global variable called |bad|.

This is the first of many sections of \MF\ where global variables are
defined.

@<Glob...@>=
@!bad:integer; {is some ``constant'' wrong?}

@ Later on we will say `\ignorespaces|if mem_max>=max_halfword then bad:=10|',
or something similar. (We can't do that until |max_halfword| has been defined.)

@<Check the ``constant'' values for consistency@>=
bad:=0;
if (half_error_line<30)or(half_error_line>error_line-15) then bad:=1;
if max_print_line<60 then bad:=2;
if gf_buf_size mod 8<>0 then bad:=3;
if mem_min+1100>mem_top then bad:=4;
if hash_prime>hash_size then bad:=5;
if header_size mod 4 <> 0 then bad:=6;
if(lig_table_size<255)or(lig_table_size>32510)then bad:=7;

@ Labels are given symbolic names by the following definitions, so that
occasional |goto| statements will be meaningful. We insert the label
`|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
which we have used the `|return|' statement defined below; the label
`|restart|' is occasionally used at the very beginning of a procedure; and
the label `|reswitch|' is occasionally used just prior to a |case|
statement in which some cases change the conditions and we wish to branch
to the newly applicable case.  Loops that are set up with the |loop|
construction defined below are commonly exited by going to `|done|' or to
`|found|' or to `|not_found|', and they are sometimes repeated by going to
`|continue|'.  If two or more parts of a subroutine start differently but
end up the same, the shared code may be gathered together at
`|common_ending|'.

Incidentally, this program never declares a label that isn't actually used,
because some fussy \PASCAL\ compilers will complain about redundant labels.

@d exit=10 {go here to leave a procedure}
@d restart=20 {go here to start a procedure again}
@d reswitch=21 {go here to start a case statement again}
@d continue=22 {go here to resume a loop}
@d done=30 {go here to exit a loop}
@d done1=31 {like |done|, when there is more than one loop}
@d done2=32 {for exiting the second loop in a long block}
@d done3=33 {for exiting the third loop in a very long block}
@d done4=34 {for exiting the fourth loop in an extremely long block}
@d done5=35 {for exiting the fifth loop in an immense block}
@d done6=36 {for exiting the sixth loop in a block}
@d found=40 {go here when you've found it}
@d found1=41 {like |found|, when there's more than one per routine}
@d found2=42 {like |found|, when there's more than two per routine}
@d not_found=45 {go here when you've found nothing}
@d common_ending=50 {go here when you want to merge with another branch}

@ Here are some macros for common programming idioms.

@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d negate(#) == #:=-# {change the sign of a variable}
@d double(#) == #:=#+# {multiply a variable by two}
@d loop == @+ while true do@+ {repeat over and over until a |goto| happens}
@f loop == xclause
  {\.{WEB}'s |xclause| acts like `\ignorespaces|while true do|\unskip'}
@d do_nothing == {empty statement}
@d return == goto exit {terminate a procedure call}
@f return == nil {\.{WEB} will henceforth say |return| instead of \\{return}}

@* \[2] The character set.
In order to make \MF\ readily portable to a wide variety of
computers, all of its input text is converted to an internal eight-bit
code that includes standard ASCII, the ``American Standard Code for
Information Interchange.''  This conversion is done immediately when each
character is read in. Conversely, characters are converted from ASCII to
the user's external representation just before they are output to a
text file.
@^ASCII code@>

Such an internal code is relevant to users of \MF\ only with respect to
the \&{char} and \&{ASCII} operations, and the comparison of strings.

@ Characters of text that have been converted to \MF's internal form
are said to be of type |ASCII_code|, which is a subrange of the integers.

@<Types...@>=
@!ASCII_code=0..255; {eight-bit numbers}

@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lowercase
letters. Nowadays, of course, we need to deal with both capital and small
letters in a convenient way, especially in a program for font design;
so the present specification of \MF\ has been written under the assumption
that the \PASCAL\ compiler and run-time system permit the use of text files
with more than 64 distinguishable characters. More precisely, we assume that
the character set contains at least the letters and symbols associated
with ASCII codes @'40 through @'176; all of these characters are now
available on most computer terminals.

Since we are dealing with more characters than were present in the first
\PASCAL\ compilers, we have to decide what to call the associated data
type. Some \PASCAL s use the original name |char| for the
characters in text files, even though there now are more than 64 such
characters, while other \PASCAL s consider |char| to be a 64-element
subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name |text_char|
to stand for the data type of the characters that are converted to and
from |ASCII_code| when they are input and output. We shall also assume
that |text_char| consists of the elements |chr(first_text_char)| through
|chr(last_text_char)|, inclusive. The following definitions should be
adjusted if necessary.
@^system dependencies@>

@d text_char == char {the data type of characters in text files}
@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
@d last_text_char=255 {ordinal number of the largest element of |text_char|}

@<Local variables for init...@>=
@!i:integer;

@ The \MF\ processor converts between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.

@<Glob...@>=
@!xord: array [text_char] of ASCII_code;
  {specifies conversion of input characters}
@!xchr: array [ASCII_code] of text_char;
  {specifies conversion of output characters}

@ Since we are assuming that our \PASCAL\ system is able to read and
write the visible characters of standard ASCII (although not
necessarily using the ASCII codes to represent them), the following
assignment statements initialize the standard part of the |xchr| array
properly, without needing any system-dependent changes. On the other
hand, it is possible to implement \MF\ with less complete character
sets, and in such cases it will be necessary to change something here.
@^system dependencies@>

@<Set init...@>=
xchr[@'40]:=' ';
xchr[@'41]:='!';
xchr[@'42]:='"';
xchr[@'43]:='#';
xchr[@'44]:='$';
xchr[@'45]:='%';
xchr[@'46]:='&';
xchr[@'47]:='''';@/
xchr[@'50]:='(';
xchr[@'51]:=')';
xchr[@'52]:='*';
xchr[@'53]:='+';
xchr[@'54]:=',';
xchr[@'55]:='-';
xchr[@'56]:='.';
xchr[@'57]:='/';@/
xchr[@'60]:='0';
xchr[@'61]:='1';
xchr[@'62]:='2';
xchr[@'63]:='3';
xchr[@'64]:='4';
xchr[@'65]:='5';
xchr[@'66]:='6';
xchr[@'67]:='7';@/
xchr[@'70]:='8';
xchr[@'71]:='9';
xchr[@'72]:=':';
xchr[@'73]:=';';
xchr[@'74]:='<';
xchr[@'75]:='=';
xchr[@'76]:='>';
xchr[@'77]:='?';@/
xchr[@'100]:='@@';
xchr[@'101]:='A';
xchr[@'102]:='B';
xchr[@'103]:='C';
xchr[@'104]:='D';
xchr[@'105]:='E';
xchr[@'106]:='F';
xchr[@'107]:='G';@/
xchr[@'110]:='H';
xchr[@'111]:='I';
xchr[@'112]:='J';
xchr[@'113]:='K';
xchr[@'114]:='L';
xchr[@'115]:='M';
xchr[@'116]:='N';
xchr[@'117]:='O';@/
xchr[@'120]:='P';
xchr[@'121]:='Q';
xchr[@'122]:='R';
xchr[@'123]:='S';
xchr[@'124]:='T';
xchr[@'125]:='U';
xchr[@'126]:='V';
xchr[@'127]:='W';@/
xchr[@'130]:='X';
xchr[@'131]:='Y';
xchr[@'132]:='Z';
xchr[@'133]:='[';
xchr[@'134]:='\';
xchr[@'135]:=']';
xchr[@'136]:='^';
xchr[@'137]:='_';@/
xchr[@'140]:='`';
xchr[@'141]:='a';
xchr[@'142]:='b';
xchr[@'143]:='c';
xchr[@'144]:='d';
xchr[@'145]:='e';
xchr[@'146]:='f';
xchr[@'147]:='g';@/
xchr[@'150]:='h';
xchr[@'151]:='i';
xchr[@'152]:='j';
xchr[@'153]:='k';
xchr[@'154]:='l';
xchr[@'155]:='m';
xchr[@'156]:='n';
xchr[@'157]:='o';@/
xchr[@'160]:='p';
xchr[@'161]:='q';
xchr[@'162]:='r';
xchr[@'163]:='s';
xchr[@'164]:='t';
xchr[@'165]:='u';
xchr[@'166]:='v';
xchr[@'167]:='w';@/
xchr[@'170]:='x';
xchr[@'171]:='y';
xchr[@'172]:='z';
xchr[@'173]:='{';
xchr[@'174]:='|';
xchr[@'175]:='}';
xchr[@'176]:='~';@/

@ The ASCII code is ``standard'' only to a certain extent, since many
computer installations have found it advantageous to have ready access
to more than 94 printing characters.  If \MF\ is being used
on a garden-variety \PASCAL\ for which only standard ASCII
codes will appear in the input and output files, it doesn't really matter
what codes are specified in |xchr[0..@'37]|, but the safest policy is to
blank everything out by using the code shown below.

However, other settings of |xchr| will make \MF\ more friendly on
computers that have an extended character set, so that users can type things
like `\.^^Z' instead of `\.{<>}'.
People with extended character sets can
assign codes arbitrarily, giving an |xchr| equivalent to whatever
characters the users of \MF\ are allowed to have in their input files.
Appropriate changes to \MF's |char_class| table should then be made.
(Unlike \TeX, each installation of \MF\ has a fixed assignment of category
codes, called the |char_class|.) Such changes make portability of programs
more difficult, so they should be introduced cautiously if at all.
@^character set dependencies@>
@^system dependencies@>

@<Set init...@>=
for i:=0 to @'37 do xchr[i]:=' ';
for i:=@'177 to @'377 do xchr[i]:=' ';

@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
where |i<j<@'177|, the value of |xord[xchr[i]]| will turn out to be
|j| or more; hence, standard ASCII code numbers will be used instead of
codes below @'40 in case there is a coincidence.

@<Set init...@>=
for i:=first_text_char to last_text_char do xord[chr(i)]:=@'177;
for i:=@'200 to @'377 do xord[xchr[i]]:=i;
for i:=0 to @'176 do xord[xchr[i]]:=i;

@* \[3] Input and output.
The bane of portability is the fact that different operating systems treat
input and output quite differently, perhaps because computer scientists
have not given sufficient attention to this problem. People have felt somehow
that input and output are not part of ``real'' programming. Well, it is true
that some kinds of programming are more fun than others. With existing
input/output conventions being so diverse and so messy, the only sources of
joy in such parts of the code are the rare occasions when one can find a
way to make the program a little less bad than it might have been. We have
two choices, either to attack I/O now and get it over with, or to postpone
I/O until near the end. Neither prospect is very attractive, so let's
get it over with.

The basic operations we need to do are (1)~inputting and outputting of
text, to or from a file or the user's terminal; (2)~inputting and
outputting of eight-bit bytes, to or from a file; (3)~instructing the
operating system to initiate (``open'') or to terminate (``close'') input or
output from a specified file; (4)~testing whether the end of an input
file has been reached; (5)~display of bits on the user's screen.
The bit-display operation will be discussed in a later section; we shall
deal here only with more traditional kinds of I/O.

\MF\ needs to deal with two kinds of files.
We shall use the term |alpha_file| for a file that contains textual data,
and the term |byte_file| for a file that contains eight-bit binary information.
These two types turn out to be the same on many computers, but
sometimes there is a significant distinction, so we shall be careful to
distinguish between them. Standard protocols for transferring
such files from computer to computer, via high-speed networks, are
now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a
|word_file|, when dumping and reloading base information for its own
initialization.  We shall define a word file later; but it will be possible
for us to specify simple operations on word files before they are defined.

@<Types...@>=
@!eight_bits=0..255; {unsigned one-byte quantity}
@!alpha_file=packed file of text_char; {files that contain textual data}
@!byte_file=packed file of eight_bits; {files that contain binary data}

@ Most of what we need to do with respect to input and output can be handled
by the I/O facilities that are standard in \PASCAL, i.e., the routines
called |get|, |put|, |eof|, and so on. But
standard \PASCAL\ does not allow file variables to be associated with file
names that are determined at run time, so it cannot be used to implement
\MF; some sort of extension to \PASCAL's ordinary |reset| and |rewrite|
is crucial for our purposes. We shall assume that |name_of_file| is a variable
of an appropriate type such that the \PASCAL\ run-time system being used to
implement \MF\ can open a file whose external name is specified by
|name_of_file|.
@^system dependencies@>

@<Glob...@>=
@!name_of_file:packed array[1..file_name_size] of char;@;@/
  {on some systems this may be a \&{record} variable}
@!name_length:0..file_name_size;@/{this many characters are actually
  relevant in |name_of_file| (the rest are blank)}

@ The \ph\ compiler with which the present version of \MF\ was prepared has
extended the rules of \PASCAL\ in a very convenient way. To open file~|f|,
we can write
$$\vbox{\halign{#\hfil\qquad&#\hfil\cr
|reset(f,@t\\{name}@>,'/O')|&for input;\cr
|rewrite(f,@t\\{name}@>,'/O')|&for output.\cr}}$$
The `\\{name}' parameter, which is of type `\ignorespaces|packed
array[@t\<\\{any}>@>] of text_char|', stands for the name of
the external file that is being opened for input or output.
Blank spaces that might appear in \\{name} are ignored.

The `\.{/O}' parameter tells the operating system not to issue its own
error messages if something goes wrong. If a file of the specified name
cannot be found, or if such a file cannot be opened for some other reason
(e.g., someone may already be trying to write the same file), we will have
|@!erstat(f)<>0| after an unsuccessful |reset| or |rewrite|.  This allows
\MF\ to undertake appropriate corrective action.
@:PASCAL H}{\ph@>
@^system dependencies@>

\MF's file-opening procedures return |false| if no file identified by
|name_of_file| could be opened.

@d reset_OK(#)==erstat(#)=0
@d rewrite_OK(#)==erstat(#)=0

@p function a_open_in(var @!f:alpha_file):boolean;
  {open a text file for input}
begin reset(f,name_of_file,'/O'); a_open_in:=reset_OK(f);
end;
@#
function a_open_out(var @!f:alpha_file):boolean;
  {open a text file for output}
begin rewrite(f,name_of_file,'/O'); a_open_out:=rewrite_OK(f);
end;
@#
function b_open_out(var @!f:byte_file):boolean;
  {open a binary file for output}
begin rewrite(f,name_of_file,'/O'); b_open_out:=rewrite_OK(f);
end;
@#
function w_open_in(var @!f:word_file):boolean;
  {open a word file for input}
begin reset(f,name_of_file,'/O'); w_open_in:=reset_OK(f);
end;
@#
function w_open_out(var @!f:word_file):boolean;
  {open a word file for output}
begin rewrite(f,name_of_file,'/O'); w_open_out:=rewrite_OK(f);
end;

@ Files can be closed with the \ph\ routine `|close(f)|', which
@^system dependencies@>
should be used when all input or output with respect to |f| has been completed.
This makes |f| available to be opened again, if desired; and if |f| was used for
output, the |close| operation makes the corresponding external file appear
on the user's area, ready to be read.

@p procedure a_close(var @!f:alpha_file); {close a text file}
begin close(f);
end;
@#
procedure b_close(var @!f:byte_file); {close a binary file}
begin close(f);
end;
@#
procedure w_close(var @!f:word_file); {close a word file}
begin close(f);
end;

@ Binary input and output are done with \PASCAL's ordinary |get| and |put|
procedures, so we don't have to make any other special arrangements for
binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
The treatment of text input is more difficult, however, because
of the necessary translation to |ASCII_code| values.
\MF's conventions should be efficient, and they should
blend nicely with the user's operating environment.

@ Input from text files is read one line at a time, using a routine called
|input_ln|. This function is defined in terms of global variables called
|buffer|, |first|, and |last| that will be described in detail later; for
now, it suffices for us to know that |buffer| is an array of |ASCII_code|
values, and that |first| and |last| are indices into this array
representing the beginning and ending of a line of text.

@<Glob...@>=
@!buffer:array[0..buf_size] of ASCII_code; {lines of characters being read}
@!first:0..buf_size; {the first unused position in |buffer|}
@!last:0..buf_size; {end of the line just input to |buffer|}
@!max_buf_stack:0..buf_size; {largest index used in |buffer|}

@ The |input_ln| function brings the next line of input from the specified
field into available positions of the buffer array and returns the value
|true|, unless the file has already been entirely read, in which case it
returns |false| and sets |last:=first|.  In general, the |ASCII_code|
numbers that represent the next line of the file are input into
|buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
global variable |last| is set equal to |first| plus the length of the
line. Trailing blanks are removed from the line; thus, either |last=first|
(in which case the line was entirely blank) or |buffer[last-1]<>" "|.
@^inner loop@>

An overflow error is given, however, if the normal actions of |input_ln|
would make |last>=buf_size|; this is done so that other parts of \MF\
can safely look at the contents of |buffer[last+1]| without overstepping
the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
|first<buf_size| will always hold, so that there is always room for an
``empty'' line.

The variable |max_buf_stack|, which is used to keep track of how large
the |buf_size| parameter must be to accommodate the present job, is
also kept up to date by |input_ln|.

If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
before looking at the first character of the line; this skips over
an |eoln| that was in |f^|. The procedure does not do a |get| when it
reaches the end of the line; therefore it can be used to acquire input
from the user's terminal as well as from ordinary text files.

Standard \PASCAL\ says that a file should have |eoln| immediately
before |eof|, but \MF\ needs only a weaker restriction: If |eof|
occurs in the middle of a line, the system function |eoln| should return
a |true| result (even though |f^| will be undefined).

@p function input_ln(var @!f:alpha_file;@!bypass_eoln:boolean):boolean;
  {inputs the next line or returns |false|}
var @!last_nonblank:0..buf_size; {|last| with trailing blanks removed}
begin if bypass_eoln then if not eof(f) then get(f);
  {input the first character of the line into |f^|}
last:=first; {cf.\ Matthew 19\thinspace:\thinspace30}
if eof(f) then input_ln:=false
else  begin last_nonblank:=first;
  while not eoln(f) do
    begin if last>=max_buf_stack then
      begin max_buf_stack:=last+1;
      if max_buf_stack=buf_size then
        @<Report overflow of the input buffer, and abort@>;
      end;
    buffer[last]:=xord[f^]; get(f); incr(last);
    if buffer[last-1]<>" " then last_nonblank:=last;
    end;
  last:=last_nonblank; input_ln:=true;
  end;
end;

@ The user's terminal acts essentially like other files of text, except
that it is used both for input and for output. When the terminal is
considered an input file, the file variable is called |term_in|, and when it
is considered an output file the file variable is |term_out|.
@^system dependencies@>

@<Glob...@>=
@!term_in:alpha_file; {the terminal as an input file}
@!term_out:alpha_file; {the terminal as an output file}

@ Here is how to open the terminal files
in \ph. The `\.{/I}' switch suppresses the first |get|.
@^system dependencies@>

@d t_open_in==reset(term_in,'TTY:','/O/I') {open the terminal for text input}
@d t_open_out==rewrite(term_out,'TTY:','/O') {open the terminal for text output}

@ Sometimes it is necessary to synchronize the input/output mixture that
happens on the user's terminal, and three system-dependent
procedures are used for this
purpose. The first of these, |update_terminal|, is called when we want
to make sure that everything we have output to the terminal so far has
actually left the computer's internal buffers and been sent.
The second, |clear_terminal|, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to
issue an unexpected error message). The third, |wake_up_terminal|,
is supposed to revive the terminal if the user has disabled it by
some instruction to the operating system.  The following macros show how
these operations can be specified in \ph:
@^system dependencies@>

@d update_terminal == break(term_out) {empty the terminal output buffer}
@d clear_terminal == break_in(term_in,true) {clear the terminal input buffer}
@d wake_up_terminal == do_nothing {cancel the user's cancellation of output}

@ We need a special routine to read the first line of \MF\ input from
the user's terminal. This line is different because it is read before we
have opened the transcript file; there is sort of a ``chicken and
egg'' problem here. If the user types `\.{input cmr10}' on the first
line, or if some macro invoked by that line does such an \.{input},
the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
commands are performed during the first line of terminal input, the transcript
file will acquire its default name `\.{mfput.log}'. (The transcript file
will not contain error messages generated by the first line before the
first \.{input} command.)

The first line is even more special if we are lucky enough to have an operating
system that treats \MF\ differently from a run-of-the-mill \PASCAL\ object
program. It's nice to let the user start running a \MF\ job by typing
a command line like `\.{MF cmr10}'; in such a case, \MF\ will operate
as if the first line of input were `\.{cmr10}', i.e., the first line will
consist of the remainder of the command line, after the part that invoked \MF.

The first line is special also because it may be read before \MF\ has
input a base file. In such cases, normal error messages cannot yet
be given. The following code uses concepts that will be explained later.
(If the \PASCAL\ compiler does not support non-local |@!goto|, the
@^system dependencies@>
statement `|goto final_end|' should be replaced by something that
quietly terminates the program.)

@<Report overflow of the input buffer, and abort@>=
if base_ident=0 then
  begin write_ln(term_out,'Buffer size exceeded!'); goto final_end;
@.Buffer size exceeded@>
  end
else begin cur_input.loc_field:=first; cur_input.limit_field:=last-1;
  overflow("buffer size",buf_size);
@:METAFONT capacity exceeded buffer size}{\quad buffer size@>
  end

@ Different systems have different ways to get started. But regardless of
what conventions are adopted, the routine that initializes the terminal
should satisfy the following specifications:

\yskip\textindent{1)}It should open file |term_in| for input from the
  terminal. (The file |term_out| will already be open for output to the
  terminal.)

\textindent{2)}If the user has given a command line, this line should be
  considered the first line of terminal input. Otherwise the
  user should be prompted with `\.{**}', and the first line of input
  should be whatever is typed in response.

\textindent{3)}The first line of input, which might or might not be a
  command line, should appear in locations |first| to |last-1| of the
  |buffer| array.

\textindent{4)}The global variable |loc| should be set so that the
  character to be read next by \MF\ is in |buffer[loc]|. This
  character should not be blank, and we should have |loc<last|.

\yskip\noindent(It may be necessary to prompt the user several times
before a non-blank line comes in. The prompt is `\.{**}' instead of the
later `\.*' because the meaning is slightly different: `\.{input}' need
not be typed immediately after~`\.{**}'.)

@d loc==cur_input.loc_field {location of first unread character in |buffer|}

@ The following program does the required initialization
without retrieving a possible command line.
It should be clear how to modify this routine to deal with command lines,
if the system permits them.
@^system dependencies@>

@p function init_terminal:boolean; {gets the terminal input started}
label exit;
begin t_open_in;
loop@+begin wake_up_terminal; write(term_out,'**'); update_terminal;
@.**@>
  if not input_ln(term_in,true) then {this shouldn't happen}
    begin write_ln(term_out);
    write(term_out,'! End of file on the terminal... why?');
@.End of file on the terminal@>
    init_terminal:=false; return;
    end;
  loc:=first;
  while (loc<last)and(buffer[loc]=" ") do incr(loc);
  if loc<last then
    begin init_terminal:=true;
    return; {return unless the line was all blank}
    end;
  write_ln(term_out,'Please type the name of your input file.');
  end;
exit:end;

@* \[4] String handling.
Symbolic token names and diagnostic messages are variable-length strings
of eight-bit characters. Since \PASCAL\ does not have a well-developed string
mechanism, \MF\ does all of its string processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the
necessary operations can be handled with a simple data structure.
The array |str_pool| contains all of the (eight-bit) ASCII codes in all
of the strings, and the array |str_start| contains indices of the starting
points of each string. Strings are referred to by integer numbers, so that
string number |s| comprises the characters |str_pool[j]| for
|str_start[s]<=j<str_start[s+1]|. Additional integer variables
|pool_ptr| and |str_ptr| indicate the number of entries used so far
in |str_pool| and |str_start|, respectively; locations
|str_pool[pool_ptr]| and |str_start[str_ptr]| are
ready for the next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single
ASCII characters. This is in accordance with the conventions of \.{WEB},
@.WEB@>
which converts single-character strings into the ASCII code number of the
single character involved, while it converts other strings into integers
and builds a string pool file. Thus, when the string constant \.{"."} appears
in the program below, \.{WEB} converts it into the integer 46, which is the
ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
into some integer greater than~255. String number 46 will presumably be the
single character `\..'\thinspace; but some ASCII codes have no standard visible
representation, and \MF\ may need to be able to print an arbitrary
ASCII character, so the first 256 strings are used to specify exactly what
should be printed for each of the 256 possibilities.

Elements of the |str_pool| array must be ASCII codes that can actually be
printed; i.e., they must have an |xchr| equivalent in the local
character set. (This restriction applies only to preloaded strings,
not to those generated dynamically by the user.)

Some \PASCAL\ compilers won't pack integers into a single byte unless the
integers lie in the range |-128..127|. To accommodate such systems
we access the string pool only via macros that can easily be redefined.

@d si(#) == # {convert from |ASCII_code| to |packed_ASCII_code|}
@d so(#) == # {convert from |packed_ASCII_code| to |ASCII_code|}

@<Types...@>=
@!pool_pointer = 0..pool_size; {for variables that point into |str_pool|}
@!str_number = 0..max_strings; {for variables that point into |str_start|}
@!packed_ASCII_code = 0..255; {elements of |str_pool| array}

@ @<Glob...@>=
@!str_pool:packed array[pool_pointer] of packed_ASCII_code; {the characters}
@!str_start : array[str_number] of pool_pointer; {the starting pointers}
@!pool_ptr : pool_pointer; {first unused position in |str_pool|}
@!str_ptr : str_number; {number of the current string being created}
@!init_pool_ptr : pool_pointer; {the starting value of |pool_ptr|}
@!init_str_ptr : str_number; {the starting value of |str_ptr|}
@!max_pool_ptr : pool_pointer; {the maximum so far of |pool_ptr|}
@!max_str_ptr : str_number; {the maximum so far of |str_ptr|}

@ Several of the elementary string operations are performed using \.{WEB}
macros instead of \PASCAL\ procedures, because many of the
operations are done quite frequently and we want to avoid the
overhead of procedure calls. For example, here is
a simple macro that computes the length of a string.
@.WEB@>

@d length(#)==(str_start[#+1]-str_start[#]) {the number of characters
  in string number \#}

@ The length of the current string is called |cur_length|:

@d cur_length == (pool_ptr - str_start[str_ptr])

@ Strings are created by appending character codes to |str_pool|.
The |append_char| macro, defined here, does not check to see if the
value of |pool_ptr| has gotten too high; this test is supposed to be
made before |append_char| is used.

To test if there is room to append |l| more characters to |str_pool|,
we shall write |str_room(l)|, which aborts \MF\ and gives an
apologetic error message if there isn't enough room.

@d append_char(#) == {put |ASCII_code| \# at the end of |str_pool|}
begin str_pool[pool_ptr]:=si(#); incr(pool_ptr);
end
@d str_room(#) == {make sure that the pool hasn't overflowed}
  begin if pool_ptr+# > max_pool_ptr then
    begin if pool_ptr+# > pool_size then
      overflow("pool size",pool_size-init_pool_ptr);
@:METAFONT capacity exceeded pool size}{\quad pool size@>
    max_pool_ptr:=pool_ptr+#;
    end;
  end

@ \MF's string expressions are implemented in a brute-force way: Every
new string or substring that is needed is simply copied into the string pool.

Such a scheme can be justified because string expressions aren't a big
deal in \MF\ applications; strings rarely need to be saved from one
statement to the next. But it would waste space needlessly if we didn't
try to reclaim the space of strings that are going to be used only once.

Therefore a simple reference count mechanism is provided: If there are
@^reference counts@>
no references to a certain string from elsewhere in the program, and
if there are no references to any strings created subsequent to it,
then the string space will be reclaimed.

The number of references to string number |s| will be |str_ref[s]|. The
special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
positive number of references; such strings will never be recycled. If
a string is ever referred to more than 126 times, simultaneously, we
put it in this category. Hence a single byte suffices to store each |str_ref|.

@d max_str_ref=127 {``infinite'' number of references}
@d add_str_ref(#)==begin if str_ref[#]<max_str_ref then incr(str_ref[#]);
  end

@<Glob...@>=
@!str_ref:array[str_number] of 0..max_str_ref;

@ Here's what we do when a string reference disappears:

@d delete_str_ref(#)== begin if str_ref[#]<max_str_ref then
    if str_ref[#]>1 then decr(str_ref[#])@+else flush_string(#);
    end

@<Declare the procedure called |flush_string|@>=
procedure flush_string(@!s:str_number);
begin if s<str_ptr-1 then str_ref[s]:=0
else  repeat decr(str_ptr);
  until str_ref[str_ptr-1]<>0;
pool_ptr:=str_start[str_ptr];
end;

@ Once a sequence of characters has been appended to |str_pool|, it
officially becomes a string when the function |make_string| is called.
This function returns the identification number of the new string as its
value.

@p function make_string : str_number; {current string enters the pool}
begin if str_ptr=max_str_ptr then
  begin if str_ptr=max_strings then
    overflow("number of strings",max_strings-init_str_ptr);
@:METAFONT capacity exceeded number of strings}{\quad number of strings@>
  incr(max_str_ptr);
  end;
str_ref[str_ptr]:=1; incr(str_ptr); str_start[str_ptr]:=pool_ptr;
make_string:=str_ptr-1;
end;

@ The following subroutine compares string |s| with another string of the
same length that appears in |buffer| starting at position |k|;
the result is |true| if and only if the strings are equal.

@p function str_eq_buf(@!s:str_number;@!k:integer):boolean;
  {test equality of strings}
label not_found; {loop exit}
var @!j: pool_pointer; {running index}
@!result: boolean; {result of comparison}
begin j:=str_start[s];
while j<str_start[s+1] do
  begin if so(str_pool[j])<>buffer[k] then
    begin result:=false; goto not_found;
    end;
  incr(j); incr(k);
  end;
result:=true;
not_found: str_eq_buf:=result;
end;

@ Here is a similar routine, but it compares two strings in the string pool,
and it does not assume that they have the same length. If the first string
is lexicographically greater than, less than, or equal to the second,
the result is respectively positive, negative, or zero.

@p function str_vs_str(@!s,@!t:str_number):integer;
  {test equality of strings}
label exit;
var @!j,@!k: pool_pointer; {running indices}
@!ls,@!lt:integer; {lengths}
@!l:integer; {length remaining to test}
begin ls:=length(s); lt:=length(t);
if ls<=lt then l:=ls@+else l:=lt;
j:=str_start[s]; k:=str_start[t];
while l>0 do
  begin if str_pool[j]<>str_pool[k] then
    begin str_vs_str:=str_pool[j]-str_pool[k]; return;
    end;
  incr(j); incr(k); decr(l);
  end;
str_vs_str:=ls-lt;
exit:end;

@ The initial values of |str_pool|, |str_start|, |pool_ptr|,
and |str_ptr| are computed by the \.{INIMF} program, based in part
on the information that \.{WEB} has output while processing \MF.
@.INIMF@>
@^string pool@>

@p @!init function get_strings_started:boolean; {initializes the string pool,
  but returns |false| if something goes wrong}
label done,exit;
var @!k,@!l:0..255; {small indices or counters}
@!m,@!n:text_char; {characters input from |pool_file|}
@!g:str_number; {garbage}
@!a:integer; {accumulator for check sum}
@!c:boolean; {check sum has been checked}
begin pool_ptr:=0; str_ptr:=0; max_pool_ptr:=0; max_str_ptr:=0; str_start[0]:=0;
@<Make the first 256 strings@>;
@<Read the other strings from the \.{MF.POOL} file and return |true|,
  or give an error message and return |false|@>;
exit:end;
tini

@ @d app_lc_hex(#)==l:=#;
  if l<10 then append_char(l+"0")@+else append_char(l-10+"a")

@<Make the first 256...@>=
for k:=0 to 255 do
  begin if (@<Character |k| cannot be printed@>) then
    begin append_char("^"); append_char("^");
    if k<@'100 then append_char(k+@'100)
    else if k<@'200 then append_char(k-@'100)
    else begin app_lc_hex(k div 16); app_lc_hex(k mod 16);
      end;
    end
  else append_char(k);
  g:=make_string; str_ref[g]:=max_str_ref;
  end

@ The first 128 strings will contain 95 standard ASCII characters, and the
other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
unless a system-dependent change is made here. Installations that have
an extended character set, where for example |xchr[@'32]=@t\.{\'^^Z\'}@>|,
would like string @'32 to be the single character @'32 instead of the
three characters @'136, @'136, @'132 (\.{\^\^Z}). On the other hand,
even people with an extended character set will want to represent string
@'15 by \.{\^\^M}, since @'15 is ASCII's ``carriage return'' code; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns
or bell-rings or characters that are treated anomalously in text files.

Unprintable characters of codes 128--255 are, similarly, rendered
\.{\^\^80}--\.{\^\^ff}.

The boolean expression defined here should be |true| unless \MF\ internal
code number~|k| corresponds to a non-troublesome visible symbol in the
local character set.
If character |k| cannot be printed, and |k<@'200|, then character |k+@'100| or
|k-@'100| must be printable; moreover, ASCII codes |[@'60..@'71, @'141..@'146]|
must be printable.
@^character set dependencies@>
@^system dependencies@>

@<Character |k| cannot be printed@>=
  (k<" ")or(k>"~")

@ When the \.{WEB} system program called \.{TANGLE} processes the \.{MF.WEB}
description that you are now reading, it outputs the \PASCAL\ program
\.{MF.PAS} and also a string pool file called \.{MF.POOL}. The \.{INIMF}
@.WEB@>@.INIMF@>
program reads the latter file, where each string appears as a two-digit decimal
length followed by the string itself, and the information is recorded in
\MF's string memory.

@<Glob...@>=
@!init @!pool_file:alpha_file; {the string-pool file output by \.{TANGLE}}
tini

@ @d bad_pool(#)==begin wake_up_terminal; write_ln(term_out,#);
  a_close(pool_file); get_strings_started:=false; return;
  end
@<Read the other strings...@>=
name_of_file:=pool_name; {we needn't set |name_length|}
if a_open_in(pool_file) then
  begin c:=false;
  repeat @<Read one string, but return |false| if the
    string memory space is getting too tight for comfort@>;
  until c;
  a_close(pool_file); get_strings_started:=true;
  end
else  bad_pool('! I can''t read MF.POOL.')
@.I can't read MF.POOL@>

@ @<Read one string...@>=
begin if eof(pool_file) then bad_pool('! MF.POOL has no check sum.');
@.MF.POOL has no check sum@>
read(pool_file,m,n); {read two digits of string length}
if m='*' then @<Check the pool check sum@>
else  begin if (xord[m]<"0")or(xord[m]>"9")or@|
      (xord[n]<"0")or(xord[n]>"9") then
    bad_pool('! MF.POOL line doesn''t begin with two digits.');
@.MF.POOL line doesn't...@>
  l:=xord[m]*10+xord[n]-"0"*11; {compute the length}
  if pool_ptr+l+string_vacancies>pool_size then
    bad_pool('! You have to increase POOLSIZE.');
@.You have to increase POOLSIZE@>
  for k:=1 to l do
    begin if eoln(pool_file) then m:=' '@+else read(pool_file,m);
    append_char(xord[m]);
    end;
  read_ln(pool_file); g:=make_string; str_ref[g]:=max_str_ref;
  end;
end

@ The \.{WEB} operation \.{@@\$} denotes the value that should be at the
end of this \.{MF.POOL} file; any other value means that the wrong pool
file has been loaded.
@^check sum@>

@<Check the pool check sum@>=
begin a:=0; k:=1;
loop@+  begin if (xord[n]<"0")or(xord[n]>"9") then
  bad_pool('! MF.POOL check sum doesn''t have nine digits.');
@.MF.POOL check sum...@>
  a:=10*a+xord[n]-"0";
  if k=9 then goto done;
  incr(k); read(pool_file,n);
  end;
done: if a<>@$ then bad_pool('! MF.POOL doesn''t match; TANGLE me again.');
@.MF.POOL doesn't match@>
c:=true;
end

@* \[5] On-line and off-line printing.
Messages that are sent to a user's terminal and to the transcript-log file
are produced by several `|print|' procedures. These procedures will
direct their output to a variety of places, based on the setting of
the global variable |selector|, which has the following possible
values:

\yskip
\hang |term_and_log|, the normal setting, prints on the terminal and on the
  transcript file.

\hang |log_only|, prints only on the transcript file.

\hang |term_only|, prints only on the terminal.

\hang |no_print|, doesn't print at all. This is used only in rare cases
  before the transcript file is open.

\hang |pseudo|, puts output into a cyclic buffer that is used
  by the |show_context| routine; when we get to that routine we shall discuss
  the reasoning behind this curious mode.

\hang |new_string|, appends the output to the current string in the
  string pool.

\yskip
\noindent The symbolic names `|term_and_log|', etc., have been assigned
numeric codes that satisfy the convenient relations |no_print+1=term_only|,
|no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|.

Three additional global variables, |tally| and |term_offset| and
|file_offset|, record the number of characters that have been printed
since they were most recently cleared to zero. We use |tally| to record
the length of (possibly very long) stretches of printing; |term_offset|
and |file_offset|, on the other hand, keep track of how many characters
have appeared so far on the current line that has been output to the
terminal or to the transcript file, respectively.

@d no_print=0 {|selector| setting that makes data disappear}
@d term_only=1 {printing is destined for the terminal only}
@d log_only=2 {printing is destined for the transcript file only}
@d term_and_log=3 {normal |selector| setting}
@d pseudo=4 {special |selector| setting for |show_context|}
@d new_string=5 {printing is deflected to the string pool}
@d max_selector=5 {highest selector setting}

@<Glob...@>=
@!log_file : alpha_file; {transcript of \MF\ session}
@!selector : 0..max_selector; {where to print a message}
@!dig : array[0..22] of 0..15; {digits in a number being output}
@!tally : integer; {the number of characters recently printed}
@!term_offset : 0..max_print_line;
  {the number of characters on the current terminal line}
@!file_offset : 0..max_print_line;
  {the number of characters on the current file line}
@!trick_buf:array[0..error_line] of ASCII_code; {circular buffer for
  pseudoprinting}
@!trick_count: integer; {threshold for pseudoprinting, explained later}
@!first_count: integer; {another variable for pseudoprinting}

@ @<Initialize the output routines@>=
selector:=term_only; tally:=0; term_offset:=0; file_offset:=0;

@ Macro abbreviations for output to the terminal and to the log file are
defined here for convenience. Some systems need special conventions
for terminal output, and it is possible to adhere to those conventions
by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
@^system dependencies@>

@d wterm(#)==write(term_out,#)
@d wterm_ln(#)==write_ln(term_out,#)
@d wterm_cr==write_ln(term_out)
@d wlog(#)==write(log_file,#)
@d wlog_ln(#)==write_ln(log_file,#)
@d wlog_cr==write_ln(log_file)

@ To end a line of text output, we call |print_ln|.

@<Basic print...@>=
procedure print_ln; {prints an end-of-line}
begin case selector of
term_and_log: begin wterm_cr; wlog_cr;
  term_offset:=0; file_offset:=0;
  end;
log_only: begin wlog_cr; file_offset:=0;
  end;
term_only: begin wterm_cr; term_offset:=0;
  end;
no_print,pseudo,new_string: do_nothing;
end; {there are no other cases}
end; {note that |tally| is not affected}

@ The |print_char| procedure sends one character to the desired destination,
using the |xchr| array to map it into an external character compatible with
|input_ln|. All printing comes through |print_ln| or |print_char|.

@<Basic printing...@>=
procedure print_char(@!s:ASCII_code); {prints a single character}
begin case selector of
term_and_log: begin wterm(xchr[s]); wlog(xchr[s]);
  incr(term_offset); incr(file_offset);
  if term_offset=max_print_line then
    begin wterm_cr; term_offset:=0;
    end;
  if file_offset=max_print_line then
    begin wlog_cr; file_offset:=0;
    end;
  end;
log_only: begin wlog(xchr[s]); incr(file_offset);
  if file_offset=max_print_line then print_ln;
  end;
term_only: begin wterm(xchr[s]); incr(term_offset);
  if term_offset=max_print_line then print_ln;
  end;
no_print: do_nothing;
pseudo: if tally<trick_count then trick_buf[tally mod error_line]:=s;
new_string: begin if pool_ptr<pool_size then append_char(s);
  end; {we drop characters if the string space is full}
end; {there are no other cases}
incr(tally);
end;

@ An entire string is output by calling |print|. Note that if we are outputting
the single standard ASCII character \.c, we could call |print("c")|, since
|"c"=99| is the number of a single-character string, as explained above. But
|print_char("c")| is quicker, so \MF\ goes directly to the |print_char|
routine when it knows that this is safe. (The present implementation
assumes that it is always safe to print a visible ASCII character.)
@^system dependencies@>

@<Basic print...@>=
procedure print(@!s:integer); {prints string |s|}
var @!j:pool_pointer; {current character code position}
begin if (s<0)or(s>=str_ptr) then s:="???"; {this can't happen}
@.???@>
if (s<256)and(selector>pseudo) then print_char(s)
else begin j:=str_start[s];
  while j<str_start[s+1] do
    begin print_char(so(str_pool[j])); incr(j);
    end;
  end;
end;

@ Sometimes it's necessary to print a string whose characters
may not be visible ASCII codes. In that case |slow_print| is used.

@<Basic print...@>=
procedure slow_print(@!s:integer); {prints string |s|}
var @!j:pool_pointer; {current character code position}
begin if (s<0)or(s>=str_ptr) then s:="???"; {this can't happen}
@.???@>
if (s<256)and(selector>pseudo) then print_char(s)
else begin j:=str_start[s];
  while j<str_start[s+1] do
    begin print(so(str_pool[j])); incr(j);
    end;
  end;
end;

@ Here is the very first thing that \MF\ prints: a headline that identifies
the version number and base name. The |term_offset| variable is temporarily
incorrect, but the discrepancy is not serious since we assume that the banner
and base identifier together will occupy at most |max_print_line|
character positions.

@<Initialize the output...@>=
wterm(banner);
if base_ident=0 then wterm_ln(' (no base preloaded)')
else  begin slow_print(base_ident); print_ln;
  end;
update_terminal;

@ The procedure |print_nl| is like |print|, but it makes sure that the
string appears at the beginning of a new line.

@<Basic print...@>=
procedure print_nl(@!s:str_number); {prints string |s| at beginning of line}
begin if ((term_offset>0)and(odd(selector)))or@|
  ((file_offset>0)and(selector>=log_only)) then print_ln;
print(s);
end;

@ An array of digits in the range |0..9| is printed by |print_the_digs|.

@<Basic print...@>=
procedure print_the_digs(@!k:eight_bits);
  {prints |dig[k-1]|$\,\ldots\,$|dig[0]|}
begin while k>0 do
  begin decr(k); print_char("0"+dig[k]);
  end;
end;

@ The following procedure, which prints out the decimal representation of a
given integer |n|, has been written carefully so that it works properly
if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
to negative arguments, since such operations are not implemented consistently
by all \PASCAL\ compilers.

@<Basic print...@>=
procedure print_int(@!n:integer); {prints an integer in decimal form}
var k:0..23; {index to current digit; we assume that $|n|<10^{23}$}
@!m:integer; {used to negate |n| in possibly dangerous cases}
begin k:=0;
if n<0 then
  begin print_char("-");
  if n>-100000000 then negate(n)
  else  begin m:=-1-n; n:=m div 10; m:=(m mod 10)+1; k:=1;
    if m<10 then dig[0]:=m
    else  begin dig[0]:=0; incr(n);
      end;
    end;
  end;
repeat dig[k]:=n mod 10; n:=n div 10; incr(k);
until n=0;
print_the_digs(k);
end;

@ \MF\ also makes use of a trivial procedure to print two digits. The
following subroutine is usually called with a parameter in the range |0<=n<=99|.

@p procedure print_dd(@!n:integer); {prints two least significant digits}
begin n:=abs(n) mod 100; print_char("0"+(n div 10));
print_char("0"+(n mod 10));
end;

@ Here is a procedure that asks the user to type a line of input,
assuming that the |selector| setting is either |term_only| or |term_and_log|.
The input is placed into locations |first| through |last-1| of the
|buffer| array, and echoed on the transcript file if appropriate.

This procedure is never called when |interaction<scroll_mode|.

@d prompt_input(#)==begin wake_up_terminal; print(#); term_input;
    end {prints a string and gets a line of input}

@p procedure term_input; {gets a line from the terminal}
var @!k:0..buf_size; {index into |buffer|}
begin update_terminal; {Now the user sees the prompt for sure}
if not input_ln(term_in,true) then fatal_error("End of file on the terminal!");
@.End of file on the terminal@>
term_offset:=0; {the user's line ended with \<\rm return>}
decr(selector); {prepare to echo the input}
if last<>first then for k:=first to last-1 do print(buffer[k]);
print_ln; buffer[last]:="%"; incr(selector); {restore previous status}
end;

@* \[6] Reporting errors.
When something anomalous is detected, \MF\ typically does something like this:
$$\vbox{\halign{#\hfil\cr
|print_err("Something anomalous has been detected");|\cr
|help3("This is the first line of my offer to help.")|\cr
|("This is the second line. I'm trying to")|\cr
|("explain the best way for you to proceed.");|\cr
|error;|\cr}}$$
A two-line help message would be given using |help2|, etc.; these informal
helps should use simple vocabulary that complements the words used in the
official error message that was printed. (Outside the U.S.A., the help
messages should preferably be translated into the local vernacular. Each
line of help is at most 60 characters long, in the present implementation,
so that |max_print_line| will not be exceeded.)

The |print_err| procedure supplies a `\.!' before the official message,
and makes sure that the terminal is awake if a stop is going to occur.
The |error| procedure supplies a `\..' after the official message, then it
shows the location of the error; and if |interaction=error_stop_mode|,
it also enters into a dialog with the user, during which time the help
message may be printed.
@^system dependencies@>

@ The global variable |interaction| has four settings, representing increasing
amounts of user interaction:

@d batch_mode=0 {omits all stops and omits terminal output}
@d nonstop_mode=1 {omits all stops}
@d scroll_mode=2 {omits error stops}
@d error_stop_mode=3 {stops at every opportunity to interact}
@d print_err(#)==begin if interaction=error_stop_mode then wake_up_terminal;
  print_nl("! "); print(#);
@.!\relax@>
  end

@<Glob...@>=
@!interaction:batch_mode..error_stop_mode; {current level of interaction}

@ @<Set init...@>=interaction:=error_stop_mode;

@ \MF\ is careful not to call |error| when the print |selector| setting
might be unusual. The only possible values of |selector| at the time of
error messages are

\yskip\hang|no_print| (when |interaction=batch_mode|
  and |log_file| not yet open);

\hang|term_only| (when |interaction>batch_mode| and |log_file| not yet open);

\hang|log_only| (when |interaction=batch_mode| and |log_file| is open);

\hang|term_and_log| (when |interaction>batch_mode| and |log_file| is open).

@<Initialize the print |selector| based on |interaction|@>=
if interaction=batch_mode then selector:=no_print@+else selector:=term_only

@ A global variable |deletions_allowed| is set |false| if the |get_next|
routine is active when |error| is called; this ensures that |get_next|
will never be called recursively.
@^recursion@>

The global variable |history| records the worst level of error that
has been detected. It has four possible values: |spotless|, |warning_issued|,
|error_message_issued|, and |fatal_error_stop|.

Another global variable, |error_count|, is increased by one when an
|error| occurs without an interactive dialog, and it is reset to zero at
the end of every statement.  If |error_count| reaches 100, \MF\ decides
that there is no point in continuing further.

@d spotless=0 {|history| value when nothing has been amiss yet}
@d warning_issued=1 {|history| value when |begin_diagnostic| has been called}
@d error_message_issued=2 {|history| value when |error| has been called}
@d fatal_error_stop=3 {|history| value when termination was premature}

@<Glob...@>=
@!deletions_allowed:boolean; {is it safe for |error| to call |get_next|?}
@!history:spotless..fatal_error_stop; {has the source input been clean so far?}
@!error_count:-1..100; {the number of scrolled errors since the
  last statement ended}

@ The value of |history| is initially |fatal_error_stop|, but it will
be changed to |spotless| if \MF\ survives the initialization process.

@<Set init...@>=
deletions_allowed:=true; error_count:=0; {|history| is initialized elsewhere}

@ Since errors can be detected almost anywhere in \MF, we want to declare the
error procedures near the beginning of the program. But the error procedures
in turn use some other procedures, which need to be declared |forward|
before we get to |error| itself.

It is possible for |error| to be called recursively if some error arises
when |get_next| is being used to delete a token, and/or if some fatal error
occurs while \MF\ is trying to fix a non-fatal one. But such recursion
@^recursion@>
is never more than two levels deep.

@<Error handling...@>=
procedure@?normalize_selector; forward;@t\2@>@/
procedure@?get_next; forward;@t\2@>@/
procedure@?term_input; forward;@t\2@>@/
procedure@?show_context; forward;@t\2@>@/
procedure@?begin_file_reading; forward;@t\2@>@/
procedure@?open_log_file; forward;@t\2@>@/
procedure@?close_files_and_terminate; forward;@t\2@>@/
procedure@?clear_for_error_prompt; forward;@t\2@>@/
@t\4\hskip-\fontdimen2\font@>@;@+@!debug@+procedure@?debug_help;
  forward;@;@+gubed@;@/
@t\4@>@<Declare the procedure called |flush_string|@>

@ Individual lines of help are recorded in the array |help_line|, which
contains entries in positions |0..(help_ptr-1)|. They should be printed
in reverse order, i.e., with |help_line[0]| appearing last.

@d hlp1(#)==help_line[0]:=#;@+end
@d hlp2(#)==help_line[1]:=#; hlp1
@d hlp3(#)==help_line[2]:=#; hlp2
@d hlp4(#)==help_line[3]:=#; hlp3
@d hlp5(#)==help_line[4]:=#; hlp4
@d hlp6(#)==help_line[5]:=#; hlp5
@d help0==help_ptr:=0 {sometimes there might be no help}
@d help1==@+begin help_ptr:=1; hlp1 {use this with one help line}
@d help2==@+begin help_ptr:=2; hlp2 {use this with two help lines}
@d help3==@+begin help_ptr:=3; hlp3 {use this with three help lines}
@d help4==@+begin help_ptr:=4; hlp4 {use this with four help lines}
@d help5==@+begin help_ptr:=5; hlp5 {use this with five help lines}
@d help6==@+begin help_ptr:=6; hlp6 {use this with six help lines}

@<Glob...@>=
@!help_line:array[0..5] of str_number; {helps for the next |error|}
@!help_ptr:0..6; {the number of help lines present}
@!use_err_help:boolean; {should the |err_help| string be shown?}
@!err_help:str_number; {a string set up by \&{errhelp}}

@ @<Set init...@>=
help_ptr:=0; use_err_help:=false; err_help:=0;

@ The |jump_out| procedure just cuts across all active procedure levels and
goes to |end_of_MF|. This is the only nontrivial |@!goto| statement in the
whole program. It is used when there is no recovery from a particular error.

Some \PASCAL\ compilers do not implement non-local |goto| statements.
@^system dependencies@>
In such cases the body of |jump_out| should simply be
`|close_files_and_terminate|;\thinspace' followed by a call on some system
procedure that quietly terminates the program.

@<Error hand...@>=
procedure jump_out;
begin goto end_of_MF;
end;

@ Here now is the general |error| routine.

@<Error hand...@>=
procedure error; {completes the job of error reporting}
label continue,exit;
var @!c:ASCII_code; {what the user types}
@!s1,@!s2,@!s3:integer; {used to save global variables when deleting tokens}
@!j:pool_pointer; {character position being printed}
begin if history<error_message_issued then history:=error_message_issued;
print_char("."); show_context;
if interaction=error_stop_mode then @<Get user's advice and |return|@>;
incr(error_count);
if error_count=100 then
  begin print_nl("(That makes 100 errors; please try again.)");
@.That makes 100 errors...@>
  history:=fatal_error_stop; jump_out;
  end;
@<Put help message on the transcript file@>;
exit:end;

@ @<Get user's advice...@>=
loop@+begin continue: clear_for_error_prompt; prompt_input("? ");
@.?\relax@>
  if last=first then return;
  c:=buffer[first];
  if c>="a" then c:=c+"A"-"a"; {convert to uppercase}
  @<Interpret code |c| and |return| if done@>;
  end

@ It is desirable to provide an `\.E' option here that gives the user
an easy way to return from \MF\ to the system editor, with the offending
line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the
file that should be
edited and the relevant line number.
@^system dependencies@>

There is a secret `\.D' option available when the debugging routines haven't
been commented~out.
@^debugging@>

@<Interpret code |c| and |return| if done@>=
case c of
"0","1","2","3","4","5","6","7","8","9": if deletions_allowed then
  @<Delete |c-"0"| tokens and |goto continue|@>;
@t\4\4@>@;@+@!debug "D":begin debug_help;goto continue;@+end;@+gubed@/
"E": if file_ptr>0 then
  begin print_nl("You want to edit file ");
@.You want to edit file x@>
  slow_print(input_stack[file_ptr].name_field);
  print(" at line "); print_int(line);@/
  interaction:=scroll_mode; jump_out;
  end;
"H": @<Print the help information and |goto continue|@>;
"I":@<Introduce new material from the terminal and |return|@>;
"Q","R","S":@<Change the interaction level and |return|@>;
"X":begin interaction:=scroll_mode; jump_out;
  end;
othercases do_nothing
endcases;@/
@<Print the menu of available options@>

@ @<Print the menu...@>=
begin print("Type <return> to proceed, S to scroll future error messages,");@/
@.Type <return> to proceed...@>
print_nl("R to run without stopping, Q to run quietly,");@/
print_nl("I to insert something, ");
if file_ptr>0 then print("E to edit your file,");
if deletions_allowed then
  print_nl("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
print_nl("H for help, X to quit.");
end

@ Here the author of \MF\ apologizes for making use of the numerical
relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
|batch_mode|, |nonstop_mode|, |scroll_mode|.
@^Knuth, Donald Ervin@>

@<Change the interaction...@>=
begin error_count:=0; interaction:=batch_mode+c-"Q";
print("OK, entering ");
case c of
"Q":begin print("batchmode"); decr(selector);
  end;
"R":print("nonstopmode");
"S":print("scrollmode");
end; {there are no other cases}
print("..."); print_ln; update_terminal; return;
end

@ When the following code is executed, |buffer[(first+1)..(last-1)]| may
contain the material inserted by the user; otherwise another prompt will
be given. In order to understand this part of the program fully, you need
to be familiar with \MF's input stacks.

@<Introduce new material...@>=
begin begin_file_reading; {enter a new syntactic level for terminal input}
if last>first+1 then
  begin loc:=first+1; buffer[first]:=" ";
  end
else  begin prompt_input("insert>"); loc:=first;
@.insert>@>
  end;
first:=last+1; cur_input.limit_field:=last; return;
end

@ We allow deletion of up to 99 tokens at a time.

@<Delete |c-"0"| tokens...@>=
begin s1:=cur_cmd; s2:=cur_mod; s3:=cur_sym; OK_to_interrupt:=false;
if (last>first+1) and (buffer[first+1]>="0")and(buffer[first+1]<="9") then
  c:=c*10+buffer[first+1]-"0"*11
else c:=c-"0";
while c>0 do
  begin get_next; {one-level recursive call of |error| is possible}
  @<Decrease the string reference count, if the current token is a string@>;
  decr(c);
  end;
cur_cmd:=s1; cur_mod:=s2; cur_sym:=s3; OK_to_interrupt:=true;
help2("I have just deleted some text, as you asked.")@/
("You can now delete more, or insert, or whatever.");
show_context; goto continue;
end

@ @<Print the help info...@>=
begin if use_err_help then
  begin @<Print the string |err_help|, possibly on several lines@>;
  use_err_help:=false;
  end
else  begin if help_ptr=0 then
    help2("Sorry, I don't know how to help in this situation.")@/
    @t\kern1em@>("Maybe you should try asking a human?");
  repeat decr(help_ptr); print(help_line[help_ptr]); print_ln;
  until help_ptr=0;
  end;
help4("Sorry, I already gave what help I could...")@/
  ("Maybe you should try asking a human?")@/
  ("An error might have occurred before I noticed any problems.")@/
  ("``If all else fails, read the instructions.''");@/
goto continue;
end

@ @<Print the string |err_help|, possibly on several lines@>=
j:=str_start[err_help];
while j<str_start[err_help+1] do
  begin if str_pool[j]<>si("%") then print(so(str_pool[j]))
  else if j+1=str_start[err_help+1] then print_ln
  else if str_pool[j+1]<>si("%") then print_ln
  else  begin incr(j); print_char("%");
    end;
  incr(j);
  end

@ @<Put help message on the transcript file@>=
if interaction>batch_mode then decr(selector); {avoid terminal output}
if use_err_help then
  begin print_nl("");
  @<Print the string |err_help|, possibly on several lines@>;
  end
else while help_ptr>0 do
  begin decr(help_ptr); print_nl(help_line[help_ptr]);
  end;
print_ln;
if interaction>batch_mode then incr(selector); {re-enable terminal output}
print_ln

@ In anomalous cases, the print selector might be in an unknown state;
the following subroutine is called to fix things just enough to keep
running a bit longer.

@p procedure normalize_selector;
begin if log_opened then selector:=term_and_log
else selector:=term_only;
if job_name=0 then open_log_file;
if interaction=batch_mode then decr(selector);
end;

@ The following procedure prints \MF's last words before dying.

@d succumb==begin if interaction=error_stop_mode then
    interaction:=scroll_mode; {no more interaction}
  if log_opened then error;
  @!debug if interaction>batch_mode then debug_help;@;@+gubed@;@/
  history:=fatal_error_stop; jump_out; {irrecoverable error}
  end

@<Error hand...@>=
procedure fatal_error(@!s:str_number); {prints |s|, and that's it}
begin normalize_selector;@/
print_err("Emergency stop"); help1(s); succumb;
@.Emergency stop@>
end;

@ Here is the most dreaded error message.

@<Error hand...@>=
procedure overflow(@!s:str_number;@!n:integer); {stop due to finiteness}
begin normalize_selector;
print_err("METAFONT capacity exceeded, sorry [");
@.METAFONT capacity exceeded ...@>
print(s); print_char("="); print_int(n); print_char("]");
help2("If you really absolutely need more capacity,")@/
  ("you can ask a wizard to enlarge me.");
succumb;
end;

@ The program might sometime run completely amok, at which point there is
no choice but to stop. If no previous error has been detected, that's bad
news; a message is printed that is really intended for the \MF\
maintenance person instead of the user (unless the user has been
particularly diabolical).  The index entries for `this can't happen' may
help to pinpoint the problem.
@^dry rot@>

@<Error hand...@>=
procedure confusion(@!s:str_number);
  {consistency check violated; |s| tells where}
begin normalize_selector;
if history<error_message_issued then
  begin print_err("This can't happen ("); print(s); print_char(")");
@.This can't happen@>
  help1("I'm broken. Please show this to someone who can fix can fix");
  end
else  begin print_err("I can't go on meeting you like this");
@.I can't go on...@>
  help2("One of your faux pas seems to have wounded me deeply...")@/
    ("in fact, I'm barely conscious. Please fix it and try again.");
  end;
succumb;
end;

@ Users occasionally want to interrupt \MF\ while it's running.
If the \PASCAL\ runtime system allows this, one can implement
a routine that sets the global variable |interrupt| to some nonzero value
when such an interrupt is signalled. Otherwise there is probably at least
a way to make |interrupt| nonzero using the \PASCAL\ debugger.
@^system dependencies@>
@^debugging@>

@d check_interrupt==begin if interrupt<>0 then pause_for_instructions;
  end

@<Global...@>=
@!interrupt:integer; {should \MF\ pause for instructions?}
@!OK_to_interrupt:boolean; {should interrupts be observed?}

@ @<Set init...@>=
interrupt:=0; OK_to_interrupt:=true;

@ When an interrupt has been detected, the program goes into its
highest interaction level and lets the user have the full flexibility of
the |error| routine.  \MF\ checks for interrupts only at times when it is
safe to do this.

@p procedure pause_for_instructions;
begin if OK_to_interrupt then
  begin interaction:=error_stop_mode;
  if (selector=log_only)or(selector=no_print) then
    incr(selector);
  print_err("Interruption");
@.Interruption@>
  help3("You rang?")@/
  ("Try to insert some instructions for me (e.g.,`I show x'),")@/
  ("unless you just want to quit by typing `X'.");
  deletions_allowed:=false; error; deletions_allowed:=true;
  interrupt:=0;
  end;
end;

@ Many of \MF's error messages state that a missing token has been
inserted behind the scenes. We can save string space and program space
by putting this common code into a subroutine.

@p procedure missing_err(@!s:str_number);
begin print_err("Missing `"); print(s); print("' has been inserted");
@.Missing...inserted@>
end;

@* \[7] Arithmetic with scaled numbers.
The principal computations performed by \MF\ are done entirely in terms of
integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
program can be carried out in exactly the same way on a wide variety of
computers, including some small ones.
@^small computers@>

But \PASCAL\ does not define the @!|div|
operation in the case of negative dividends; for example, the result of
|(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
There are two principal types of arithmetic: ``translation-preserving,''
in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
two \MF s, which can produce different results, although the differences
should be negligible when the language is being used properly.
The \TeX\ processor has been defined carefully so that both varieties
of arithmetic will produce identical output, but it would be too
inefficient to constrain \MF\ in a similar way.

@d el_gordo == @'17777777777 {$2^{31}-1$, the largest value that \MF\ likes}

@ One of \MF's most common operations is the calculation of
$\lfloor{a+b\over2}\rfloor$,
the midpoint of two given integers |a| and~|b|. The only decent way to do
this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
far more efficient to calculate `|(a+b)| right shifted one bit'.

Therefore the midpoint operation will always be denoted by `|half(a+b)|'
in this program. If \MF\ is being implemented with languages that permit
binary shifting, the |half| macro should be changed to make this operation
as efficient as possible.

@d half(#)==(#) div 2

@ A single computation might use several subroutine calls, and it is
desirable to avoid producing multiple error messages in case of arithmetic
overflow. So the routines below set the global variable |arith_error| to |true|
instead of reporting errors directly to the user.

@<Glob...@>=
@!arith_error:boolean; {has arithmetic overflow occurred recently?}

@ @<Set init...@>=
arith_error:=false;

@ At crucial points the program will say |check_arith|, to test if
an arithmetic error has been detected.

@d check_arith==begin if arith_error then clear_arith;@+end

@p procedure clear_arith;
begin print_err("Arithmetic overflow");
@.Arithmetic overflow@>
help4("Uh, oh. A little while ago one of the quantities that I was")@/
  ("computing got too large, so I'm afraid your answers will be")@/
  ("somewhat askew. You'll probably have to adopt different")@/
  ("tactics next time. But I shall try to carry on anyway.");
error; arith_error:=false;
end;

@ Addition is not always checked to make sure that it doesn't overflow,
but in places where overflow isn't too unlikely the |slow_add| routine
is used.

@p function slow_add(@!x,@!y:integer):integer;
begin if x>=0 then
  if y<=el_gordo-x then slow_add:=x+y
  else  begin arith_error:=true; slow_add:=el_gordo;
    end
else  if -y<=el_gordo+x then slow_add:=x+y
  else  begin arith_error:=true; slow_add:=-el_gordo;
    end;
end;

@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
positions from the right end of a binary computer word.

@d quarter_unit == @'40000 {$2^{14}$, represents 0.250000}
@d half_unit == @'100000 {$2^{15}$, represents 0.50000}
@d three_quarter_unit == @'140000 {$3\cdot2^{14}$, represents 0.75000}
@d unity == @'200000 {$2^{16}$, represents 1.00000}
@d two == @'400000 {$2^{17}$, represents 2.00000}
@d three == @'600000 {$2^{17}+2^{16}$, represents 3.00000}

@<Types...@>=
@!scaled = integer; {this type is used for scaled integers}
@!small_number=0..63; {this type is self-explanatory}

@ The following function is used to create a scaled integer from a given decimal
fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
given in |dig[i]|, and the calculation produces a correctly rounded result.

@p function round_decimals(@!k:small_number) : scaled;
  {converts a decimal fraction}
var @!a:integer; {the accumulator}
begin a:=0;
while k>0 do
  begin decr(k); a:=(a+dig[k]*two) div 10;
  end;
round_decimals:=half(a+1);
end;

@ Conversely, here is a procedure analogous to |print_int|. If the output
of this procedure is subsequently read by \MF\ and converted by the
|round_decimals| routine above, it turns out that the original value will
be reproduced exactly. A decimal point is printed only if the value is
not an integer. If there is more than one way to print the result with
the optimum number of digits following the decimal point, the closest
possible value is given.

The invariant relation in the \&{repeat} loop is that a sequence of
decimal digits yet to be printed will yield the original number if and only if
they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
We can stop if and only if $f=0$ satisfies this condition; the loop will
terminate before $s$ can possibly become zero.

@<Basic printing...@>=
procedure print_scaled(@!s:scaled); {prints scaled real, rounded to five
  digits}
var @!delta:scaled; {amount of allowable inaccuracy}
begin if s<0 then
  begin print_char("-"); negate(s); {print the sign, if negative}
  end;
print_int(s div unity); {print the integer part}
s:=10*(s mod unity)+5;
if s<>5 then
  begin delta:=10; print_char(".");
  repeat if delta>unity then
    s:=s+@'100000-(delta div 2); {round the final digit}
  print_char("0"+(s div unity)); s:=10*(s mod unity); delta:=delta*10;
  until s<=delta;
  end;
end;

@ We often want to print two scaled quantities in parentheses,
separated by a comma.

@<Basic printing...@>=
procedure print_two(@!x,@!y:scaled); {prints `|(x,y)|'}
begin print_char("("); print_scaled(x); print_char(","); print_scaled(y);
print_char(")");
end;

@ The |scaled| quantities in \MF\ programs are generally supposed to be
less than $2^{12}$ in absolute value, so \MF\ does much of its internal
arithmetic with 28~significant bits of precision. A |fraction| denotes
a scaled integer whose binary point is assumed to be 28 bit positions
from the right.

@d fraction_half==@'1000000000 {$2^{27}$, represents 0.50000000}
@d fraction_one==@'2000000000 {$2^{28}$, represents 1.00000000}
@d fraction_two==@'4000000000 {$2^{29}$, represents 2.00000000}
@d fraction_three==@'6000000000 {$3\cdot2^{28}$, represents 3.00000000}
@d fraction_four==@'10000000000 {$2^{30}$, represents 4.00000000}

@<Types...@>=
@!fraction=integer; {this type is used for scaled fractions}

@ In fact, the two sorts of scaling discussed above aren't quite
sufficient; \MF\ has yet another, used internally to keep track of angles
in units of $2^{-20}$ degrees.

@d forty_five_deg==@'264000000 {$45\cdot2^{20}$, represents $45^\circ$}
@d ninety_deg==@'550000000 {$90\cdot2^{20}$, represents $90^\circ$}
@d one_eighty_deg==@'1320000000 {$180\cdot2^{20}$, represents $180^\circ$}
@d three_sixty_deg==@'2640000000 {$360\cdot2^{20}$, represents $360^\circ$}

@<Types...@>=
@!angle=integer; {this type is used for scaled angles}

@ The |make_fraction| routine produces the |fraction| equivalent of
|p/q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_fraction(t,t)=fraction| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_fraction(t,fraction)=t| between scaled types.

If the result would have magnitude $2^{31}$ or more, |make_fraction|
sets |arith_error:=true|. Most of \MF's internal computations have
been designed to avoid this sort of error.

If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to \PASCAL\ arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.

This operation is part of \MF's ``inner loop''; indeed, it will
consume nearly 10\pct! of the running time (exclusive of input and output)
if the code below is left unchanged. A machine-dependent recoding
will therefore make \MF\ run faster. The present implementation
is highly portable, but slow; it avoids multiplication and division
except in the initial stage. System wizards should be careful to
replace it with a routine that is guaranteed to produce identical
results in all cases.
@^system dependencies@>

As noted below, a few more routines should also be replaced by machine-dependent
code, for efficiency. But when a procedure is not part of the ``inner loop,''
such changes aren't advisable; simplicity and robustness are
preferable to trickery, unless the cost is too high.
@^inner loop@>

@p function make_fraction(@!p,@!q:integer):fraction;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else  begin negate(p); negative:=true;
  end;
if q<=0 then
  begin debug if q=0 then confusion("/");@;@+gubed@;@/
@:this can't happen /}{\quad \./@>
  negate(q); negative:=not negative;
  end;
n:=p div q; p:=p mod q;
if n>=8 then
  begin arith_error:=true;
  if negative then make_fraction:=-el_gordo@+else make_fraction:=el_gordo;
  end
else  begin n:=(n-1)*fraction_one;
  @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
  if negative then make_fraction:=-(f+n)@+else make_fraction:=f+n;
  end;
end;

@ The |repeat| loop here preserves the following invariant relations
between |f|, |p|, and~|q|:
(i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
$p_0$ is the original value of~$p$.

Notice that the computation specifies
|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
Let us hope that optimizing compilers do not miss this point; a
special variable |be_careful| is used to emphasize the necessary
order of computation. Optimizing compilers should keep |be_careful|
in a register, not store it in memory.
@^inner loop@>

@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else  begin double(f); p:=p+q;
  end;
until f>=fraction_one;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)

@ The dual of |make_fraction| is |take_fraction|, which multiplies a
given integer~|q| by a fraction~|f|. When the operands are positive, it
computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
of |q| and~|f|.

This routine is even more ``inner loopy'' than |make_fraction|;
the present implementation consumes almost 20\pct! of \MF's computation
time during typical jobs, so a machine-language substitute is advisable.
@^inner loop@> @^system dependencies@>

@p function take_fraction(@!q:integer;@!f:fraction):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<fraction_one then n:=0
else  begin n:=f div fraction_one; f:=f mod fraction_one;
  if q<=el_gordo div n then n:=n*q
  else  begin arith_error:=true; n:=el_gordo;
    end;
  end;
f:=f+fraction_one;
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
  begin arith_error:=true; n:=el_gordo-p;
  end;
if negative then take_fraction:=-(n+p)
else take_fraction:=n+p;
end;

@ @<Reduce to the case that |f>=0| and |q>0|@>=
if f>=0 then negative:=false
else  begin negate(f); negative:=true;
  end;
if q<0 then
  begin negate(q); negative:=not negative;
  end;

@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
@^inner loop@>

@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
p:=fraction_half; {that's $2^{27}$; the invariants hold now with $k=28$}
if q<fraction_four then
  repeat if odd(f) then p:=half(p+q)@+else p:=half(p);
  f:=half(f);
  until f=1
else  repeat if odd(f) then p:=p+half(q-p)@+else p:=half(p);
  f:=half(f);
  until f=1


@ When we want to multiply something by a |scaled| quantity, we use a scheme
analogous to |take_fraction| but with a different scaling.
Given positive operands, |take_scaled|
computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.

Once again it is a good idea to use a machine-language replacement if
possible; otherwise |take_scaled| will use more than 2\pct! of the running time
when the Computer Modern fonts are being generated.
@^inner loop@>

@p function take_scaled(@!q:integer;@!f:scaled):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<unity then n:=0
else  begin n:=f div unity; f:=f mod unity;
  if q<=el_gordo div n then n:=n*q
  else  begin arith_error:=true; n:=el_gordo;
    end;
  end;
f:=f+unity;
@<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
  begin arith_error:=true; n:=el_gordo-p;
  end;
if negative then take_scaled:=-(n+p)
else take_scaled:=n+p;
end;

@ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
p:=half_unit; {that's $2^{15}$; the invariants hold now with $k=16$}
@^inner loop@>
if q<fraction_four then
  repeat if odd(f) then p:=half(p+q)@+else p:=half(p);
  f:=half(f);
  until f=1
else  repeat if odd(f) then p:=p+half(q-p)@+else p:=half(p);
  f:=half(f);
  until f=1

@ For completeness, there's also |make_scaled|, which computes a
quotient as a |scaled| number instead of as a |fraction|.
In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
operands are positive. \ (This procedure is not used especially often,
so it is not part of \MF's inner loop.)

@p function make_scaled(@!p,@!q:integer):scaled;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else  begin negate(p); negative:=true;
  end;
if q<=0 then
  begin debug if q=0 then confusion("/");@+gubed@;@/
@:this can't happen /}{\quad \./@>
  negate(q); negative:=not negative;
  end;
n:=p div q; p:=p mod q;
if n>=@'100000 then
  begin arith_error:=true;
  if negative then make_scaled:=-el_gordo@+else make_scaled:=el_gordo;
  end
else  begin n:=(n-1)*unity;
  @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
  if negative then make_scaled:=-(f+n)@+else make_scaled:=f+n;
  end;
end;

@ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else  begin double(f); p:=p+q;
  end;
until f>=unity;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)

@ Here is a typical example of how the routines above can be used.
It computes the function
$${1\over3\tau}f(\theta,\phi)=
{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
where $\tau$ is a |scaled| ``tension'' parameter. This is \MF's magic
fudge factor for placing the first control point of a curve that starts
at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
(Actually, if the stated quantity exceeds 4, \MF\ reduces it to~4.)

The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
(It's a sum of eight terms whose absolute values can be bounded using
relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
is positive; and since the tension $\tau$ is constrained to be at least
$3\over4$, the numerator is less than $16\over3$. The denominator is
nonnegative and at most~6.  Hence the fixed-point calculations below
are guaranteed to stay within the bounds of a 32-bit computer word.

The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
$\sin\phi$, and $\cos\phi$, respectively.

@p function velocity(@!st,@!ct,@!sf,@!cf:fraction;@!t:scaled):fraction;
var @!acc,@!num,@!denom:integer; {registers for intermediate calculations}
begin acc:=take_fraction(st-(sf div 16), sf-(st div 16));
acc:=take_fraction(acc,ct-cf);
num:=fraction_two+take_fraction(acc,379625062);
  {$2^{28}\sqrt2\approx379625062.497$}
denom:=fraction_three+take_fraction(ct,497706707)+take_fraction(cf,307599661);
  {$3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
    $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$}
if t<>unity then num:=make_scaled(num,t);
  {|make_scaled(fraction,scaled)=fraction|}
if num div 4>=denom then velocity:=fraction_four
else velocity:=make_fraction(num,denom);
end;

@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.

@d return_sign(#)==begin ab_vs_cd:=#; return;
  end

@p function ab_vs_cd(@!a,b,c,d:integer):integer;
label exit;
var @!q,@!r:integer; {temporary registers}
begin @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
loop@+  begin q := a div d; r := c div b;
  if q<>r then
    if q>r then return_sign(1)@+else return_sign(-1);
  q := a mod d; r := c mod b;
  if r=0 then
    if q=0 then return_sign(0)@+else return_sign(1);
  if q=0 then return_sign(-1);
  a:=b; b:=q; c:=d; d:=r;
  end; {now |a>d>0| and |c>b>0|}
exit:end;

@ @<Reduce to the case that |a...@>=
if a<0 then
  begin negate(a); negate(b);
  end;
if c<0 then
  begin negate(c); negate(d);
  end;
if d<=0 then
  begin if b>=0 then
    if ((a=0)or(b=0))and((c=0)or(d=0)) then return_sign(0)
    else return_sign(1);
  if d=0 then
    if a=0 then return_sign(0)@+else return_sign(-1);
  q:=a; a:=c; c:=q; q:=-b; b:=-d; d:=q;
  end
else if b<=0 then
  begin if b<0 then if a>0 then return_sign(-1);
  if c=0 then return_sign(0) else return_sign(-1);
  end

@ We conclude this set of elementary routines with some simple rounding
and truncation operations that are coded in a machine-independent fashion.
The routines are slightly complicated because we want them to work
without overflow whenever $-2^{31}\L x<2^{31}$.

@p function floor_scaled(@!x:scaled):scaled;
  {$2^{16}\lfloor x/2^{16}\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=0 then floor_scaled:=x-(x mod unity)
else  begin be_careful:=x+1;
  floor_scaled:=x+((-be_careful) mod unity)+1-unity;
  end;
end;
@#
function floor_unscaled(@!x:scaled):integer;
  {$\lfloor x/2^{16}\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=0 then floor_unscaled:=x div unity
else  begin be_careful:=x+1; floor_unscaled:=-(1+((-be_careful) div unity));
  end;
end;
@#
function round_unscaled(@!x:scaled):integer;
  {$\lfloor x/2^{16}+.5\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=half_unit then round_unscaled:=1+((x-half_unit) div unity)
else if x>=-half_unit then round_unscaled:=0
else  begin be_careful:=x+1;
  round_unscaled:=-(1+((-be_careful-half_unit) div unity));
  end;
end;
@#
function round_fraction(@!x:fraction):scaled;
  {$\lfloor x/2^{12}+.5\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=2048 then round_fraction:=1+((x-2048) div 4096)
else if x>=-2048 then round_fraction:=0
else  begin be_careful:=x+1;
  round_fraction:=-(1+((-be_careful-2048) div 4096));
  end;
end;

@* \[8] Algebraic and transcendental functions.
\MF\ computes all of the necessary special functions from scratch, without
relying on |real| arithmetic or system subroutines for sines, cosines, etc.

@ To get the square root of a |scaled| number |x|, we want to calculate
$s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
determines $s$ by an iterative method that maintains the invariant
relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
-s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
might, however, be zero at the start of the first iteration.

@p function square_rt(@!x:scaled):scaled;
var @!k:small_number; {iteration control counter}
@!y,@!q:integer; {registers for intermediate calculations}
begin if x<=0 then @<Handle square root of zero or negative argument@>
else  begin k:=23; q:=2;
  while x<fraction_two do {i.e., |while x<@t$2^{29}$@>|\unskip}
    begin decr(k); x:=x+x+x+x;
    end;
  if x<fraction_four then y:=0
  else  begin x:=x-fraction_four; y:=1;
    end;
  repeat @<Decrease |k| by 1, maintaining the invariant
    relations between |x|, |y|, and~|q|@>;
  until k=0;
  square_rt:=half(q);
  end;
end;

@ @<Handle square root of zero...@>=
begin if x<0 then
  begin print_err("Square root of ");
@.Square root...replaced by 0@>
  print_scaled(x); print(" has been replaced by 0");
  help2("Since I don't take square roots of negative numbers,")@/
    ("I'm zeroing this one. Proceed, with fingers crossed.");
  error;
  end;
square_rt:=0;
end

@ @<Decrease |k| by 1, maintaining...@>=
double(x); double(y);
if x>=fraction_four then {note that |fraction_four=@t$2^{30}$@>|}
  begin x:=x-fraction_four; incr(y);
  end;
double(x); y:=y+y-q; double(q);
if x>=fraction_four then
  begin x:=x-fraction_four; incr(y);
  end;
if y>q then
  begin y:=y-q; q:=q+2;
  end
else if y<=0 then
  begin q:=q-2; y:=y+q;
  end;
decr(k)

@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
@^Moler, Cleve Barry@>
@^Morrison, Donald Ross@>
of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
in such a way that their Pythagorean sum remains invariant, while the
smaller argument decreases.

@p function pyth_add(@!a,@!b:integer):integer;
label done;
var @!r:fraction; {register used to transform |a| and |b|}
@!big:boolean; {is the result dangerously near $2^{31}$?}
begin a:=abs(a); b:=abs(b);
if a<b then
  begin r:=b; b:=a; a:=r;
  end; {now |0<=b<=a|}
if a>0 then
  begin if a<fraction_two then big:=false
  else  begin a:=a div 4; b:=b div 4; big:=true;
    end; {we reduced the precision to avoid arithmetic overflow}
  @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
  if big then
    if a<fraction_two then a:=a+a+a+a
    else  begin arith_error:=true; a:=el_gordo;
      end;
  end;
pyth_add:=a;
end;

@ The key idea here is to reflect the vector $(a,b)$ about the
line through $(a,b/2)$.

@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
loop@+  begin r:=make_fraction(b,a);
  r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
  if r=0 then goto done;
  r:=make_fraction(r,fraction_four+r);
  a:=a+take_fraction(a+a,r); b:=take_fraction(b,r);
  end;
done:

@ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
It converges slowly when $b$ is near $a$, but otherwise it works fine.

@p function pyth_sub(@!a,@!b:integer):integer;
label done;
var @!r:fraction; {register used to transform |a| and |b|}
@!big:boolean; {is the input dangerously near $2^{31}$?}
begin a:=abs(a); b:=abs(b);
if a<=b then @<Handle erroneous |pyth_sub| and set |a:=0|@>
else  begin if a<fraction_four then big:=false
  else  begin a:=half(a); b:=half(b); big:=true;
    end;
  @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
  if big then a:=a+a;
  end;
pyth_sub:=a;
end;

@ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
loop@+  begin r:=make_fraction(b,a);
  r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
  if r=0 then goto done;
  r:=make_fraction(r,fraction_four-r);
  a:=a-take_fraction(a+a,r); b:=take_fraction(b,r);
  end;
done:

@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
begin if a<b then
  begin print_err("Pythagorean subtraction "); print_scaled(a);
  print("+-+"); print_scaled(b); print(" has been replaced by 0");
@.Pythagorean...@>
  help2("Since I don't take square roots of negative numbers,")@/
    ("I'm zeroing this one. Proceed, with fingers crossed.");
  error;
  end;
a:=0;
end

@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. The second involves
a bit more calculation, which the author claims to have done correctly:
|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
nearest integer.

@<Glob...@>=
@!two_to_the:array[0..30] of integer; {powers of two}
@!spec_log:array[1..28] of integer; {special logarithms}

@ @<Local variables for initialization@>=
@!k:integer; {all-purpose loop index}

@ @<Set init...@>=
two_to_the[0]:=1;
for k:=1 to 30 do two_to_the[k]:=2*two_to_the[k-1];
spec_log[1]:=93032640;
spec_log[2]:=38612034;
spec_log[3]:=17922280;
spec_log[4]:=8662214;
spec_log[5]:=4261238;
spec_log[6]:=2113709;
spec_log[7]:=1052693;
spec_log[8]:=525315;
spec_log[9]:=262400;
spec_log[10]:=131136;
spec_log[11]:=65552;
spec_log[12]:=32772;
spec_log[13]:=16385;
for k:=14 to 27 do spec_log[k]:=two_to_the[27-k];
spec_log[28]:=1;

@ Here is the routine that calculates $2^8$ times the natural logarithm
of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
when |x| is a given positive integer.

The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
and the logarithm of $2^{30}x$ remains to be added to an accumulator
register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
during the calculation, and sixteen auxiliary bits to extend |y| are
kept in~|z| during the initial argument reduction. (We add
$100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
not become negative; also, the actual amount subtracted from~|y| is~96,
not~100, because we want to add~4 for rounding before the final division by~8.)

@p function m_log(@!x:scaled):scaled;
var @!y,@!z:integer; {auxiliary registers}
@!k:integer; {iteration counter}
begin if x<=0 then @<Handle non-positive logarithm@>
else  begin y:=1302456956+4-100; {$14\times2^{27}\ln2\approx1302456956.421063$}
  z:=27595+6553600; {and $2^{16}\times .421063\approx 27595$}
  while x<fraction_four do
    begin double(x); y:=y-93032639; z:=z-48782;
    end; {$2^{27}\ln2\approx 93032639.74436163$
      and $2^{16}\times.74436163\approx 48782$}
  y:=y+(z div unity); k:=2;
  while x>fraction_four+4 do
    @<Increase |k| until |x| can be multiplied by a
      factor of $2^{-k}$, and adjust $y$ accordingly@>;
  m_log:=y div 8;
  end;
end;

@ @<Increase |k| until |x| can...@>=
begin z:=((x-1) div two_to_the[k])+1; {$z=\lceil x/2^k\rceil$}
while x<fraction_four+z do
  begin z:=half(z+1); k:=k+1;
  end;
y:=y+spec_log[k]; x:=x-z;
end

@ @<Handle non-positive logarithm@>=
begin print_err("Logarithm of ");
@.Logarithm...replaced by 0@>
print_scaled(x); print(" has been replaced by 0");
help2("Since I don't take logs of non-positive numbers,")@/
  ("I'm zeroing this one. Proceed, with fingers crossed.");
error; m_log:=0;
end

@ Conversely, the exponential routine calculates $\exp(x/2^8)$,
when |x| is |scaled|. The result is an integer approximation to
$2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.

@p function m_exp(@!x:scaled):scaled;
var @!k:small_number; {loop control index}
@!y,@!z:integer; {auxiliary registers}
begin if x>174436200 then
    {$2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$}
  begin arith_error:=true; m_exp:=el_gordo;
  end
else if x<-197694359 then m_exp:=0
    {$2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$}
else  begin if x<=0 then
    begin z:=-8*x; y:=@'4000000; {$y=2^{20}$}
    end
  else  begin if x<=127919879 then z:=1023359037-8*x
      {$2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$}
    else z:=8*(174436200-x); {|z| is always nonnegative}
    y:=el_gordo;
    end;
  @<Multiply |y| by $\exp(-z/2^{27})$@>;
  if x<=127919879 then m_exp:=(y+8) div 16@+else m_exp:=y;
  end;
end;

@ The idea here is that subtracting |spec_log[k]| from |z| corresponds
to multiplying |y| by $1-2^{-k}$.

A subtle point (which had to be checked) was that if $x=127919879$, the
value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
$z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
and by~16 when |k=27|.

@<Multiply |y| by...@>=
k:=1;
while z>0 do
  begin while z>=spec_log[k] do
    begin z:=z-spec_log[k];
    y:=y-1-((y-two_to_the[k-1]) div two_to_the[k]);
    end;
  incr(k);
  end

@ The trigonometric subroutines use an auxiliary table such that
|spec_atan[k]| contains an approximation to the |angle| whose tangent
is~$1/2^k$.

@<Glob...@>=
@!spec_atan:array[1..26] of angle; {$\arctan2^{-k}$ times $2^{20}\cdot180/\pi$}

@ @<Set init...@>=
spec_atan[1]:=27855475;
spec_atan[2]:=14718068;
spec_atan[3]:=7471121;
spec_atan[4]:=3750058;
spec_atan[5]:=1876857;
spec_atan[6]:=938658;
spec_atan[7]:=469357;
spec_atan[8]:=234682;
spec_atan[9]:=117342;
spec_atan[10]:=58671;
spec_atan[11]:=29335;
spec_atan[12]:=14668;
spec_atan[13]:=7334;
spec_atan[14]:=3667;
spec_atan[15]:=1833;
spec_atan[16]:=917;
spec_atan[17]:=458;
spec_atan[18]:=229;
spec_atan[19]:=115;
spec_atan[20]:=57;
spec_atan[21]:=29;
spec_atan[22]:=14;
spec_atan[23]:=7;
spec_atan[24]:=4;
spec_atan[25]:=2;
spec_atan[26]:=1;

@ Given integers |x| and |y|, not both zero, the |n_arg| function
returns the |angle| whose tangent points in the direction $(x,y)$.
This subroutine first determines the correct octant, then solves the
problem for |0<=y<=x|, then converts the result appropriately to
return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
(The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
|-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)

The octants are represented in a ``Gray code,'' since that turns out
to be computationally simplest.

@d negate_x=1
@d negate_y=2
@d switch_x_and_y=4
@d first_octant=1
@d second_octant=first_octant+switch_x_and_y
@d third_octant=first_octant+switch_x_and_y+negate_x
@d fourth_octant=first_octant+negate_x
@d fifth_octant=first_octant+negate_x+negate_y
@d sixth_octant=first_octant+switch_x_and_y+negate_x+negate_y
@d seventh_octant=first_octant+switch_x_and_y+negate_y
@d eighth_octant=first_octant+negate_y

@p function n_arg(@!x,@!y:integer):angle;
var @!z:angle; {auxiliary register}
@!t:integer; {temporary storage}
@!k:small_number; {loop counter}
@!octant:first_octant..sixth_octant; {octant code}
begin if x>=0 then octant:=first_octant
else  begin negate(x); octant:=first_octant+negate_x;
  end;
if y<0 then
  begin negate(y); octant:=octant+negate_y;
  end;
if x<y then
  begin t:=y; y:=x; x:=t; octant:=octant+switch_x_and_y;
  end;
if x=0 then @<Handle undefined arg@>
else  begin @<Set variable |z| to the arg of $(x,y)$@>;
  @<Return an appropriate answer based on |z| and |octant|@>;
  end;
end;

@ @<Handle undefined arg@>=
begin print_err("angle(0,0) is taken as zero");
@.angle(0,0)...zero@>
help2("The `angle' between two identical points is undefined.")@/
  ("I'm zeroing this one. Proceed, with fingers crossed.");
error; n_arg:=0;
end

@ @<Return an appropriate answer...@>=
case octant of
first_octant:n_arg:=z;
second_octant:n_arg:=ninety_deg-z;
third_octant:n_arg:=ninety_deg+z;
fourth_octant:n_arg:=one_eighty_deg-z;
fifth_octant:n_arg:=z-one_eighty_deg;
sixth_octant:n_arg:=-z-ninety_deg;
seventh_octant:n_arg:=z-ninety_deg;
eighth_octant:n_arg:=-z;
end {there are no other cases}

@ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
will be made.

@<Set variable |z| to the arg...@>=
while x>=fraction_two do
  begin x:=half(x); y:=half(y);
  end;
z:=0;
if y>0 then
  begin while x<fraction_one do
    begin double(x); double(y);
    end;
  @<Increase |z| to the arg of $(x,y)$@>;
  end

@ During the calculations of this section, variables |x| and~|y|
represent actual coordinates $(x,2^{-k}y)$. We will maintain the
condition |x>=y|, so that the tangent will be at most $2^{-k}$.
If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
$(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
coordinates whose angle has decreased by~$\phi$; in the special case
$a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
@^Meggitt, John E.@>
{\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]

The initial value of |x| will be multiplied by at most
$(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
there is no chance of integer overflow.

@<Increase |z|...@>=
k:=0;
repeat double(y); incr(k);
if y>x then
  begin z:=z+spec_atan[k]; t:=x; x:=x+(y div two_to_the[k+k]); y:=y-t;
  end;
until k=15;
repeat double(y); incr(k);
if y>x then
  begin z:=z+spec_atan[k]; y:=y-x;
  end;
until k=26

@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
and cosine of that angle. The results of this routine are
stored in global integer variables |n_sin| and |n_cos|.

@<Glob...@>=
@!n_sin,@!n_cos:fraction; {results computed by |n_sin_cos|}

@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
the purpose of |n_sin_cos(z)| is to set
|x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
for some rather large number~|r|. The maximum of |x| and |y|
will be between $2^{28}$ and $2^{30}$, so that there will be hardly
any loss of accuracy. Then |x| and~|y| are divided by~|r|.

@p procedure n_sin_cos(@!z:angle); {computes a multiple of the sine and cosine}
var @!k:small_number; {loop control variable}
@!q:0..7; {specifies the quadrant}
@!r:fraction; {magnitude of |(x,y)|}
@!x,@!y,@!t:integer; {temporary registers}
begin while z<0 do z:=z+three_sixty_deg;
z:=z mod three_sixty_deg; {now |0<=z<three_sixty_deg|}
q:=z div forty_five_deg; z:=z mod forty_five_deg;
x:=fraction_one; y:=x;
if not odd(q) then z:=forty_five_deg-z;
@<Subtract angle |z| from |(x,y)|@>;
@<Convert |(x,y)| to the octant determined by~|q|@>;
r:=pyth_add(x,y); n_cos:=make_fraction(x,r); n_sin:=make_fraction(y,r);
end;

@ In this case the octants are numbered sequentially.

@<Convert |(x,...@>=
case q of
0:do_nothing;
1:begin t:=x; x:=y; y:=t;
  end;
2:begin t:=x; x:=-y; y:=t;
  end;
3:negate(x);
4:begin negate(x); negate(y);
  end;
5:begin t:=x; x:=-y; y:=-t;
  end;
6:begin t:=x; x:=y; y:=-t;
  end;
7:negate(y);
end {there are no other cases}

@ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
applied in reverse. The values of |spec_atan[k]| decrease slowly enough
that this loop is guaranteed to terminate before the (nonexistent) value
|spec_atan[27]| would be required.

@<Subtract angle |z|...@>=
k:=1;
while z>0 do
  begin if z>=spec_atan[k] then
    begin z:=z-spec_atan[k]; t:=x;@/
    x:=t+y div two_to_the[k];
    y:=y-t div two_to_the[k];
    end;
  incr(k);
  end;
if y<0 then y:=0 {this precaution may never be needed}

@ And now let's complete our collection of numeric utility routines
by considering random number generation.
\MF\ generates pseudo-random numbers with the additive scheme recommended
in Section 3.6 of {\sl The Art of Computer Programming}; however, the
results are random fractions between 0 and |fraction_one-1|, inclusive.

There's an auxiliary array |randoms| that contains 55 pseudo-random
fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-24})\bmod 2^{28}$,
we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
The global variable |j_random| tells which element has most recently
been consumed.

@<Glob...@>=
@!randoms:array[0..54] of fraction; {the last 55 random values generated}
@!j_random:0..54; {the number of unused |randoms|}

@ To consume a random fraction, the program below will say `|next_random|'
and then it will fetch |randoms[j_random]|. The |next_random| macro
actually accesses the numbers backwards; blocks of 55~$x$'s are
essentially being ``flipped.'' But that doesn't make them less random.

@d next_random==if j_random=0 then new_randoms
  else decr(j_random)

@p procedure new_randoms;
var @!k:0..54; {index into |randoms|}
@!x:fraction; {accumulator}
begin for k:=0 to 23 do
  begin x:=randoms[k]-randoms[k+31];
  if x<0 then x:=x+fraction_one;
  randoms[k]:=x;
  end;
for k:=24 to 54 do
  begin x:=randoms[k]-randoms[k-24];
  if x<0 then x:=x+fraction_one;
  randoms[k]:=x;
  end;
j_random:=54;
end;

@ To initialize the |randoms| table, we call the following routine.

@p procedure init_randoms(@!seed:scaled);
var @!j,@!jj,@!k:fraction; {more or less random integers}
@!i:0..54; {index into |randoms|}
begin j:=abs(seed);
while j>=fraction_one do j:=half(j);
k:=1;
for i:=0 to 54 do
  begin jj:=k; k:=j-k; j:=jj;
  if k<0 then k:=k+fraction_one;
  randoms[(i*21)mod 55]:=j;
  end;
new_randoms; new_randoms; new_randoms; {``warm up'' the array}
end;

@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.

Note that the call of |take_fraction| will produce the values 0 and~|x|
with about half the probability that it will produce any other particular
values between 0 and~|x|, because it rounds its answers.

@p function unif_rand(@!x:scaled):scaled;
var @!y:scaled; {trial value}
begin next_random; y:=take_fraction(abs(x),randoms[j_random]);
if y=abs(x) then unif_rand:=0
else if x>0 then unif_rand:=y
else unif_rand:=-y;
end;

@ Finally, a normal deviate with mean zero and unit standard deviation
can readily be obtained with the ratio method (Algorithm 3.4.1R in
{\sl The Art of Computer Programming\/}).

@p function norm_rand:scaled;
var @!x,@!u,@!l:integer; {what the book would call $2^{16}X$, $2^{28}U$,
  and $-2^{24}\ln U$}
begin repeat
  repeat next_random;
  x:=take_fraction(112429,randoms[j_random]-fraction_half);
    {$2^{16}\sqrt{8/e}\approx 112428.82793$}
  next_random; u:=randoms[j_random];
  until abs(x)<u;
x:=make_fraction(x,u);
l:=139548960-m_log(u); {$2^{24}\cdot12\ln2\approx139548959.6165$}
until ab_vs_cd(1024,l,x,x)>=0;
norm_rand:=x;
end;

@* \[9] Packed data.
In order to make efficient use of storage space, \MF\ bases its major data
structures on a |memory_word|, which contains either a (signed) integer,
possibly scaled, or a small number of fields that are one half or one
quarter of the size used for storing integers.

If |x| is a variable of type |memory_word|, it contains up to four
fields that can be referred to as follows:
$$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
|x|&.|int|&(an |integer|)\cr
|x|&.|sc|\qquad&(a |scaled| integer)\cr
|x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
|x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
  field)\cr
|x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
  &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
This is somewhat cumbersome to write, and not very readable either, but
macros will be used to make the notation shorter and more transparent.
The \PASCAL\ code below gives a formal definition of |memory_word| and
its subsidiary types, using packed variant records. \MF\ makes no
assumptions about the relative positions of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least
16 bits, and a quarterword must contain at least 8 bits.
@^system dependencies@>
But it doesn't hurt to have more bits; for example, with enough 36-bit
words you might be able to have |mem_max| as large as 262142.

N.B.: Valuable memory space will be dreadfully wasted unless \MF\ is compiled
by a \PASCAL\ that packs all of the |memory_word| variants into
the space of a single integer. Some \PASCAL\ compilers will pack an
integer whose subrange is `|0..255|' into an eight-bit field, but others
insist on allocating space for an additional sign bit; on such systems you
can get 256 values into a quarterword only if the subrange is `|-128..127|'.

The present implementation tries to accommodate as many variations as possible,
so it makes few assumptions. If integers having the subrange
`|min_quarterword..max_quarterword|' can be packed into a quarterword,
and if integers having the subrange `|min_halfword..max_halfword|'
can be packed into a halfword, everything should work satisfactorily.

It is usually most efficient to have |min_quarterword=min_halfword=0|,
so one should try to achieve this unless it causes a severe problem.
The values defined here are recommended for most 32-bit computers.

@d min_quarterword=0 {smallest allowable value in a |quarterword|}
@d max_quarterword=255 {largest allowable value in a |quarterword|}
@d min_halfword==0 {smallest allowable value in a |halfword|}
@d max_halfword==65535 {largest allowable value in a |halfword|}

@ Here are the inequalities that the quarterword and halfword values
must satisfy (or rather, the inequalities that they mustn't satisfy):

@<Check the ``constant''...@>=
init if mem_max<>mem_top then bad:=10;@+tini@;@/
if mem_max<mem_top then bad:=10;
if (min_quarterword>0)or(max_quarterword<127) then bad:=11;
if (min_halfword>0)or(max_halfword<32767) then bad:=12;
if (min_quarterword<min_halfword)or@|
  (max_quarterword>max_halfword) then bad:=13;
if (mem_min<min_halfword)or(mem_max>=max_halfword) then bad:=14;
if max_strings>max_halfword then bad:=15;
if buf_size>max_halfword then bad:=16;
if (max_quarterword-min_quarterword<255)or@|
  (max_halfword-min_halfword<65535) then bad:=17;

@ The operation of subtracting |min_halfword| occurs rather frequently in
\MF, so it is convenient to abbreviate this operation by using the macro
|ho| defined here.  \MF\ will run faster with respect to compilers that
don't optimize the expression `|x-0|', if this macro is simplified in the
obvious way when |min_halfword=0|. Similarly, |qi| and |qo| are used for
input to and output from quarterwords.
@^system dependencies@>

@d ho(#)==#-min_halfword
  {to take a sixteen-bit item from a halfword}
@d qo(#)==#-min_quarterword {to read eight bits from a quarterword}
@d qi(#)==#+min_quarterword {to store eight bits in a quarterword}

@ The reader should study the following definitions closely:
@^system dependencies@>

@d sc==int {|scaled| data is equivalent to |integer|}

@<Types...@>=
@!quarterword = min_quarterword..max_quarterword; {1/4 of a word}
@!halfword=min_halfword..max_halfword; {1/2 of a word}
@!two_choices = 1..2; {used when there are two variants in a record}
@!three_choices = 1..3; {used when there are three variants in a record}
@!two_halves = packed record@;@/
  @!rh:halfword;
  case two_choices of
  1: (@!lh:halfword);
  2: (@!b0:quarterword; @!b1:quarterword);
  end;
@!four_quarters = packed record@;@/
  @!b0:quarterword;
  @!b1:quarterword;
  @!b2:quarterword;
  @!b3:quarterword;
  end;
@!memory_word = record@;@/
  case three_choices of
  1: (@!int:integer);
  2: (@!hh:two_halves);
  3: (@!qqqq:four_quarters);
  end;
@!word_file = file of memory_word;

@ When debugging, we may want to print a |memory_word| without knowing
what type it is; so we print it in all modes.
@^dirty \PASCAL@>@^debugging@>

@p @!debug procedure print_word(@!w:memory_word);
  {prints |w| in all ways}
begin print_int(w.int); print_char(" ");@/
print_scaled(w.sc); print_char(" "); print_scaled(w.sc div @'10000); print_ln;@/
print_int(w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":");
print_int(w.hh.b1); print_char(";"); print_int(w.hh.rh); print_char(" ");@/
print_int(w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":");
print_int(w.qqqq.b2); print_char(":"); print_int(w.qqqq.b3);
end;
gubed

@* \[10] Dynamic memory allocation.
The \MF\ system does nearly all of its own memory allocation, so that it
can readily be transported into environments that do not have automatic
facilities for strings, garbage collection, etc., and so that it can be in
control of what error messages the user receives. The dynamic storage
requirements of \MF\ are handled by providing a large array |mem| in
which consecutive blocks of words are used as nodes by the \MF\ routines.

Pointer variables are indices into this array, or into another array
called |eqtb| that will be explained later. A pointer variable might
also be a special flag that lies outside the bounds of |mem|, so we
allow pointers to assume any |halfword| value. The minimum memory
index represents a null pointer.

@d pointer==halfword {a flag or a location in |mem| or |eqtb|}
@d null==mem_min {the null pointer}

@ The |mem| array is divided into two regions that are allocated separately,
but the dividing line between these two regions is not fixed; they grow
together until finding their ``natural'' size in a particular job.
Locations less than or equal to |lo_mem_max| are used for storing
variable-length records consisting of two or more words each. This region
is maintained using an algorithm similar to the one described in exercise
2.5--19 of {\sl The Art of Computer Programming}. However, no size field
appears in the allocated nodes; the program is responsible for knowing the
relevant size when a node is freed. Locations greater than or equal to
|hi_mem_min| are used for storing one-word records; a conventional
\.{AVAIL} stack is used for allocation in this region.

Locations of |mem| between |mem_min| and |mem_top| may be dumped as part
of preloaded format files, by the \.{INIMF} preprocessor.
@.INIMF@>
Production versions of \MF\ may extend the memory at the top end in order to
provide more space; these locations, between |mem_top| and |mem_max|,
are always used for single-word nodes.

The key pointers that govern |mem| allocation have a prescribed order:
$$\hbox{|null=mem_min<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$

@<Glob...@>=
@!mem : array[mem_min..mem_max] of memory_word; {the big dynamic storage area}
@!lo_mem_max : pointer; {the largest location of variable-size memory in use}
@!hi_mem_min : pointer; {the smallest location of one-word memory in use}

@ Users who wish to study the memory requirements of specific applications can
use optional special features that keep track of current and
maximum memory usage. When code between the delimiters |@!stat| $\ldots$
|tats| is not ``commented out,'' \MF\ will run a bit slower but it will
report these statistics when |tracing_stats| is positive.

@<Glob...@>=
@!var_used, @!dyn_used : integer; {how much memory is in use}

@ Let's consider the one-word memory region first, since it's the
simplest. The pointer variable |mem_end| holds the highest-numbered location
of |mem| that has ever been used. The free locations of |mem| that
occur between |hi_mem_min| and |mem_end|, inclusive, are of type
|two_halves|, and we write |info(p)| and |link(p)| for the |lh|
and |rh| fields of |mem[p]| when it is of this type. The single-word
free locations form a linked list
$$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
terminated by |null|.

@d link(#) == mem[#].hh.rh {the |link| field of a memory word}
@d info(#) == mem[#].hh.lh {the |info| field of a memory word}

@<Glob...@>=
@!avail : pointer; {head of the list of available one-word nodes}
@!mem_end : pointer; {the last one-word node used in |mem|}

@ If one-word memory is exhausted, it might mean that the user has forgotten
a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
later that try to help pinpoint the trouble.

@p @t\4@>@<Declare the procedure called |show_token_list|@>@;
@t\4@>@<Declare the procedure called |runaway|@>

@ The function |get_avail| returns a pointer to a new one-word node whose
|link| field is null. However, \MF\ will halt if there is no more room left.
@^inner loop@>

@p function get_avail : pointer; {single-word node allocation}
var @!p:pointer; {the new node being got}
begin p:=avail; {get top location in the |avail| stack}
if p<>null then avail:=link(avail) {and pop it off}
else if mem_end<mem_max then {or go into virgin territory}
  begin incr(mem_end); p:=mem_end;
  end
else   begin decr(hi_mem_min); p:=hi_mem_min;
  if hi_mem_min<=lo_mem_max then
    begin runaway; {if memory is exhausted, display possible runaway text}
    overflow("main memory size",mem_max+1-mem_min);
      {quit; all one-word nodes are busy}
@:METAFONT capacity exceeded main memory size}{\quad main memory size@>
    end;
  end;
link(p):=null; {provide an oft-desired initialization of the new node}
@!stat incr(dyn_used);@+tats@;{maintain statistics}
get_avail:=p;
end;

@ Conversely, a one-word node is recycled by calling |free_avail|.

@d free_avail(#)== {single-word node liberation}
  begin link(#):=avail; avail:=#;
  @!stat decr(dyn_used);@+tats@/
  end

@ There's also a |fast_get_avail| routine, which saves the procedure-call
overhead at the expense of extra programming. This macro is used in
the places that would otherwise account for the most calls of |get_avail|.
@^inner loop@>

@d fast_get_avail(#)==@t@>@;@/
  begin #:=avail; {avoid |get_avail| if possible, to save time}
  if #=null then #:=get_avail
  else  begin avail:=link(#); link(#):=null;
    @!stat incr(dyn_used);@+tats@/
    end;
  end

@ The available-space list that keeps track of the variable-size portion
of |mem| is a nonempty, doubly-linked circular list of empty nodes,
pointed to by the roving pointer |rover|.

Each empty node has size 2 or more; the first word contains the special
value |max_halfword| in its |link| field and the size in its |info| field;
the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type
|two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
Otherwise there is complete flexibility with respect to the contents
of its other fields and its other words.

(We require |mem_max<max_halfword| because terrible things can happen
when |max_halfword| appears in the |link| field of a nonempty node.)

@d empty_flag == max_halfword {the |link| of an empty variable-size node}
@d is_empty(#) == (link(#)=empty_flag) {tests for empty node}
@d node_size == info {the size field in empty variable-size nodes}
@d llink(#) == info(#+1) {left link in doubly-linked list of empty nodes}
@d rlink(#) == link(#+1) {right link in doubly-linked list of empty nodes}

@<Glob...@>=
@!rover : pointer; {points to some node in the list of empties}

@ A call to |get_node| with argument |s| returns a pointer to a new node
of size~|s|, which must be 2~or more. The |link| field of the first word
of this new node is set to null. An overflow stop occurs if no suitable
space exists.

If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
areas and returns the value |max_halfword|.

@p function get_node(@!s:integer):pointer; {variable-size node allocation}
label found,exit,restart;
var @!p:pointer; {the node currently under inspection}
@!q:pointer; {the node physically after node |p|}
@!r:integer; {the newly allocated node, or a candidate for this honor}
@!t,@!tt:integer; {temporary registers}
@^inner loop@>
begin restart: p:=rover; {start at some free node in the ring}
repeat @<Try to allocate within node |p| and its physical successors,
  and |goto found| if allocation was possible@>;
p:=rlink(p); {move to the next node in the ring}
until p=rover; {repeat until the whole list has been traversed}
if s=@'10000000000 then
  begin get_node:=max_halfword; return;
  end;
if lo_mem_max+2<hi_mem_min then if lo_mem_max+2<=mem_min+max_halfword then
  @<Grow more variable-size memory and |goto restart|@>;
overflow("main memory size",mem_max+1-mem_min);
  {sorry, nothing satisfactory is left}
@:METAFONT capacity exceeded main memory size}{\quad main memory size@>
found: link(r):=null; {this node is now nonempty}
@!stat var_used:=var_used+s; {maintain usage statistics}
tats@;@/
get_node:=r;
exit:end;

@ The lower part of |mem| grows by 1000 words at a time, unless
we are very close to going under. When it grows, we simply link
a new node into the available-space list. This method of controlled
growth helps to keep the |mem| usage consecutive when \MF\ is
implemented on ``virtual memory'' systems.
@^virtual memory@>

@<Grow more variable-size memory and |goto restart|@>=
begin if hi_mem_min-lo_mem_max>=1998 then t:=lo_mem_max+1000
else t:=lo_mem_max+1+(hi_mem_min-lo_mem_max) div 2;
  {|lo_mem_max+2<=t<hi_mem_min|}
if t>mem_min+max_halfword then t:=mem_min+max_halfword;
p:=llink(rover); q:=lo_mem_max; rlink(p):=q; llink(rover):=q;@/
rlink(q):=rover; llink(q):=p; link(q):=empty_flag; node_size(q):=t-lo_mem_max;@/
lo_mem_max:=t; link(lo_mem_max):=null; info(lo_mem_max):=null;
rover:=q; goto restart;
end

@ @<Try to allocate...@>=
q:=p+node_size(p); {find the physical successor}
while is_empty(q) do {merge node |p| with node |q|}
  begin t:=rlink(q); tt:=llink(q);
@^inner loop@>
  if q=rover then rover:=t;
  llink(t):=tt; rlink(tt):=t;@/
  q:=q+node_size(q);
  end;
r:=q-s;
if r>p+1 then @<Allocate from the top of node |p| and |goto found|@>;
if r=p then if rlink(p)<>p then
  @<Allocate entire node |p| and |goto found|@>;
node_size(p):=q-p {reset the size in case it grew}

@ @<Allocate from the top...@>=
begin node_size(p):=r-p; {store the remaining size}
rover:=p; {start searching here next time}
goto found;
end

@ Here we delete node |p| from the ring, and let |rover| rove around.

@<Allocate entire...@>=
begin rover:=rlink(p); t:=llink(p);
llink(rover):=t; rlink(t):=rover;
goto found;
end

@ Conversely, when some variable-size node |p| of size |s| is no longer needed,
the operation |free_node(p,s)| will make its words available, by inserting
|p| as a new empty node just before where |rover| now points.

@p procedure free_node(@!p:pointer; @!s:halfword); {variable-size node
  liberation}
var @!q:pointer; {|llink(rover)|}
begin node_size(p):=s; link(p):=empty_flag;
@^inner loop@>
q:=llink(rover); llink(p):=q; rlink(p):=rover; {set both links}
llink(rover):=p; rlink(q):=p; {insert |p| into the ring}
@!stat var_used:=var_used-s;@+tats@;{maintain statistics}
end;

@ Just before \.{INIMF} writes out the memory, it sorts the doubly linked
available space list. The list is probably very short at such times, so a
simple insertion sort is used. The smallest available location will be
pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.

@p @!init procedure sort_avail; {sorts the available variable-size nodes
  by location}
var @!p,@!q,@!r: pointer; {indices into |mem|}
@!old_rover:pointer; {initial |rover| setting}
begin p:=get_node(@'10000000000); {merge adjacent free areas}
p:=rlink(rover); rlink(rover):=max_halfword; old_rover:=rover;
while p<>old_rover do @<Sort |p| into the list starting at |rover|
  and advance |p| to |rlink(p)|@>;
p:=rover;
while rlink(p)<>max_halfword do
  begin llink(rlink(p)):=p; p:=rlink(p);
  end;
rlink(p):=rover; llink(rover):=p;
end;
tini

@ The following |while| loop is guaranteed to
terminate, since the list that starts at
|rover| ends with |max_halfword| during the sorting procedure.

@<Sort |p|...@>=
if p<rover then
  begin q:=p; p:=rlink(q); rlink(q):=rover; rover:=q;
  end
else  begin q:=rover;
  while rlink(q)<p do q:=rlink(q);
  r:=rlink(p); rlink(p):=rlink(q); rlink(q):=p; p:=r;
  end

@* \[11] Memory layout.
Some areas of |mem| are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For
example, locations |mem_min| to |mem_min+2| are always used to store the
specification for null pen coordinates that are `$(0,0)$'. The
following macro definitions accomplish the static allocation by giving
symbolic names to the fixed positions. Static variable-size nodes appear
in locations |mem_min| through |lo_mem_stat_max|, and static single-word nodes
appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.

@d null_coords==mem_min {specification for pen offsets of $(0,0)$}
@d null_pen==null_coords+3 {we will define |coord_node_size=3|}
@d dep_head==null_pen+10 {and |pen_node_size=10|}
@d zero_val==dep_head+2 {two words for a permanently zero value}
@d temp_val==zero_val+2 {two words for a temporary value node}
@d end_attr==temp_val {we use |end_attr+2| only}
@d inf_val==end_attr+2 {and |inf_val+1| only}
@d bad_vardef==inf_val+2 {two words for \&{vardef} error recovery}
@d lo_mem_stat_max==bad_vardef+1  {largest statically
  allocated word in the variable-size |mem|}
@#
@d sentinel==mem_top {end of sorted lists}
@d temp_head==mem_top-1 {head of a temporary list of some kind}
@d hold_head==mem_top-2 {head of a temporary list of another kind}
@d hi_mem_stat_min==mem_top-2 {smallest statically allocated word in
  the one-word |mem|}

@ The following code gets the dynamic part of |mem| off to a good start,
when \MF\ is initializing itself the slow way.

@<Initialize table entries (done by \.{INIMF} only)@>=
@^data structure assumptions@>
rover:=lo_mem_stat_max+1; {initialize the dynamic memory}
link(rover):=empty_flag;
node_size(rover):=1000; {which is a 1000-word available node}
llink(rover):=rover; rlink(rover):=rover;@/
lo_mem_max:=rover+1000; link(lo_mem_max):=null; info(lo_mem_max):=null;@/
for k:=hi_mem_stat_min to mem_top do
  mem[k]:=mem[lo_mem_max]; {clear list heads}
avail:=null; mem_end:=mem_top;
hi_mem_min:=hi_mem_stat_min; {initialize the one-word memory}
var_used:=lo_mem_stat_max+1-mem_min; dyn_used:=mem_top+1-hi_mem_min;
  {initialize statistics}

@ The procedure |flush_list(p)| frees an entire linked list of one-word
nodes that starts at a given position, until coming to |sentinel| or a
pointer that is not in the one-word region. Another procedure,
|flush_node_list|, frees an entire linked list of one-word and two-word
nodes, until coming to a |null| pointer.
@^inner loop@>

@p procedure flush_list(@!p:pointer); {makes list of single-word nodes
  available}
label done;
var @!q,@!r:pointer; {list traversers}
begin if p>=hi_mem_min then if p<>sentinel then
  begin r:=p;
  repeat q:=r; r:=link(r); @!stat decr(dyn_used);@+tats@/
  if r<hi_mem_min then goto done;
  until r=sentinel;
  done: {now |q| is the last node on the list}
  link(q):=avail; avail:=p;
  end;
end;
@#
procedure flush_node_list(@!p:pointer);
var @!q:pointer; {the node being recycled}
begin while p<>null do
  begin q:=p; p:=link(p);
  if q<hi_mem_min then free_node(q,2)@+else free_avail(q);
  end;
end;

@ If \MF\ is extended improperly, the |mem| array might get screwed up.
For example, some pointers might be wrong, or some ``dead'' nodes might not
have been freed when the last reference to them disappeared. Procedures
|check_mem| and |search_mem| are available to help diagnose such
problems. These procedures make use of two arrays called |free| and
|was_free| that are present only if \MF's debugging routines have
been included. (You may want to decrease the size of |mem| while you
@^debugging@>
are debugging.)

@<Glob...@>=
@!debug @!free: packed array [mem_min..mem_max] of boolean; {free cells}
@t\hskip1em@>@!was_free: packed array [mem_min..mem_max] of boolean;
  {previously free cells}
@t\hskip1em@>@!was_mem_end,@!was_lo_max,@!was_hi_min: pointer;
  {previous |mem_end|, |lo_mem_max|,and |hi_mem_min|}
@t\hskip1em@>@!panicking:boolean; {do we want to check memory constantly?}
gubed

@ @<Set initial...@>=
@!debug was_mem_end:=mem_min; {indicate that everything was previously free}
was_lo_max:=mem_min; was_hi_min:=mem_max;
panicking:=false;
gubed

@ Procedure |check_mem| makes sure that the available space lists of
|mem| are well formed, and it optionally prints out all locations
that are reserved now but were free the last time this procedure was called.

@p @!debug procedure check_mem(@!print_locs : boolean);
label done1,done2; {loop exits}
var @!p,@!q,@!r:pointer; {current locations of interest in |mem|}
@!clobbered:boolean; {is something amiss?}
begin for p:=mem_min to lo_mem_max do free[p]:=false; {you can probably
  do this faster}
for p:=hi_mem_min to mem_end do free[p]:=false; {ditto}
@<Check single-word |avail| list@>;
@<Check variable-size |avail| list@>;
@<Check flags of unavailable nodes@>;
@<Check the list of linear dependencies@>;
if print_locs then @<Print newly busy locations@>;
for p:=mem_min to lo_mem_max do was_free[p]:=free[p];
for p:=hi_mem_min to mem_end do was_free[p]:=free[p];
  {|was_free:=free| might be faster}
was_mem_end:=mem_end; was_lo_max:=lo_mem_max; was_hi_min:=hi_mem_min;
end;
gubed

@ @<Check single-word...@>=
p:=avail; q:=null; clobbered:=false;
while p<>null do
  begin if (p>mem_end)or(p<hi_mem_min) then clobbered:=true
  else if free[p] then clobbered:=true;
  if clobbered then
    begin print_nl("AVAIL list clobbered at ");
@.AVAIL list clobbered...@>
    print_int(q); goto done1;
    end;
  free[p]:=true; q:=p; p:=link(q);
  end;
done1:

@ @<Check variable-size...@>=
p:=rover; q:=null; clobbered:=false;
repeat if (p>=lo_mem_max)or(p<mem_min) then clobbered:=true
  else if (rlink(p)>=lo_mem_max)or(rlink(p)<mem_min) then clobbered:=true
  else if  not(is_empty(p))or(node_size(p)<2)or@|
   (p+node_size(p)>lo_mem_max)or@| (llink(rlink(p))<>p) then clobbered:=true;
  if clobbered then
  begin print_nl("Double-AVAIL list clobbered at ");
@.Double-AVAIL list clobbered...@>
  print_int(q); goto done2;
  end;
for q:=p to p+node_size(p)-1 do {mark all locations free}
  begin if free[q] then
    begin print_nl("Doubly free location at ");
@.Doubly free location...@>
    print_int(q); goto done2;
    end;
  free[q]:=true;
  end;
q:=p; p:=rlink(p);
until p=rover;
done2:

@ @<Check flags...@>=
p:=mem_min;
while p<=lo_mem_max do {node |p| should not be empty}
  begin if is_empty(p) then
    begin print_nl("Bad flag at "); print_int(p);
@.Bad flag...@>
    end;
  while (p<=lo_mem_max) and not free[p] do incr(p);
  while (p<=lo_mem_max) and free[p] do incr(p);
  end

@ @<Print newly busy...@>=
begin print_nl("New busy locs:");
@.New busy locs@>
for p:=mem_min to lo_mem_max do
  if not free[p] and ((p>was_lo_max) or was_free[p]) then
    begin print_char(" "); print_int(p);
    end;
for p:=hi_mem_min to mem_end do
  if not free[p] and
   ((p<was_hi_min) or (p>was_mem_end) or was_free[p]) then
    begin print_char(" "); print_int(p);
    end;
end

@ The |search_mem| procedure attempts to answer the question ``Who points
to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
that might not be of type |two_halves|. Strictly speaking, this is
@^dirty \PASCAL@>
undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
point to |p| purely by coincidence). But for debugging purposes, we want
to rule out the places that do {\sl not\/} point to |p|, so a few false
drops are tolerable.

@p @!debug procedure search_mem(@!p:pointer); {look for pointers to |p|}
var @!q:integer; {current position being searched}
begin for q:=mem_min to lo_mem_max do
  begin if link(q)=p then
    begin print_nl("LINK("); print_int(q); print_char(")");
    end;
  if info(q)=p then
    begin print_nl("INFO("); print_int(q); print_char(")");
    end;
  end;
for q:=hi_mem_min to mem_end do
  begin if link(q)=p then
    begin print_nl("LINK("); print_int(q); print_char(")");
    end;
  if info(q)=p then
    begin print_nl("INFO("); print_int(q); print_char(")");
    end;
  end;
@<Search |eqtb| for equivalents equal to |p|@>;
end;
gubed

@* \[12] The command codes.
Before we can go much further, we need to define symbolic names for the internal
code numbers that represent the various commands obeyed by \MF. These codes
are somewhat arbitrary, but not completely so. For example,
some codes have been made adjacent so that |case| statements in the
program need not consider cases that are widely spaced, or so that |case|
statements can be replaced by |if| statements. A command can begin an
expression if and only if its code lies between |min_primary_command| and
|max_primary_command|, inclusive. The first token of a statement that doesn't
begin with an expression has a command code between |min_command| and
|max_statement_command|, inclusive. The ordering of the highest-numbered
commands (|comma<semicolon<end_group<stop|) is crucial for the parsing
and error-recovery methods of this program.

At any rate, here is the list, for future reference.

@d if_test=1 {conditional text (\&{if})}
@d fi_or_else=2 {delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}}
@d input=3 {input a source file (\&{input}, \&{endinput})}
@d iteration=4 {iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor})}
@d repeat_loop=5 {special command substituted for \&{endfor}}
@d exit_test=6 {premature exit from a loop (\&{exitif})}
@d relax=7 {do nothing (\.{\char`\\})}
@d scan_tokens=8 {put a string into the input buffer}
@d expand_after=9 {look ahead one token}
@d defined_macro=10 {a macro defined by the user}
@d min_command=defined_macro+1
@d display_command=11 {online graphic output (\&{display})}
@d save_command=12 {save a list of tokens (\&{save})}
@d interim_command=13 {save an internal quantity (\&{interim})}
@d let_command=14 {redefine a symbolic token (\&{let})}
@d new_internal=15 {define a new internal quantity (\&{newinternal})}
@d macro_def=16 {define a macro (\&{def}, \&{vardef}, etc.)}
@d ship_out_command=17 {output a character (\&{shipout})}
@d add_to_command=18 {add to edges (\&{addto})}
@d cull_command=19 {cull and normalize edges (\&{cull})}
@d tfm_command=20 {command for font metric info (\&{ligtable}, etc.)}
@d protection_command=21 {set protection flag (\&{outer}, \&{inner})}
@d show_command=22 {diagnostic output (\&{show}, \&{showvariable}, etc.)}
@d mode_command=23 {set interaction level (\&{batchmode}, etc.)}
@d random_seed=24 {initialize random number generator (\&{randomseed})}
@d message_command=25 {communicate to user (\&{message}, \&{errmessage})}
@d every_job_command=26 {designate a starting token (\&{everyjob})}
@d delimiters=27 {define a pair of delimiters (\&{delimiters})}
@d open_window=28 {define a window on the screen (\&{openwindow})}
@d special_command=29 {output special info (\&{special}, \&{numspecial})}
@d type_name=30 {declare a type (\&{numeric}, \&{pair}, etc.}
@d max_statement_command=type_name
@d min_primary_command=type_name
@d left_delimiter=31 {the left delimiter of a matching pair}
@d begin_group=32 {beginning of a group (\&{begingroup})}
@d nullary=33 {an operator without arguments (e.g., \&{normaldeviate})}
@d unary=34 {an operator with one argument (e.g., \&{sqrt})}
@d str_op=35 {convert a suffix to a string (\&{str})}
@d cycle=36 {close a cyclic path (\&{cycle})}
@d primary_binary=37 {binary operation taking `\&{of}' (e.g., \&{point})}
@d capsule_token=38 {a value that has been put into a token list}
@d string_token=39 {a string constant (e.g., |"hello"|)}
@d internal_quantity=40 {internal numeric parameter (e.g., \&{pausing})}
@d min_suffix_token=internal_quantity
@d tag_token=41 {a symbolic token without a primitive meaning}
@d numeric_token=42 {a numeric constant (e.g., \.{3.14159})}
@d max_suffix_token=numeric_token
@d plus_or_minus=43 {either `\.+' or `\.-'}
@d max_primary_command=plus_or_minus {should also be |numeric_token+1|}
@d min_tertiary_command=plus_or_minus
@d tertiary_secondary_macro=44 {a macro defined by \&{secondarydef}}
@d tertiary_binary=45 {an operator at the tertiary level (e.g., `\.{++}')}
@d max_tertiary_command=tertiary_binary
@d left_brace=46 {the operator `\.{\char`\{}'}
@d min_expression_command=left_brace
@d path_join=47 {the operator `\.{..}'}
@d ampersand=48 {the operator `\.\&'}
@d expression_tertiary_macro=49 {a macro defined by \&{tertiarydef}}
@d expression_binary=50 {an operator at the expression level (e.g., `\.<')}
@d equals=51 {the operator `\.='}
@d max_expression_command=equals
@d and_command=52 {the operator `\&{and}'}
@d min_secondary_command=and_command
@d secondary_primary_macro=53 {a macro defined by \&{primarydef}}
@d slash=54 {the operator `\./'}
@d secondary_binary=55 {an operator at the binary level (e.g., \&{shifted})}
@d max_secondary_command=secondary_binary
@d param_type=56 {type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.)}
@d controls=57 {specify control points explicitly (\&{controls})}
@d tension=58 {specify tension between knots (\&{tension})}
@d at_least=59 {bounded tension value (\&{atleast})}
@d curl_command=60 {specify curl at an end knot (\&{curl})}
@d macro_special=61 {special macro operators (\&{quote}, \.{\#\AT!}, etc.)}
@d right_delimiter=62 {the right delimiter of a matching pair}
@d left_bracket=63 {the operator `\.['}
@d right_bracket=64 {the operator `\.]'}
@d right_brace=65 {the operator `\.{\char`\}}'}
@d with_option=66 {option for filling (\&{withpen}, \&{withweight})}
@d cull_op=67 {the operator `\&{keeping}' or `\&{dropping}'}
@d thing_to_add=68
  {variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also})}
@d of_token=69 {the operator `\&{of}'}
@d from_token=70 {the operator `\&{from}'}
@d to_token=71 {the operator `\&{to}'}
@d at_token=72 {the operator `\&{at}'}
@d in_window=73 {the operator `\&{inwindow}'}
@d step_token=74 {the operator `\&{step}'}
@d until_token=75 {the operator `\&{until}'}
@d lig_kern_token=76
  {the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc.}
@d assignment=77 {the operator `\.{:=}'}
@d skip_to=78 {the operation `\&{skipto}'}
@d bchar_label=79 {the operator `\.{\char'174\char'174:}'}
@d double_colon=80 {the operator `\.{::}'}
@d colon=81 {the operator `\.:'}
@#
@d comma=82 {the operator `\.,', must be |colon+1|}
@d end_of_statement==cur_cmd>comma
@d semicolon=83 {the operator `\.;', must be |comma+1|}
@d end_group=84 {end a group (\&{endgroup}), must be |semicolon+1|}
@d stop=85 {end a job (\&{end}, \&{dump}), must be |end_group+1|}
@d max_command_code=stop
@d outer_tag=max_command_code+1 {protection code added to command code}

@<Types...@>=
@!command_code=1..max_command_code;

@ Variables and capsules in \MF\ have a variety of ``types,''
distinguished by the following code numbers:

@d undefined=0 {no type has been declared}
@d unknown_tag=1 {this constant is added to certain type codes below}
@d vacuous=1 {no expression was present}
@d boolean_type=2 {\&{boolean} with a known value}
@d unknown_boolean=boolean_type+unknown_tag
@d string_type=4 {\&{string} with a known value}
@d unknown_string=string_type+unknown_tag
@d pen_type=6 {\&{pen} with a known value}
@d unknown_pen=pen_type+unknown_tag
@d future_pen=8 {subexpression that will become a \&{pen} at a higher level}
@d path_type=9 {\&{path} with a known value}
@d unknown_path=path_type+unknown_tag
@d picture_type=11 {\&{picture} with a known value}
@d unknown_picture=picture_type+unknown_tag
@d transform_type=13 {\&{transform} variable or capsule}
@d pair_type=14 {\&{pair} variable or capsule}
@d numeric_type=15 {variable that has been declared \&{numeric} but not used}
@d known=16 {\&{numeric} with a known value}
@d dependent=17 {a linear combination with |fraction| coefficients}
@d proto_dependent=18 {a linear combination with |scaled| coefficients}
@d independent=19 {\&{numeric} with unknown value}
@d token_list=20 {variable name or suffix argument or text argument}
@d structured=21 {variable with subscripts and attributes}
@d unsuffixed_macro=22 {variable defined with \&{vardef} but no \.{\AT!\#}}
@d suffixed_macro=23 {variable defined with \&{vardef} and \.{\AT!\#}}
@#
@d unknown_types==unknown_boolean,unknown_string,
  unknown_pen,unknown_picture,unknown_path

@<Basic printing procedures@>=
procedure print_type(@!t:small_number);
begin case t of
vacuous:print("vacuous");
boolean_type:print("boolean");
unknown_boolean:print("unknown boolean");
string_type:print("string");
unknown_string:print("unknown string");
pen_type:print("pen");
unknown_pen:print("unknown pen");
future_pen:print("future pen");
path_type:print("path");
unknown_path:print("unknown path");
picture_type:print("picture");
unknown_picture:print("unknown picture");
transform_type:print("transform");
pair_type:print("pair");
known:print("known numeric");
dependent:print("dependent");
proto_dependent:print("proto-dependent");
numeric_type:print("numeric");
independent:print("independent");
token_list:print("token list");
structured:print("structured");
unsuffixed_macro:print("unsuffixed macro");
suffixed_macro:print("suffixed macro");
othercases print("undefined")
endcases;
end;

@ Values inside \MF\ are stored in two-word nodes that have a |name_type|
as well as a |type|. The possibilities for |name_type| are defined
here; they will be explained in more detail later.

@d root=0 {|name_type| at the top level of a variable}
@d saved_root=1 {same, when the variable has been saved}
@d structured_root=2 {|name_type| where a |structured| branch occurs}
@d subscr=3 {|name_type| in a subscript node}
@d attr=4 {|name_type| in an attribute node}
@d x_part_sector=5 {|name_type| in the \&{xpart} of a node}
@d y_part_sector=6 {|name_type| in the \&{ypart} of a node}
@d xx_part_sector=7 {|name_type| in the \&{xxpart} of a node}
@d xy_part_sector=8 {|name_type| in the \&{xypart} of a node}
@d yx_part_sector=9 {|name_type| in the \&{yxpart} of a node}
@d yy_part_sector=10 {|name_type| in the \&{yypart} of a node}
@d capsule=11 {|name_type| in stashed-away subexpressions}
@d token=12 {|name_type| in a numeric token or string token}

@ Primitive operations that produce values have a secondary identification
code in addition to their command code; it's something like genera and species.
For example, `\.*' has the command code |primary_binary|, and its
secondary identification is |times|. The secondary codes start at 30 so that
they don't overlap with the type codes; some type codes (e.g., |string_type|)
are used as operators as well as type identifications.

@d true_code=30 {operation code for \.{true}}
@d false_code=31 {operation code for \.{false}}
@d null_picture_code=32 {operation code for \.{nullpicture}}
@d null_pen_code=33 {operation code for \.{nullpen}}
@d job_name_op=34 {operation code for \.{jobname}}
@d read_string_op=35 {operation code for \.{readstring}}
@d pen_circle=36 {operation code for \.{pencircle}}
@d normal_deviate=37 {operation code for \.{normaldeviate}}
@d odd_op=38 {operation code for \.{odd}}
@d known_op=39 {operation code for \.{known}}
@d unknown_op=40 {operation code for \.{unknown}}
@d not_op=41 {operation code for \.{not}}
@d decimal=42 {operation code for \.{decimal}}
@d reverse=43 {operation code for \.{reverse}}
@d make_path_op=44 {operation code for \.{makepath}}
@d make_pen_op=45 {operation code for \.{makepen}}
@d total_weight_op=46 {operation code for \.{totalweight}}
@d oct_op=47 {operation code for \.{oct}}
@d hex_op=48 {operation code for \.{hex}}
@d ASCII_op=49 {operation code for \.{ASCII}}
@d char_op=50 {operation code for \.{char}}
@d length_op=51 {operation code for \.{length}}
@d turning_op=52 {operation code for \.{turningnumber}}
@d x_part=53 {operation code for \.{xpart}}
@d y_part=54 {operation code for \.{ypart}}
@d xx_part=55 {operation code for \.{xxpart}}
@d xy_part=56 {operation code for \.{xypart}}
@d yx_part=57 {operation code for \.{yxpart}}
@d yy_part=58 {operation code for \.{yypart}}
@d sqrt_op=59 {operation code for \.{sqrt}}
@d m_exp_op=60 {operation code for \.{mexp}}
@d m_log_op=61 {operation code for \.{mlog}}
@d sin_d_op=62 {operation code for \.{sind}}
@d cos_d_op=63 {operation code for \.{cosd}}
@d floor_op=64 {operation code for \.{floor}}
@d uniform_deviate=65 {operation code for \.{uniformdeviate}}
@d char_exists_op=66 {operation code for \.{charexists}}
@d angle_op=67 {operation code for \.{angle}}
@d cycle_op=68 {operation code for \.{cycle}}
@d plus=69 {operation code for \.+}
@d minus=70 {operation code for \.-}
@d times=71 {operation code for \.*}
@d over=72 {operation code for \./}
@d pythag_add=73 {operation code for \.{++}}
@d pythag_sub=74 {operation code for \.{+-+}}
@d or_op=75 {operation code for \.{or}}
@d and_op=76 {operation code for \.{and}}
@d less_than=77 {operation code for \.<}
@d less_or_equal=78 {operation code for \.{<=}}
@d greater_than=79 {operation code for \.>}
@d greater_or_equal=80 {operation code for \.{>=}}
@d equal_to=81 {operation code for \.=}
@d unequal_to=82 {operation code for \.{<>}}
@d concatenate=83 {operation code for \.\&}
@d rotated_by=84 {operation code for \.{rotated}}
@d slanted_by=85 {operation code for \.{slanted}}
@d scaled_by=86 {operation code for \.{scaled}}
@d shifted_by=87 {operation code for \.{shifted}}
@d transformed_by=88 {operation code for \.{transformed}}
@d x_scaled=89 {operation code for \.{xscaled}}
@d y_scaled=90 {operation code for \.{yscaled}}
@d z_scaled=91 {operation code for \.{zscaled}}
@d intersect=92 {operation code for \.{intersectiontimes}}
@d double_dot=93 {operation code for improper \.{..}}
@d substring_of=94 {operation code for \.{substring}}
@d min_of=substring_of
@d subpath_of=95 {operation code for \.{subpath}}
@d direction_time_of=96 {operation code for \.{directiontime}}
@d point_of=97 {operation code for \.{point}}
@d precontrol_of=98 {operation code for \.{precontrol}}
@d postcontrol_of=99 {operation code for \.{postcontrol}}
@d pen_offset_of=100 {operation code for \.{penoffset}}

@p procedure print_op(@!c:quarterword);
begin if c<=numeric_type then print_type(c)
else case c of
true_code:print("true");
false_code:print("false");
null_picture_code:print("nullpicture");
null_pen_code:print("nullpen");
job_name_op:print("jobname");
read_string_op:print("readstring");
pen_circle:print("pencircle");
normal_deviate:print("normaldeviate");
odd_op:print("odd");
known_op:print("known");
unknown_op:print("unknown");
not_op:print("not");
decimal:print("decimal");
reverse:print("reverse");
make_path_op:print("makepath");
make_pen_op:print("makepen");
total_weight_op:print("totalweight");
oct_op:print("oct");
hex_op:print("hex");
ASCII_op:print("ASCII");
char_op:print("char");
length_op:print("length");
turning_op:print("turningnumber");
x_part:print("xpart");
y_part:print("ypart");
xx_part:print("xxpart");
xy_part:print("xypart");
yx_part:print("yxpart");
yy_part:print("yypart");
sqrt_op:print("sqrt");
m_exp_op:print("mexp");
m_log_op:print("mlog");
sin_d_op:print("sind");
cos_d_op:print("cosd");
floor_op:print("floor");
uniform_deviate:print("uniformdeviate");
char_exists_op:print("charexists");
angle_op:print("angle");
cycle_op:print("cycle");
plus:print_char("+");
minus:print_char("-");
times:print_char("*");
over:print_char("/");
pythag_add:print("++");
pythag_sub:print("+-+");
or_op:print("or");
and_op:print("and");
less_than:print_char("<");
less_or_equal:print("<=");
greater_than:print_char(">");
greater_or_equal:print(">=");
equal_to:print_char("=");
unequal_to:print("<>");
concatenate:print("&");
rotated_by:print("rotated");
slanted_by:print("slanted");
scaled_by:print("scaled");
shifted_by:print("shifted");
transformed_by:print("transformed");
x_scaled:print("xscaled");
y_scaled:print("yscaled");
z_scaled:print("zscaled");
intersect:print("intersectiontimes");
substring_of:print("substring");
subpath_of:print("subpath");
direction_time_of:print("directiontime");
point_of:print("point");
precontrol_of:print("precontrol");
postcontrol_of:print("postcontrol");
pen_offset_of:print("penoffset");
othercases print("..")
endcases;
end;

@ \MF\ also has a bunch of internal parameters that a user might want to
fuss with. Every such parameter has an identifying code number, defined here.

@d tracing_titles=1 {show titles online when they appear}
@d tracing_equations=2 {show each variable when it becomes known}
@d tracing_capsules=3 {show capsules too}
@d tracing_choices=4 {show the control points chosen for paths}
@d tracing_specs=5 {show subdivision of paths into octants before digitizing}
@d tracing_pens=6 {show details of pens that are made}
@d tracing_commands=7 {show commands and operations before they are performed}
@d tracing_restores=8 {show when a variable or internal is restored}
@d tracing_macros=9 {show macros before they are expanded}
@d tracing_edges=10 {show digitized edges as they are computed}
@d tracing_output=11 {show digitized edges as they are output}
@d tracing_stats=12 {show memory usage at end of job}
@d tracing_online=13 {show long diagnostics on terminal and in the log file}
@d year=14 {the current year (e.g., 1984)}
@d month=15 {the current month (e.g, 3 $\equiv$ March)}
@d day=16 {the current day of the month}
@d time=17 {the number of minutes past midnight when this job started}
@d char_code=18 {the number of the next character to be output}
@d char_ext=19 {the extension code of the next character to be output}
@d char_wd=20 {the width of the next character to be output}
@d char_ht=21 {the height of the next character to be output}
@d char_dp=22 {the depth of the next character to be output}
@d char_ic=23 {the italic correction of the next character to be output}
@d char_dx=24 {the device's $x$ movement for the next character, in pixels}
@d char_dy=25 {the device's $y$ movement for the next character, in pixels}
@d design_size=26 {the unit of measure used for |char_wd..char_ic|, in points}
@d hppp=27 {the number of horizontal pixels per point}
@d vppp=28 {the number of vertical pixels per point}
@d x_offset=29 {horizontal displacement of shipped-out characters}
@d y_offset=30 {vertical displacement of shipped-out characters}
@d pausing=31 {positive to display lines on the terminal before they are read}
@d showstopping=32 {positive to stop after each \&{show} command}
@d fontmaking=33 {positive if font metric output is to be produced}
@d proofing=34 {positive for proof mode, negative to suppress output}
@d smoothing=35 {positive if moves are to be ``smoothed''}
@d autorounding=36 {controls path modification to ``good'' points}
@d granularity=37 {autorounding uses this pixel size}
@d fillin=38 {extra darkness of diagonal lines}
@d turning_check=39 {controls reorientation of clockwise paths}
@d warning_check=40 {controls error message when variable value is large}
@d boundary_char=41 {the right boundary character for ligatures}
@d max_given_internal=41

@<Glob...@>=
@!internal:array[1..max_internal] of scaled;
  {the values of internal quantities}
@!int_name:array[1..max_internal] of str_number;
  {their names}
@!int_ptr:max_given_internal..max_internal;
  {the maximum internal quantity defined so far}

@ @<Set init...@>=
for k:=1 to max_given_internal do internal[k]:=0;
int_ptr:=max_given_internal;

@ The symbolic names for internal quantities are put into \MF's hash table
by using a routine called |primitive|, which will be defined later. Let us
enter them now, so that we don't have to list all those names again
anywhere else.

@<Put each of \MF's primitives into the hash table@>=
primitive("tracingtitles",internal_quantity,tracing_titles);@/
@!@:tracingtitles_}{\&{tracingtitles} primitive@>
primitive("tracingequations",internal_quantity,tracing_equations);@/
@!@:tracing_equations_}{\&{tracingequations} primitive@>
primitive("tracingcapsules",internal_quantity,tracing_capsules);@/
@!@:tracing_capsules_}{\&{tracingcapsules} primitive@>
primitive("tracingchoices",internal_quantity,tracing_choices);@/
@!@:tracing_choices_}{\&{tracingchoices} primitive@>
primitive("tracingspecs",internal_quantity,tracing_specs);@/
@!@:tracing_specs_}{\&{tracingspecs} primitive@>
primitive("tracingpens",internal_quantity,tracing_pens);@/
@!@:tracing_pens_}{\&{tracingpens} primitive@>
primitive("tracingcommands",internal_quantity,tracing_commands);@/
@!@:tracing_commands_}{\&{tracingcommands} primitive@>
primitive("tracingrestores",internal_quantity,tracing_restores);@/
@!@:tracing_restores_}{\&{tracingrestores} primitive@>
primitive("tracingmacros",internal_quantity,tracing_macros);@/
@!@:tracing_macros_}{\&{tracingmacros} primitive@>
primitive("tracingedges",internal_quantity,tracing_edges);@/
@!@:tracing_edges_}{\&{tracingedges} primitive@>
primitive("tracingoutput",internal_quantity,tracing_output);@/
@!@:tracing_output_}{\&{tracingoutput} primitive@>
primitive("tracingstats",internal_quantity,tracing_stats);@/
@!@:tracing_stats_}{\&{tracingstats} primitive@>
primitive("tracingonline",internal_quantity,tracing_online);@/
@!@:tracing_online_}{\&{tracingonline} primitive@>
primitive("year",internal_quantity,year);@/
@!@:year_}{\&{year} primitive@>
primitive("month",internal_quantity,month);@/
@!@:month_}{\&{month} primitive@>
primitive("day",internal_quantity,day);@/
@!@:day_}{\&{day} primitive@>
primitive("time",internal_quantity,time);@/
@!@:time_}{\&{time} primitive@>
primitive("charcode",internal_quantity,char_code);@/
@!@:char_code_}{\&{charcode} primitive@>
primitive("charext",internal_quantity,char_ext);@/
@!@:char_ext_}{\&{charext} primitive@>
primitive("charwd",internal_quantity,char_wd);@/
@!@:char_wd_}{\&{charwd} primitive@>
primitive("charht",internal_quantity,char_ht);@/
@!@:char_ht_}{\&{charht} primitive@>
primitive("chardp",internal_quantity,char_dp);@/
@!@:char_dp_}{\&{chardp} primitive@>
primitive("charic",internal_quantity,char_ic);@/
@!@:char_ic_}{\&{charic} primitive@>
primitive("chardx",internal_quantity,char_dx);@/
@!@:char_dx_}{\&{chardx} primitive@>
primitive("chardy",internal_quantity,char_dy);@/
@!@:char_dy_}{\&{chardy} primitive@>
primitive("designsize",internal_quantity,design_size);@/
@!@:design_size_}{\&{designsize} primitive@>
primitive("hppp",internal_quantity,hppp);@/
@!@:hppp_}{\&{hppp} primitive@>
primitive("vppp",internal_quantity,vppp);@/
@!@:vppp_}{\&{vppp} primitive@>
primitive("xoffset",internal_quantity,x_offset);@/
@!@:x_offset_}{\&{xoffset} primitive@>
primitive("yoffset",internal_quantity,y_offset);@/
@!@:y_offset_}{\&{yoffset} primitive@>
primitive("pausing",internal_quantity,pausing);@/
@!@:pausing_}{\&{pausing} primitive@>
primitive("showstopping",internal_quantity,showstopping);@/
@!@:showstopping_}{\&{showstopping} primitive@>
primitive("fontmaking",internal_quantity,fontmaking);@/
@!@:fontmaking_}{\&{fontmaking} primitive@>
primitive("proofing",internal_quantity,proofing);@/
@!@:proofing_}{\&{proofing} primitive@>
primitive("smoothing",internal_quantity,smoothing);@/
@!@:smoothing_}{\&{smoothing} primitive@>
primitive("autorounding",internal_quantity,autorounding);@/
@!@:autorounding_}{\&{autorounding} primitive@>
primitive("granularity",internal_quantity,granularity);@/
@!@:granularity_}{\&{granularity} primitive@>
primitive("fillin",internal_quantity,fillin);@/
@!@:fillin_}{\&{fillin} primitive@>
primitive("turningcheck",internal_quantity,turning_check);@/
@!@:turning_check_}{\&{turningcheck} primitive@>
primitive("warningcheck",internal_quantity,warning_check);@/
@!@:warning_check_}{\&{warningcheck} primitive@>
primitive("boundarychar",internal_quantity,boundary_char);@/
@!@:boundary_char_}{\&{boundarychar} primitive@>

@ Well, we do have to list the names one more time, for use in symbolic
printouts.

@<Initialize table...@>=
int_name[tracing_titles]:="tracingtitles";
int_name[tracing_equations]:="tracingequations";
int_name[tracing_capsules]:="tracingcapsules";
int_name[tracing_choices]:="tracingchoices";
int_name[tracing_specs]:="tracingspecs";
int_name[tracing_pens]:="tracingpens";
int_name[tracing_commands]:="tracingcommands";
int_name[tracing_restores]:="tracingrestores";
int_name[tracing_macros]:="tracingmacros";
int_name[tracing_edges]:="tracingedges";
int_name[tracing_output]:="tracingoutput";
int_name[tracing_stats]:="tracingstats";
int_name[tracing_online]:="tracingonline";
int_name[year]:="year";
int_name[month]:="month";
int_name[day]:="day";
int_name[time]:="time";
int_name[char_code]:="charcode";
int_name[char_ext]:="charext";
int_name[char_wd]:="charwd";
int_name[char_ht]:="charht";
int_name[char_dp]:="chardp";
int_name[char_ic]:="charic";
int_name[char_dx]:="chardx";
int_name[char_dy]:="chardy";
int_name[design_size]:="designsize";
int_name[hppp]:="hppp";
int_name[vppp]:="vppp";
int_name[x_offset]:="xoffset";
int_name[y_offset]:="yoffset";
int_name[pausing]:="pausing";
int_name[showstopping]:="showstopping";
int_name[fontmaking]:="fontmaking";
int_name[proofing]:="proofing";
int_name[smoothing]:="smoothing";
int_name[autorounding]:="autorounding";
int_name[granularity]:="granularity";
int_name[fillin]:="fillin";
int_name[turning_check]:="turningcheck";
int_name[warning_check]:="warningcheck";
int_name[boundary_char]:="boundarychar";

@ The following procedure, which is called just before \MF\ initializes its
input and output, establishes the initial values of the date and time.
@^system dependencies@>
Since standard \PASCAL\ cannot provide such information, something special
is needed. The program here simply specifies July 4, 1776, at noon; but
users probably want a better approximation to the truth.

Note that the values are |scaled| integers. Hence \MF\ can no longer
be used after the year 32767.

@p procedure fix_date_and_time;
begin internal[time]:=12*60*unity; {minutes since midnight}
internal[day]:=4*unity; {fourth day of the month}
internal[month]:=7*unity; {seventh month of the year}
internal[year]:=1776*unity; {Anno Domini}
end;

@ \MF\ is occasionally supposed to print diagnostic information that
goes only into the transcript file, unless |tracing_online| is positive.
Now that we have defined |tracing_online| we can define
two routines that adjust the destination of print commands:

@<Basic printing...@>=
procedure begin_diagnostic; {prepare to do some tracing}
begin old_setting:=selector;
if(internal[tracing_online]<=0)and(selector=term_and_log) then
  begin decr(selector);
  if history=spotless then history:=warning_issued;
  end;
end;
@#
procedure end_diagnostic(@!blank_line:boolean);
  {restore proper conditions after tracing}
begin print_nl("");
if blank_line then print_ln;
selector:=old_setting;
end;

@ Of course we had better declare another global variable, if the previous
routines are going to work.

@<Glob...@>=
@!old_setting:0..max_selector;

@ We will occasionally use |begin_diagnostic| in connection with line-number
printing, as follows. (The parameter |s| is typically |"Path"| or
|"Cycle spec"|, etc.)

@<Basic printing...@>=
procedure print_diagnostic(@!s,@!t:str_number;@!nuline:boolean);
begin begin_diagnostic;
if nuline then print_nl(s)@+else print(s);
print(" at line "); print_int(line);
print(t); print_char(":");
end;

@ The 256 |ASCII_code| characters are grouped into classes by means of
the |char_class| table. Individual class numbers have no semantic
or syntactic significance, except in a few instances defined here.
There's also |max_class|, which can be used as a basis for additional
class numbers in nonstandard extensions of \MF.

@d digit_class=0 {the class number of \.{0123456789}}
@d period_class=1 {the class number of `\..'}
@d space_class=2 {the class number of spaces and nonstandard characters}
@d percent_class=3 {the class number of `\.\%'}
@d string_class=4 {the class number of `\."'}
@d right_paren_class=8 {the class number of `\.)'}
@d isolated_classes==5,6,7,8 {characters that make length-one tokens only}
@d letter_class=9 {letters and the underline character}
@d left_bracket_class=17 {`\.['}
@d right_bracket_class=18 {`\.]'}
@d invalid_class=20 {bad character in the input}
@d max_class=20 {the largest class number}

@<Glob...@>=
@!char_class:array[ASCII_code] of 0..max_class; {the class numbers}

@ If changes are made to accommodate non-ASCII character sets, they should
follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
@^system dependencies@>

@<Set init...@>=
for k:="0" to "9" do char_class[k]:=digit_class;
char_class["."]:=period_class;
char_class[" "]:=space_class;
char_class["%"]:=percent_class;
char_class[""""]:=string_class;@/
char_class[","]:=5;
char_class[";"]:=6;
char_class["("]:=7;
char_class[")"]:=right_paren_class;
for k:="A" to "Z" do char_class[k]:=letter_class;
for k:="a" to "z" do char_class[k]:=letter_class;
char_class["_"]:=letter_class;@/
char_class["<"]:=10;
char_class["="]:=10;
char_class[">"]:=10;
char_class[":"]:=10;
char_class["|"]:=10;@/
char_class["`"]:=11;
char_class["'"]:=11;@/
char_class["+"]:=12;
char_class["-"]:=12;@/
char_class["/"]:=13;
char_class["*"]:=13;
char_class["\"]:=13;@/
char_class["!"]:=14;
char_class["?"]:=14;@/
char_class["#"]:=15;
char_class["&"]:=15;
char_class["@@"]:=15;
char_class["$"]:=15;@/
char_class["^"]:=16;
char_class["~"]:=16;@/
char_class["["]:=left_bracket_class;
char_class["]"]:=right_bracket_class;@/
char_class["{"]:=19;
char_class["}"]:=19;@/
for k:=0 to " "-1 do char_class[k]:=invalid_class;
for k:=127 to 255 do char_class[k]:=invalid_class;

@* \[13] The hash table.
Symbolic tokens are stored and retrieved by means of a fairly standard hash
table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
table, it is never removed.

The actual sequence of characters forming a symbolic token is
stored in the |str_pool| array together with all the other strings. An
auxiliary array |hash| consists of items with two halfword fields per
word. The first of these, called |next(p)|, points to the next identifier
belonging to the same coalesced list as the identifier corresponding to~|p|;
and the other, called |text(p)|, points to the |str_start| entry for
|p|'s identifier. If position~|p| of the hash table is empty, we have
|text(p)=0|; if position |p| is either empty or the end of a coalesced
hash list, we have |next(p)=0|.

An auxiliary pointer variable called |hash_used| is maintained in such a
way that all locations |p>=hash_used| are nonempty. The global variable
|st_count| tells how many symbolic tokens have been defined, if statistics
are being kept.

The first 256 locations of |hash| are reserved for symbols of length one.

There's a parallel array called |eqtb| that contains the current equivalent
values of each symbolic token. The entries of this array consist of
two halfwords called |eq_type| (a command code) and |equiv| (a secondary
piece of information that qualifies the |eq_type|).

@d next(#) == hash[#].lh {link for coalesced lists}
@d text(#) == hash[#].rh {string number for symbolic token name}
@d eq_type(#) == eqtb[#].lh {the current ``meaning'' of a symbolic token}
@d equiv(#) == eqtb[#].rh {parametric part of a token's meaning}
@d hash_base=257 {hashing actually starts here}
@d hash_is_full == (hash_used=hash_base) {are all positions occupied?}

@<Glob...@>=
@!hash_used:pointer; {allocation pointer for |hash|}
@!st_count:integer; {total number of known identifiers}

@ Certain entries in the hash table are ``frozen'' and not redefinable,
since they are used in error recovery.

@d hash_top==hash_base+hash_size {the first location of the frozen area}
@d frozen_inaccessible==hash_top {|hash| location to protect the frozen area}
@d frozen_repeat_loop==hash_top+1 {|hash| location of a loop-repeat token}
@d frozen_right_delimiter==hash_top+2 {|hash| location of a permanent `\.)'}
@d frozen_left_bracket==hash_top+3 {|hash| location of a permanent `\.['}
@d frozen_slash==hash_top+4 {|hash| location of a permanent `\./'}
@d frozen_colon==hash_top+5 {|hash| location of a permanent `\.:'}
@d frozen_semicolon==hash_top+6 {|hash| location of a permanent `\.;'}
@d frozen_end_for==hash_top+7 {|hash| location of a permanent \&{endfor}}
@d frozen_end_def==hash_top+8 {|hash| location of a permanent \&{enddef}}
@d frozen_fi==hash_top+9 {|hash| location of a permanent \&{fi}}
@d frozen_end_group==hash_top+10
  {|hash| location of a permanent `\.{endgroup}'}
@d frozen_bad_vardef==hash_top+11 {|hash| location of `\.{a bad variable}'}
@d frozen_undefined==hash_top+12 {|hash| location that never gets defined}
@d hash_end==hash_top+12 {the actual size of the |hash| and |eqtb| arrays}

@<Glob...@>=
@!hash: array[1..hash_end] of two_halves; {the hash table}
@!eqtb: array[1..hash_end] of two_halves; {the equivalents}

@ @<Set init...@>=
next(1):=0; text(1):=0; eq_type(1):=tag_token; equiv(1):=null;
for k:=2 to hash_end do
  begin hash[k]:=hash[1]; eqtb[k]:=eqtb[1];
  end;

@ @<Initialize table entries...@>=
hash_used:=frozen_inaccessible; {nothing is used}
st_count:=0;@/
text(frozen_bad_vardef):="a bad variable";
text(frozen_fi):="fi";
text(frozen_end_group):="endgroup";
text(frozen_end_def):="enddef";
text(frozen_end_for):="endfor";@/
text(frozen_semicolon):=";";
text(frozen_colon):=":";
text(frozen_slash):="/";
text(frozen_left_bracket):="[";
text(frozen_right_delimiter):=")";@/
text(frozen_inaccessible):=" INACCESSIBLE";@/
eq_type(frozen_right_delimiter):=right_delimiter;

@ @<Check the ``constant'' values...@>=
if hash_end+max_internal>max_halfword then bad:=21;

@ Here is the subroutine that searches the hash table for an identifier
that matches a given string of length~|l| appearing in |buffer[j..
(j+l-1)]|. If the identifier is not found, it is inserted; hence it
will always be found, and the corresponding hash table address
will be returned.

@p function id_lookup(@!j,@!l:integer):pointer; {search the hash table}
label found; {go here when you've found it}
var @!h:integer; {hash code}
@!p:pointer; {index in |hash| array}
@!k:pointer; {index in |buffer| array}
begin if l=1 then @<Treat special case of length 1 and |goto found|@>;
@<Compute the hash code |h|@>;
p:=h+hash_base; {we start searching here; note that |0<=h<hash_prime|}
loop@+  begin if text(p)>0 then if length(text(p))=l then
    if str_eq_buf(text(p),j) then goto found;
  if next(p)=0 then
    @<Insert a new symbolic token after |p|, then
      make |p| point to it and |goto found|@>;
  p:=next(p);
  end;
found: id_lookup:=p;
end;

@ @<Treat special case of length 1...@>=
begin p:=buffer[j]+1; text(p):=p-1; goto found;
end

@ @<Insert a new symbolic...@>=
begin if text(p)>0 then
  begin repeat if hash_is_full then
    overflow("hash size",hash_size);
@:METAFONT capacity exceeded hash size}{\quad hash size@>
  decr(hash_used);
  until text(hash_used)=0; {search for an empty location in |hash|}
  next(p):=hash_used; p:=hash_used;
  end;
str_room(l);
for k:=j to j+l-1 do append_char(buffer[k]);
text(p):=make_string; str_ref[text(p)]:=max_str_ref;
@!stat incr(st_count);@+tats@;@/
goto found;
end

@ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
should be a prime number.  The theory of hashing tells us to expect fewer
than two table probes, on the average, when the search is successful.
[See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
@^Vitter, Jeffrey Scott@>

@<Compute the hash code |h|@>=
h:=buffer[j];
for k:=j+1 to j+l-1 do
  begin h:=h+h+buffer[k];
  while h>=hash_prime do h:=h-hash_prime;
  end

@ @<Search |eqtb| for equivalents equal to |p|@>=
for q:=1 to hash_end do
  begin if equiv(q)=p then
    begin print_nl("EQUIV("); print_int(q); print_char(")");
    end;
  end

@ We need to put \MF's ``primitive'' symbolic tokens into the hash
table, together with their command code (which will be the |eq_type|)
and an operand (which will be the |equiv|). The |primitive| procedure
does this, in a way that no \MF\ user can. The global value |cur_sym|
contains the new |eqtb| pointer after |primitive| has acted.

@p @!init procedure primitive(@!s:str_number;@!c:halfword;@!o:halfword);
var @!k:pool_pointer; {index into |str_pool|}
@!j:small_number; {index into |buffer|}
@!l:small_number; {length of the string}
begin k:=str_start[s]; l:=str_start[s+1]-k;
  {we will move |s| into the (empty) |buffer|}
for j:=0 to l-1 do buffer[j]:=so(str_pool[k+j]);
cur_sym:=id_lookup(0,l);@/
if s>=256 then {we don't want to have the string twice}
  begin flush_string(str_ptr-1); text(cur_sym):=s;
  end;
eq_type(cur_sym):=c; equiv(cur_sym):=o;
end;
tini

@ Many of \MF's primitives need no |equiv|, since they are identifiable
by their |eq_type| alone. These primitives are loaded into the hash table
as follows:

@<Put each of \MF's primitives into the hash table@>=
primitive("..",path_join,0);@/
@!@:.._}{\.{..} primitive@>
primitive("[",left_bracket,0); eqtb[frozen_left_bracket]:=eqtb[cur_sym];@/
@!@:[ }{\.{[} primitive@>
primitive("]",right_bracket,0);@/
@!@:] }{\.{]} primitive@>
primitive("}",right_brace,0);@/
@!@:]]}{\.{\char`\}} primitive@>
primitive("{",left_brace,0);@/
@!@:][}{\.{\char`\{} primitive@>
primitive(":",colon,0); eqtb[frozen_colon]:=eqtb[cur_sym];@/
@!@:: }{\.{:} primitive@>
primitive("::",double_colon,0);@/
@!@::: }{\.{::} primitive@>
primitive("||:",bchar_label,0);@/
@!@:::: }{\.{\char'174\char'174:} primitive@>
primitive(":=",assignment,0);@/
@!@::=_}{\.{:=} primitive@>
primitive(",",comma,0);@/
@!@:, }{\., primitive@>
primitive(";",semicolon,0); eqtb[frozen_semicolon]:=eqtb[cur_sym];@/
@!@:; }{\.; primitive@>
primitive("\",relax,0);@/
@!@:]]\\}{\.{\char`\\} primitive@>
@#
primitive("addto",add_to_command,0);@/
@!@:add_to_}{\&{addto} primitive@>
primitive("at",at_token,0);@/
@!@:at_}{\&{at} primitive@>
primitive("atleast",at_least,0);@/
@!@:at_least_}{\&{atleast} primitive@>
primitive("begingroup",begin_group,0); bg_loc:=cur_sym;@/
@!@:begin_group_}{\&{begingroup} primitive@>
primitive("controls",controls,0);@/
@!@:controls_}{\&{controls} primitive@>
primitive("cull",cull_command,0);@/
@!@:cull_}{\&{cull} primitive@>
primitive("curl",curl_command,0);@/
@!@:curl_}{\&{curl} primitive@>
primitive("delimiters",delimiters,0);@/
@!@:delimiters_}{\&{delimiters} primitive@>
primitive("display",display_command,0);@/
@!@:display_}{\&{display} primitive@>
primitive("endgroup",end_group,0);
 eqtb[frozen_end_group]:=eqtb[cur_sym]; eg_loc:=cur_sym;@/
@!@:endgroup_}{\&{endgroup} primitive@>
primitive("everyjob",every_job_command,0);@/
@!@:every_job_}{\&{everyjob} primitive@>
primitive("exitif",exit_test,0);@/
@!@:exit_if_}{\&{exitif} primitive@>
primitive("expandafter",expand_after,0);@/
@!@:expand_after_}{\&{expandafter} primitive@>
primitive("from",from_token,0);@/
@!@:from_}{\&{from} primitive@>
primitive("inwindow",in_window,0);@/
@!@:in_window_}{\&{inwindow} primitive@>
primitive("interim",interim_command,0);@/
@!@:interim_}{\&{interim} primitive@>
primitive("let",let_command,0);@/
@!@:let_}{\&{let} primitive@>
primitive("newinternal",new_internal,0);@/
@!@:new_internal_}{\&{newinternal} primitive@>
primitive("of",of_token,0);@/
@!@:of_}{\&{of} primitive@>
primitive("openwindow",open_window,0);@/
@!@:open_window_}{\&{openwindow} primitive@>
primitive("randomseed",random_seed,0);@/
@!@:random_seed_}{\&{randomseed} primitive@>
primitive("save",save_command,0);@/
@!@:save_}{\&{save} primitive@>
primitive("scantokens",scan_tokens,0);@/
@!@:scan_tokens_}{\&{scantokens} primitive@>
primitive("shipout",ship_out_command,0);@/
@!@:ship_out_}{\&{shipout} primitive@>
primitive("skipto",skip_to,0);@/
@!@:skip_to_}{\&{skipto} primitive@>
primitive("step",step_token,0);@/
@!@:step_}{\&{step} primitive@>
primitive("str",str_op,0);@/
@!@:str_}{\&{str} primitive@>
primitive("tension",tension,0);@/
@!@:tension_}{\&{tension} primitive@>
primitive("to",to_token,0);@/
@!@:to_}{\&{to} primitive@>
primitive("until",until_token,0);@/
@!@:until_}{\&{until} primitive@>

@ Each primitive has a corresponding inverse, so that it is possible to
display the cryptic numeric contents of |eqtb| in symbolic form.
Every call of |primitive| in this program is therefore accompanied by some
straightforward code that forms part of the |print_cmd_mod| routine
explained below.

@<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
add_to_command:print("addto");
assignment:print(":=");
at_least:print("atleast");
at_token:print("at");
bchar_label:print("||:");
begin_group:print("begingroup");
colon:print(":");
comma:print(",");
controls:print("controls");
cull_command:print("cull");
curl_command:print("curl");
delimiters:print("delimiters");
display_command:print("display");
double_colon:print("::");
end_group:print("endgroup");
every_job_command:print("everyjob");
exit_test:print("exitif");
expand_after:print("expandafter");
from_token:print("from");
in_window:print("inwindow");
interim_command:print("interim");
left_brace:print("{");
left_bracket:print("[");
let_command:print("let");
new_internal:print("newinternal");
of_token:print("of");
open_window:print("openwindow");
path_join:print("..");
random_seed:print("randomseed");
relax:print_char("\");
right_brace:print("}");
right_bracket:print("]");
save_command:print("save");
scan_tokens:print("scantokens");
semicolon:print(";");
ship_out_command:print("shipout");
skip_to:print("skipto");
step_token:print("step");
str_op:print("str");
tension:print("tension");
to_token:print("to");
until_token:print("until");

@ We will deal with the other primitives later, at some point in the program
where their |eq_type| and |equiv| values are more meaningful.  For example,
the primitives for macro definitions will be loaded when we consider the
routines that define macros.
It is easy to find where each particular
primitive was treated by looking in the index at the end; for example, the
section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.

@* \[14] Token lists.
A \MF\ token is either symbolic or numeric or a string, or it denotes
a macro parameter or capsule; so there are five corresponding ways to encode it
@^token@>
internally: (1)~A symbolic token whose hash code is~|p|
is represented by the number |p|, in the |info| field of a single-word
node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
represented in a two-word node of~|mem|; the |type| field is |known|,
the |name_type| field is |token|, and the |value| field holds~|v|.
The fact that this token appears in a two-word node rather than a
one-word node is, of course, clear from the node address.
(3)~A string token is also represented in a two-word node; the |type|
field is |string_type|, the |name_type| field is |token|, and the
|value| field holds the corresponding |str_number|.  (4)~Capsules have
|name_type=capsule|, and their |type| and |value| fields represent
arbitrary values (in ways to be explained later).  (5)~Macro parameters
are like symbolic tokens in that they appear in |info| fields of
one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
by |text_base+k| if it is of type \&{text}.  (Here |0<=k<param_size|.)
Actual values of these parameters are kept in a separate stack, as we will
see later.  The constants |expr_base|, |suffix_base|, and |text_base| are,
of course, chosen so that there will be no confusion between symbolic
tokens and parameters of various types.

It turns out that |value(null)=0|, because |null=null_coords|;
we will make use of this coincidence later.

Incidentally, while we're speaking of coincidences, we might note that
the `\\{type}' field of a node has nothing to do with ``type'' in a
printer's sense. It's curious that the same word is used in such different ways.

@d type(#) == mem[#].hh.b0 {identifies what kind of value this is}
@d name_type(#) == mem[#].hh.b1 {a clue to the name of this value}
@d token_node_size=2 {the number of words in a large token node}
@d value_loc(#)==#+1 {the word that contains the |value| field}
@d value(#)==mem[value_loc(#)].int {the value stored in a large token node}
@d expr_base==hash_end+1 {code for the zeroth \&{expr} parameter}
@d suffix_base==expr_base+param_size {code for the zeroth \&{suffix} parameter}
@d text_base==suffix_base+param_size {code for the zeroth \&{text} parameter}

@<Check the ``constant''...@>=
if text_base+param_size>max_halfword then bad:=22;

@ A numeric token is created by the following trivial routine.

@p function new_num_tok(@!v:scaled):pointer;
var @!p:pointer; {the new node}
begin p:=get_node(token_node_size); value(p):=v;
type(p):=known; name_type(p):=token; new_num_tok:=p;
end;

@ A token list is a singly linked list of nodes in |mem|, where
each node contains a token and a link.  Here's a subroutine that gets rid
of a token list when it is no longer needed.

@p procedure@?token_recycle; forward;@t\2@>@;@/
procedure flush_token_list(@!p:pointer);
var @!q:pointer; {the node being recycled}
begin while p<>null do
  begin q:=p; p:=link(p);
  if q>=hi_mem_min then free_avail(q)
  else  begin case type(q) of
    vacuous,boolean_type,known:do_nothing;
    string_type:delete_str_ref(value(q));
    unknown_types,pen_type,path_type,future_pen,picture_type,
     pair_type,transform_type,dependent,proto_dependent,independent:
      begin g_pointer:=q; token_recycle;
      end;
    othercases confusion("token")
@:this can't happen token}{\quad token@>
    endcases;@/
    free_node(q,token_node_size);
    end;
  end;
end;

@ The procedure |show_token_list|, which prints a symbolic form of
the token list that starts at a given node |p|, illustrates these
conventions. The token list being displayed should not begin with a reference
count. However, the procedure is intended to be fairly robust, so that if the
memory links are awry or if |p| is not really a pointer to a token list,
almost nothing catastrophic can happen.

An additional parameter |q| is also given; this parameter is either null
or it points to a node in the token list where a certain magic computation
takes place that will be explained later. (Basically, |q| is non-null when
we are printing the two-line context information at the time of an error
message; |q| marks the place corresponding to where the second line
should begin.)

The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
of printing exceeds a given limit~|l|; the length of printing upon entry is
assumed to be a given amount called |null_tally|. (Note that
|show_token_list| sometimes uses itself recursively to print
variable names within a capsule.)
@^recursion@>

Unusual entries are printed in the form of all-caps tokens
preceded by a space, e.g., `\.{\char`\ BAD}'.

@<Declare the procedure called |show_token_list|@>=
procedure@?print_capsule; forward; @t\2@>@;@/
procedure show_token_list(@!p,@!q:integer;@!l,@!null_tally:integer);
label exit;
var @!class,@!c:small_number; {the |char_class| of previous and new tokens}
@!r,@!v:integer; {temporary registers}
begin class:=percent_class;
tally:=null_tally;
while (p<>null) and (tally<l) do
  begin if p=q then @<Do magic computation@>;
  @<Display token |p| and set |c| to its class;
    but |return| if there are problems@>;
  class:=c; p:=link(p);
  end;
if p<>null then print(" ETC.");
@.ETC@>
exit:
end;

@ @<Display token |p| and set |c| to its class...@>=
c:=letter_class; {the default}
if (p<mem_min)or(p>mem_end) then
  begin print(" CLOBBERED"); return;
@.CLOBBERED@>
  end;
if p<hi_mem_min then @<Display two-word token@>
else  begin r:=info(p);
  if r>=expr_base then @<Display a parameter token@>
  else if r<1 then
    if r=0 then @<Display a collective subscript@>
    else print(" IMPOSSIBLE")
@.IMPOSSIBLE@>
  else  begin r:=text(r);
    if (r<0)or(r>=str_ptr) then print(" NONEXISTENT")
@.NONEXISTENT@>
    else @<Print string |r| as a symbolic token
      and set |c| to its class@>;
    end;
  end

@ @<Display two-word token@>=
if name_type(p)=token then
  if type(p)=known then @<Display a numeric token@>
  else if type(p)<>string_type then print(" BAD")
@.BAD@>
  else  begin print_char(""""); slow_print(value(p)); print_char("""");
    c:=string_class;
    end
else if (name_type(p)<>capsule)or(type(p)<vacuous)or(type(p)>independent) then
  print(" BAD")
else  begin g_pointer:=p; print_capsule; c:=right_paren_class;
  end

@ @<Display a numeric token@>=
begin if class=digit_class then print_char(" ");
v:=value(p);
if v<0 then
  begin if class=left_bracket_class then print_char(" ");
  print_char("["); print_scaled(v); print_char("]");
  c:=right_bracket_class;
  end
else  begin print_scaled(v); c:=digit_class;
  end;
end

@ Strictly speaking, a genuine token will never have |info(p)=0|.
But we will see later (in the |print_variable_name| routine) that
it is convenient to let |info(p)=0| stand for `\.{[]}'.

@<Display a collective subscript@>=
begin if class=left_bracket_class then print_char(" ");
print("[]"); c:=right_bracket_class;
end

@ @<Display a parameter token@>=
begin if r<suffix_base then
  begin print("(EXPR"); r:=r-(expr_base);
@.EXPR@>
  end
else if r<text_base then
  begin print("(SUFFIX"); r:=r-(suffix_base);
@.SUFFIX@>
  end
else  begin print("(TEXT"); r:=r-(text_base);
@.TEXT@>
  end;
print_int(r); print_char(")"); c:=right_paren_class;
end

@ @<Print string |r| as a symbolic token...@>=
begin c:=char_class[so(str_pool[str_start[r]])];
if c=class then
  case c of
  letter_class:print_char(".");
  isolated_classes:do_nothing;
  othercases print_char(" ")
  endcases;
slow_print(r);
end

@ The following procedures have been declared |forward| with no parameters,
because the author dislikes \PASCAL's convention about |forward| procedures
with parameters. It was necessary to do something, because |show_token_list|
is recursive (although the recursion is limited to one level), and because
|flush_token_list| is syntactically (but not semantically) recursive.
@^recursion@>

@<Declare miscellaneous procedures that were declared |forward|@>=
procedure print_capsule;
begin print_char("("); print_exp(g_pointer,0); print_char(")");
end;
@#
procedure token_recycle;
begin recycle_value(g_pointer);
end;

@ @<Glob...@>=
@!g_pointer:pointer; {(global) parameter to the |forward| procedures}

@ Macro definitions are kept in \MF's memory in the form of token lists
that have a few extra one-word nodes at the beginning.

The first node contains a reference count that is used to tell when the
list is no longer needed. To emphasize the fact that a reference count is
present, we shall refer to the |info| field of this special node as the
|ref_count| field.
@^reference counts@>

The next node or nodes after the reference count serve to describe the
formal parameters. They either contain a code word that specifies all
of the parameters, or they contain zero or more parameter tokens followed
by the code `|general_macro|'.

@d ref_count==info {reference count preceding a macro definition or pen header}
@d add_mac_ref(#)==incr(ref_count(#)) {make a new reference to a macro list}
@d general_macro=0 {preface to a macro defined with a parameter list}
@d primary_macro=1 {preface to a macro with a \&{primary} parameter}
@d secondary_macro=2 {preface to a macro with a \&{secondary} parameter}
@d tertiary_macro=3 {preface to a macro with a \&{tertiary} parameter}
@d expr_macro=4 {preface to a macro with an undelimited \&{expr} parameter}
@d of_macro=5 {preface to a macro with
  undelimited `\&{expr} |x| \&{of}~|y|' parameters}
@d suffix_macro=6 {preface to a macro with an undelimited \&{suffix} parameter}
@d text_macro=7 {preface to a macro with an undelimited \&{text} parameter}

@p procedure delete_mac_ref(@!p:pointer);
  {|p| points to the reference count of a macro list that is
    losing one reference}
begin if ref_count(p)=null then flush_token_list(p)
else decr(ref_count(p));
end;

@ The following subroutine displays a macro, given a pointer to its
reference count.

@p @t\4@>@<Declare the procedure called |print_cmd_mod|@>@;
procedure show_macro(@!p:pointer;@!q,@!l:integer);
label exit;
var @!r:pointer; {temporary storage}
begin p:=link(p); {bypass the reference count}
while info(p)>text_macro do
  begin r:=link(p); link(p):=null;
  show_token_list(p,null,l,0); link(p):=r; p:=r;
  if l>0 then l:=l-tally@+else return;
  end; {control printing of `\.{ETC.}'}
@.ETC@>
tally:=0;
case info(p) of
general_macro:print("->");
@.->@>
primary_macro,secondary_macro,tertiary_macro:begin print_char("<");
  print_cmd_mod(param_type,info(p)); print(">->");
  end;
expr_macro:print("<expr>->");
of_macro:print("<expr>of<primary>->");
suffix_macro:print("<suffix>->");
text_macro:print("<text>->");
end; {there are no other cases}
show_token_list(link(p),q,l-tally,0);
exit:end;

@* \[15] Data structures for variables.
The variables of \MF\ programs can be simple, like `\.x', or they can
combine the structural properties of arrays and records, like `\.{x20a.b}'.
A \MF\ user assigns a type to a variable like \.{x20a.b} by saying, for
example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
things are represented inside of the computer.

Each variable value occupies two consecutive words, either in a two-word
node called a value node, or as a two-word subfield of a larger node.  One
of those two words is called the |value| field; it is an integer,
containing either a |scaled| numeric value or the representation of some
other type of quantity. (It might also be subdivided into halfwords, in
which case it is referred to by other names instead of |value|.) The other
word is broken into subfields called |type|, |name_type|, and |link|.  The
|type| field is a quarterword that specifies the variable's type, and
|name_type| is a quarterword from which \MF\ can reconstruct the
variable's name (sometimes by using the |link| field as well).  Thus, only
1.25 words are actually devoted to the value itself; the other
three-quarters of a word are overhead, but they aren't wasted because they
allow \MF\ to deal with sparse arrays and to provide meaningful diagnostics.

In this section we shall be concerned only with the structural aspects of
variables, not their values. Later parts of the program will change the
|type| and |value| fields, but we shall treat those fields as black boxes
whose contents should not be touched.

However, if the |type| field is |structured|, there is no |value| field,
and the second word is broken into two pointer fields called |attr_head|
and |subscr_head|. Those fields point to additional nodes that
contain structural information, as we shall see.

@d subscr_head_loc(#) == #+1 {where |value|, |subscr_head| and |attr_head| are}
@d attr_head(#) == info(subscr_head_loc(#)) {pointer to attribute info}
@d subscr_head(#) == link(subscr_head_loc(#)) {pointer to subscript info}
@d value_node_size=2 {the number of words in a value node}

@ An attribute node is three words long. Two of these words contain |type|
and |value| fields as described above, and the third word contains
additional information:  There is an |attr_loc| field, which contains the
hash address of the token that names this attribute; and there's also a
|parent| field, which points to the value node of |structured| type at the
next higher level (i.e., at the level to which this attribute is
subsidiary).  The |name_type| in an attribute node is `|attr|'.  The
|link| field points to the next attribute with the same parent; these are
arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
final attribute node links to the constant |end_attr|, whose |attr_loc|
field is greater than any legal hash address. The |attr_head| in the
parent points to a node whose |name_type| is |structured_root|; this
node represents the null attribute, i.e., the variable that is relevant
when no attributes are attached to the parent. The |attr_head| node is either
a value node, a subscript node, or an attribute node, depending on what
the parent would be if it were not structured; but the subscript and
attribute fields are ignored, so it effectively contains only the data of
a value node. The |link| field in this special node points to an attribute
node whose |attr_loc| field is zero; the latter node represents a collective
subscript `\.{[]}' attached to the parent, and its |link| field points to
the first non-special attribute node (or to |end_attr| if there are none).

A subscript node likewise occupies three words, with |type| and |value| fields
plus extra information; its |name_type| is |subscr|. In this case the
third word is called the |subscript| field, which is a |scaled| integer.
The |link| field points to the subscript node with the next larger
subscript, if any; otherwise the |link| points to the attribute node
for collective subscripts at this level. We have seen that the latter node
contains an upward pointer, so that the parent can be deduced.

The |name_type| in a parent-less value node is |root|, and the |link|
is the hash address of the token that names this value.

In other words, variables have a hierarchical structure that includes
enough threads running around so that the program is able to move easily
between siblings, parents, and children. An example should be helpful:
(The reader is advised to draw a picture while reading the following
description, since that will help to firm up the ideas.)
Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
and `\.{x20b}' have been mentioned in a user's program, where
\.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
|eq_type(h(x))=tag_token| and |equiv(h(x))=p|, where |p|~is a two-word value
node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=structured|,
|attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
node and |r| to a subscript node. (Are you still following this? Use
a pencil to draw a diagram.) The lone variable `\.x' is represented by
|type(q)| and |value(q)|; furthermore
|name_type(q)=structured_root| and |link(q)=q1|, where |q1| points
to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
|attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
|type(q1)=structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
|qq| is a value node with |type(qq)=numeric_type| (assuming that \.{x5} is
numeric, because |qq| represents `\.{x[]}' with no further attributes),
|name_type(qq)=structured_root|, and
|link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
an attribute node representing `\.{x[][]}', which has never yet
occurred; its |type| field is |undefined|, and its |value| field is
undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
|parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
`\.{x[]b}', |type(qq2)=unknown_boolean|; also |attr_loc(qq2)=h(b)|,
|parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
(Maybe colored lines will help untangle your picture.)
 Node |r| is a subscript node with |type| and |value|
representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
and |link(r)=r1| is another subscript node. To complete the picture,
see if you can guess what |link(r1)| is; give up? It's~|q1|.
Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
|type(r1)=structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
and we finish things off with three more nodes
|qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
with a larger sheet of paper.) The value of variable \.{x20b}
appears in node~|qqq2|, as you can well imagine.

If the example in the previous paragraph doesn't make things crystal
clear, a glance at some of the simpler subroutines below will reveal how
things work out in practice.

The only really unusual thing about these conventions is the use of
collective subscript attributes. The idea is to avoid repeating a lot of
type information when many elements of an array are identical macros
(for which distinct values need not be stored) or when they don't have
all of the possible attributes. Branches of the structure below collective
subscript attributes do not carry actual values except for macro identifiers;
branches of the structure below subscript nodes do not carry significant
information in their collective subscript attributes.

@d attr_loc_loc(#)==#+2 {where the |attr_loc| and |parent| fields are}
@d attr_loc(#)==info(attr_loc_loc(#)) {hash address of this attribute}
@d parent(#)==link(attr_loc_loc(#)) {pointer to |structured| variable}
@d subscript_loc(#)==#+2 {where the |subscript| field lives}
@d subscript(#)==mem[subscript_loc(#)].sc {subscript of this variable}
@d attr_node_size=3 {the number of words in an attribute node}
@d subscr_node_size=3 {the number of words in a subscript node}
@d collective_subscript=0 {code for the attribute `\.{[]}'}

@<Initialize table...@>=
attr_loc(end_attr):=hash_end+1; parent(end_attr):=null;

@ Variables of type \&{pair} will have values that point to four-word
nodes containing two numeric values. The first of these values has
|name_type=x_part_sector| and the second has |name_type=y_part_sector|;
the |link| in the first points back to the node whose |value| points
to this four-word node.

Variables of type \&{transform} are similar, but in this case their
|value| points to a 12-word node containing six values, identified by
|x_part_sector|, |y_part_sector|, |xx_part_sector|, |xy_part_sector|,
|yx_part_sector|, and |yy_part_sector|.

When an entire structured variable is saved, the |root| indication
is temporarily replaced by |saved_root|.

Some variables have no name; they just are used for temporary storage
while expressions are being evaluated. We call them {\sl capsules}.

@d x_part_loc(#)==# {where the \&{xpart} is found in a pair or transform node}
@d y_part_loc(#)==#+2 {where the \&{ypart} is found in a pair or transform node}
@d xx_part_loc(#)==#+4 {where the \&{xxpart} is found in a transform node}
@d xy_part_loc(#)==#+6 {where the \&{xypart} is found in a transform node}
@d yx_part_loc(#)==#+8 {where the \&{yxpart} is found in a transform node}
@d yy_part_loc(#)==#+10 {where the \&{yypart} is found in a transform node}
@#
@d pair_node_size=4 {the number of words in a pair node}
@d transform_node_size=12 {the number of words in a transform node}

@<Glob...@>=
@!big_node_size:array[transform_type..pair_type] of small_number;

@ The |big_node_size| array simply contains two constants that \MF\
occasionally needs to know.

@<Set init...@>=
big_node_size[transform_type]:=transform_node_size;
big_node_size[pair_type]:=pair_node_size;

@ If |type(p)=pair_type| or |transform_type| and if |value(p)=null|, the
procedure call |init_big_node(p)| will allocate a pair or transform node
for~|p|.  The individual parts of such nodes are initially of type
|independent|.

@p procedure init_big_node(@!p:pointer);
var @!q:pointer; {the new node}
@!s:small_number; {its size}
begin s:=big_node_size[type(p)]; q:=get_node(s);
repeat s:=s-2; @<Make variable |q+s| newly independent@>;
name_type(q+s):=half(s)+x_part_sector; link(q+s):=null;
until s=0;
link(q):=p; value(p):=q;
end;

@ The |id_transform| function creates a capsule for the
identity transformation.

@p function id_transform:pointer;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=get_node(value_node_size); type(p):=transform_type;
name_type(p):=capsule; value(p):=null; init_big_node(p); q:=value(p);
r:=q+transform_node_size;
repeat r:=r-2;
type(r):=known; value(r):=0;
until r=q;
value(xx_part_loc(q)):=unity; value(yy_part_loc(q)):=unity;
id_transform:=p;
end;

@ Tokens are of type |tag_token| when they first appear, but they point
to |null| until they are first used as the root of a variable.
The following subroutine establishes the root node on such grand occasions.

@p procedure new_root(@!x:pointer);
var @!p:pointer; {the new node}
begin p:=get_node(value_node_size); type(p):=undefined; name_type(p):=root;
link(p):=x; equiv(x):=p;
end;

@ These conventions for variable representation are illustrated by the
|print_variable_name| routine, which displays the full name of a
variable given only a pointer to its two-word value packet.

@p procedure print_variable_name(@!p:pointer);
label found,exit;
var @!q:pointer; {a token list that will name the variable's suffix}
@!r:pointer; {temporary for token list creation}
begin while name_type(p)>=x_part_sector do
  @<Preface the output with a part specifier; |return| in the
    case of a capsule@>;
q:=null;
while name_type(p)>saved_root do
  @<Ascend one level, pushing a token onto list |q|
   and replacing |p| by its parent@>;
r:=get_avail; info(r):=link(p); link(r):=q;
if name_type(p)=saved_root then print("(SAVED)");
@.SAVED@>
show_token_list(r,null,el_gordo,tally); flush_token_list(r);
exit:end;

@ @<Ascend one level, pushing a token onto list |q|...@>=
begin if name_type(p)=subscr then
  begin r:=new_num_tok(subscript(p));
  repeat p:=link(p);
  until name_type(p)=attr;
  end
else if name_type(p)=structured_root then
    begin p:=link(p); goto found;
    end
else  begin if name_type(p)<>attr then confusion("var");
@:this can't happen var}{\quad var@>
  r:=get_avail; info(r):=attr_loc(p);
  end;
link(r):=q; q:=r;
found:  p:=parent(p);
end

@ @<Preface the output with a part specifier...@>=
begin case name_type(p) of
x_part_sector: print_char("x");
y_part_sector: print_char("y");
xx_part_sector: print("xx");
xy_part_sector: print("xy");
yx_part_sector: print("yx");
yy_part_sector: print("yy");
capsule: begin print("%CAPSULE"); print_int(p-null); return;
@.CAPSULE@>
  end;
end; {there are no other cases}
print("part "); p:=link(p-2*(name_type(p)-x_part_sector));
end

@ The |interesting| function returns |true| if a given variable is not
in a capsule, or if the user wants to trace capsules.

@p function interesting(@!p:pointer):boolean;
var @!t:small_number; {a |name_type|}
begin if internal[tracing_capsules]>0 then interesting:=true
else  begin t:=name_type(p);
  if t>=x_part_sector then if t<>capsule then
    t:=name_type(link(p-2*(t-x_part_sector)));
  interesting:=(t<>capsule);
  end;
end;

@ Now here is a subroutine that converts an unstructured type into an
equivalent structured type, by inserting a |structured| node that is
capable of growing. This operation is done only when |name_type(p)=root|,
|subscr|, or |attr|.

The procedure returns a pointer to the new node that has taken node~|p|'s
place in the structure. Node~|p| itself does not move, nor are its
|value| or |type| fields changed in any way.

@p function new_structure(@!p:pointer):pointer;
var @!q,@!r:pointer; {list manipulation registers}
begin case name_type(p) of
root: begin q:=link(p); r:=get_node(value_node_size); equiv(q):=r;
  end;
subscr: @<Link a new subscript node |r| in place of node |p|@>;
attr: @<Link a new attribute node |r| in place of node |p|@>;
othercases confusion("struct")
@:this can't happen struct}{\quad struct@>
endcases;@/
link(r):=link(p); type(r):=structured; name_type(r):=name_type(p);
attr_head(r):=p; name_type(p):=structured_root;@/
q:=get_node(attr_node_size); link(p):=q; subscr_head(r):=q;
parent(q):=r; type(q):=undefined; name_type(q):=attr; link(q):=end_attr;
attr_loc(q):=collective_subscript; new_structure:=r;
end;

@ @<Link a new subscript node |r| in place of node |p|@>=
begin q:=p;
repeat q:=link(q);
until name_type(q)=attr;
q:=parent(q); r:=subscr_head_loc(q); {|link(r)=subscr_head(q)|}
repeat q:=r; r:=link(r);
until r=p;
r:=get_node(subscr_node_size);
link(q):=r; subscript(r):=subscript(p);
end

@ If the attribute is |collective_subscript|, there are two pointers to
node~|p|, so we must change both of them.

@<Link a new attribute node |r| in place of node |p|@>=
begin q:=parent(p); r:=attr_head(q);
repeat q:=r; r:=link(r);
until r=p;
r:=get_node(attr_node_size); link(q):=r;@/
mem[attr_loc_loc(r)]:=mem[attr_loc_loc(p)]; {copy |attr_loc| and |parent|}
if attr_loc(p)=collective_subscript then
  begin q:=subscr_head_loc(parent(p));
  while link(q)<>p do q:=link(q);
  link(q):=r;
  end;
end

@ The |find_variable| routine is given a pointer~|t| to a nonempty token
list of suffixes; it returns a pointer to the corresponding two-word
value. For example, if |t| points to token \.x followed by a numeric
token containing the value~7, |find_variable| finds where the value of
\.{x7} is stored in memory. This may seem a simple task, and it
usually is, except when \.{x7} has never been referenced before.
Indeed, \.x may never have even been subscripted before; complexities
arise with respect to updating the collective subscript information.

If a macro type is detected anywhere along path~|t|, or if the first
item on |t| isn't a |tag_token|, the value |null| is returned.
Otherwise |p| will be a non-null pointer to a node such that
|undefined<type(p)<structured|.

@d abort_find==begin find_variable:=null; return;@+end

@p function find_variable(@!t:pointer):pointer;
label exit;
var @!p,@!q,@!r,@!s:pointer; {nodes in the ``value'' line}
@!pp,@!qq,@!rr,@!ss:pointer; {nodes in the ``collective'' line}
@!n:integer; {subscript or attribute}
@!save_word:memory_word; {temporary storage for a word of |mem|}
@^inner loop@>
begin p:=info(t); t:=link(t);
if eq_type(p) mod outer_tag<>tag_token then abort_find;
if equiv(p)=null then new_root(p);
p:=equiv(p); pp:=p;
while t<>null do
  begin @<Make sure that both nodes |p| and |pp| are of |structured| type@>;
  if t<hi_mem_min then
    @<Descend one level for the subscript |value(t)|@>
  else @<Descend one level for the attribute |info(t)|@>;
  t:=link(t);
  end;
if type(pp)>=structured then
  if type(pp)=structured then pp:=attr_head(pp)@+else abort_find;
if type(p)=structured then p:=attr_head(p);
if type(p)=undefined then
  begin if type(pp)=undefined then
    begin type(pp):=numeric_type; value(pp):=null;
    end;
  type(p):=type(pp); value(p):=null;
  end;
find_variable:=p;
exit:end;

@ Although |pp| and |p| begin together, they diverge when a subscript occurs;
|pp|~stays in the collective line while |p|~goes through actual subscript
values.

@<Make sure that both nodes |p| and |pp|...@>=
if type(pp)<>structured then
  begin if type(pp)>structured then abort_find;
  ss:=new_structure(pp);
  if p=pp then p:=ss;
  pp:=ss;
  end; {now |type(pp)=structured|}
if type(p)<>structured then {it cannot be |>structured|}
  p:=new_structure(p) {now |type(p)=structured|}

@ We want this part of the program to be reasonably fast, in case there are
@^inner loop@>
lots of subscripts at the same level of the data structure. Therefore
we store an ``infinite'' value in the word that appears at the end of the
subscript list, even though that word isn't part of a subscript node.

@<Descend one level for the subscript |value(t)|@>=
begin n:=value(t);
pp:=link(attr_head(pp)); {now |attr_loc(pp)=collective_subscript|}
q:=link(attr_head(p)); save_word:=mem[subscript_loc(q)];
subscript(q):=el_gordo; s:=subscr_head_loc(p); {|link(s)=subscr_head(p)|}
repeat r:=s; s:=link(s);
until n<=subscript(s);
if n=subscript(s) then p:=s
else  begin p:=get_node(subscr_node_size); link(r):=p; link(p):=s;
  subscript(p):=n; name_type(p):=subscr; type(p):=undefined;
  end;
mem[subscript_loc(q)]:=save_word;
end

@ @<Descend one level for the attribute |info(t)|@>=
begin n:=info(t);
ss:=attr_head(pp);
repeat rr:=ss; ss:=link(ss);
until n<=attr_loc(ss);
if n<attr_loc(ss) then
  begin qq:=get_node(attr_node_size); link(rr):=qq; link(qq):=ss;
  attr_loc(qq):=n; name_type(qq):=attr; type(qq):=undefined;
  parent(qq):=pp; ss:=qq;
  end;
if p=pp then
  begin p:=ss; pp:=ss;
  end
else  begin pp:=ss; s:=attr_head(p);
  repeat r:=s; s:=link(s);
  until n<=attr_loc(s);
  if n=attr_loc(s) then p:=s
  else  begin q:=get_node(attr_node_size); link(r):=q; link(q):=s;
    attr_loc(q):=n; name_type(q):=attr; type(q):=undefined;
    parent(q):=p; p:=q;
    end;
  end;
end

@ Variables lose their former values when they appear in a type declaration,
or when they are defined to be macros or \&{let} equal to something else.
A subroutine will be defined later that recycles the storage associated
with any particular |type| or |value|; our goal now is to study a higher
level process called |flush_variable|, which selectively frees parts of a
variable structure.

This routine has some complexity because of examples such as
`\hbox{\tt numeric x[]a[]b}',
which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
`\hbox{\tt vardef x[]a[]=...}'
discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
suffix, except for the collective node \.{x[]a[]} itself. The obvious way
to handle such examples is to use recursion; so that's what we~do.
@^recursion@>

Parameter |p| points to the root information of the variable;
parameter |t| points to a list of one-word nodes that represent
suffixes, with |info=collective_subscript| for subscripts.

@p @t\4@>@<Declare subroutines for printing expressions@>@;@/
@t\4@>@<Declare basic dependency-list subroutines@>@;
@t\4@>@<Declare the recycling subroutines@>@;
@t\4@>@<Declare the procedure called |flush_cur_exp|@>@;
@t\4@>@<Declare the procedure called |flush_below_variable|@>@;
procedure flush_variable(@!p,@!t:pointer;@!discard_suffixes:boolean);
label exit;
var @!q,@!r:pointer; {list manipulation}
@!n:halfword; {attribute to match}
begin while t<>null do
  begin if type(p)<>structured then return;
  n:=info(t); t:=link(t);
  if n=collective_subscript then
    begin r:=subscr_head_loc(p); q:=link(r); {|q=subscr_head(p)|}
    while name_type(q)=subscr do
      begin flush_variable(q,t,discard_suffixes);
      if t=null then
        if type(q)=structured then r:=q
        else  begin link(r):=link(q); free_node(q,subscr_node_size);
          end
      else r:=q;
      q:=link(r);
      end;
    end;
  p:=attr_head(p);
  repeat r:=p; p:=link(p);
  until attr_loc(p)>=n;
  if attr_loc(p)<>n then return;
  end;
if discard_suffixes then flush_below_variable(p)
else  begin if type(p)=structured then p:=attr_head(p);
  recycle_value(p);
  end;
exit:end;

@ The next procedure is simpler; it wipes out everything but |p| itself,
which becomes undefined.

@<Declare the procedure called |flush_below_variable|@>=
procedure flush_below_variable(@!p:pointer);
var @!q,@!r:pointer; {list manipulation registers}
begin if type(p)<>structured then
  recycle_value(p) {this sets |type(p)=undefined|}
else  begin q:=subscr_head(p);
  while name_type(q)=subscr do
    begin flush_below_variable(q); r:=q; q:=link(q);
    free_node(r,subscr_node_size);
    end;
  r:=attr_head(p); q:=link(r); recycle_value(r);
  if name_type(p)<=saved_root then free_node(r,value_node_size)
  else free_node(r,subscr_node_size);
    {we assume that |subscr_node_size=attr_node_size|}
  repeat flush_below_variable(q); r:=q; q:=link(q); free_node(r,attr_node_size);
  until q=end_attr;
  type(p):=undefined;
  end;
end;

@ Just before assigning a new value to a variable, we will recycle the
old value and make the old value undefined. The |und_type| routine
determines what type of undefined value should be given, based on
the current type before recycling.

@p function und_type(@!p:pointer):small_number;
begin case type(p) of
undefined,vacuous:und_type:=undefined;
boolean_type,unknown_boolean:und_type:=unknown_boolean;
string_type,unknown_string:und_type:=unknown_string;
pen_type,unknown_pen,future_pen:und_type:=unknown_pen;
path_type,unknown_path:und_type:=unknown_path;
picture_type,unknown_picture:und_type:=unknown_picture;
transform_type,pair_type,numeric_type:und_type:=type(p);
known,dependent,proto_dependent,independent:und_type:=numeric_type;
end; {there are no other cases}
end;

@ The |clear_symbol| routine is used when we want to redefine the equivalent
of a symbolic token. It must remove any variable structure or macro
definition that is currently attached to that symbol. If the |saving|
parameter is true, a subsidiary structure is saved instead of destroyed.

@p procedure clear_symbol(@!p:pointer;@!saving:boolean);
var @!q:pointer; {|equiv(p)|}
begin q:=equiv(p);
case eq_type(p) mod outer_tag of
defined_macro,secondary_primary_macro,tertiary_secondary_macro,
 expression_tertiary_macro: if not saving then delete_mac_ref(q);
tag_token:if q<>null then
  if saving then name_type(q):=saved_root
  else  begin flush_below_variable(q); free_node(q,value_node_size);
    end;
othercases do_nothing
endcases;@/
eqtb[p]:=eqtb[frozen_undefined];
end;

@* \[16] Saving and restoring equivalents.
The nested structure provided by \&{begingroup} and \&{endgroup}
allows |eqtb| entries to be saved and restored, so that temporary changes
can be made without difficulty.  When the user requests a current value to
be saved, \MF\ puts that value into its ``save stack.'' An appearance of
\&{endgroup} ultimately causes the old values to be removed from the save
stack and put back in their former places.

The save stack is a linked list containing three kinds of entries,
distinguished by their |info| fields. If |p| points to a saved item,
then

\smallskip\hang
|info(p)=0| stands for a group boundary; each \&{begingroup} contributes
such an item to the save stack and each \&{endgroup} cuts back the stack
until the most recent such entry has been removed.

\smallskip\hang
|info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
commands or suitable \&{interim} commands.

\smallskip\hang
|info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
integer to be restored to internal parameter number~|q|. Such entries
are generated by \&{interim} commands.

\smallskip\noindent
The global variable |save_ptr| points to the top item on the save stack.

@d save_node_size=2 {number of words per non-boundary save-stack node}
@d saved_equiv(#)==mem[#+1].hh {where an |eqtb| entry gets saved}
@d save_boundary_item(#)==begin #:=get_avail; info(#):=0;
  link(#):=save_ptr; save_ptr:=#;
  end

@<Glob...@>=@!save_ptr:pointer; {the most recently saved item}

@ @<Set init...@>=save_ptr:=null;

@ The |save_variable| routine is given a hash address |q|; it salts this
address in the save stack, together with its current equivalent,
then makes token~|q| behave as though it were brand new.

Nothing is stacked when |save_ptr=null|, however; there's no way to remove
things from the stack when the program is not inside a group, so there's
no point in wasting the space.

@p procedure save_variable(@!q:pointer);
var @!p:pointer; {temporary register}
begin if save_ptr<>null then
  begin p:=get_node(save_node_size); info(p):=q; link(p):=save_ptr;
  saved_equiv(p):=eqtb[q]; save_ptr:=p;
  end;
clear_symbol(q,(save_ptr<>null));
end;

@ Similarly, |save_internal| is given the location |q| of an internal
quantity like |tracing_pens|. It creates a save stack entry of the
third kind.

@p procedure save_internal(@!q:halfword);
var @!p:pointer; {new item for the save stack}
begin if save_ptr<>null then
  begin p:=get_node(save_node_size); info(p):=hash_end+q;
  link(p):=save_ptr; value(p):=internal[q]; save_ptr:=p;
  end;
end;

@ At the end of a group, the |unsave| routine restores all of the saved
equivalents in reverse order. This routine will be called only when there
is at least one boundary item on the save stack.

@p procedure unsave;
var @!q:pointer; {index to saved item}
@!p:pointer; {temporary register}
begin while info(save_ptr)<>0 do
  begin q:=info(save_ptr);
  if q>hash_end then
    begin if internal[tracing_restores]>0 then
      begin begin_diagnostic; print_nl("{restoring ");
      slow_print(int_name[q-(hash_end)]); print_char("=");
      print_scaled(value(save_ptr)); print_char("}");
      end_diagnostic(false);
      end;
    internal[q-(hash_end)]:=value(save_ptr);
    end
  else  begin if internal[tracing_restores]>0 then
      begin begin_diagnostic; print_nl("{restoring ");
      slow_print(text(q)); print_char("}");
      end_diagnostic(false);
      end;
    clear_symbol(q,false);
    eqtb[q]:=saved_equiv(save_ptr);
    if eq_type(q) mod outer_tag=tag_token then
      begin p:=equiv(q);
      if p<>null then name_type(p):=root;
      end;
    end;
  p:=link(save_ptr); free_node(save_ptr,save_node_size); save_ptr:=p;
  end;
p:=link(save_ptr); free_avail(save_ptr); save_ptr:=p;
end;

@* \[17] Data structures for paths.
When a \MF\ user specifies a path, \MF\ will create a list of knots
and control points for the associated cubic spline curves. If the
knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
$z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
$z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
@:Bezier}{B\'ezier, Pierre Etienne@>
$$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
&=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
for |0<=t<=1|.

There is a 7-word node for each knot $z_k$, containing one word of
control information and six words for the |x| and |y| coordinates
of $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears
in the |left_type| and |right_type| fields, which each occupy
a quarter of the first word in the node; they specify properties
of the curve as it enters and leaves the knot. There's also a
halfword |link| field, which points to the following knot.

If the path is a closed contour, knots 0 and |n| are identical;
i.e., the |link| in knot |n-1| points to knot~0. But if the path
is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
are equal to |endpoint|. In the latter case the |link| in knot~|n| points
to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.

@d left_type(#) == mem[#].hh.b0 {characterizes the path entering this knot}
@d right_type(#) == mem[#].hh.b1 {characterizes the path leaving this knot}
@d endpoint=0 {|left_type| at path beginning and |right_type| at path end}
@d x_coord(#) == mem[#+1].sc {the |x| coordinate of this knot}
@d y_coord(#) == mem[#+2].sc {the |y| coordinate of this knot}
@d left_x(#) == mem[#+3].sc {the |x| coordinate of previous control point}
@d left_y(#) == mem[#+4].sc {the |y| coordinate of previous control point}
@d right_x(#) == mem[#+5].sc {the |x| coordinate of next control point}
@d right_y(#) == mem[#+6].sc {the |y| coordinate of next control point}
@d knot_node_size=7 {number of words in a knot node}

@ Before the B\'ezier control points have been calculated, the memory
space they will ultimately occupy is taken up by information that can be
used to compute them. There are four cases:

\yskip
\textindent{$\bullet$} If |right_type=open|, the curve should leave
the knot in the same direction it entered; \MF\ will figure out a
suitable direction.

\yskip
\textindent{$\bullet$} If |right_type=curl|, the curve should leave the
knot in a direction depending on the angle at which it enters the next
knot and on the curl parameter stored in |right_curl|.

\yskip
\textindent{$\bullet$} If |right_type=given|, the curve should leave the
knot in a nonzero direction stored as an |angle| in |right_given|.

\yskip
\textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
point for leaving this knot has already been computed; it is in the
|right_x| and |right_y| fields.

\yskip\noindent
The rules for |left_type| are similar, but they refer to the curve entering
the knot, and to \\{left} fields instead of \\{right} fields.

Non-|explicit| control points will be chosen based on ``tension'' parameters
in the |left_tension| and |right_tension| fields. The
`\&{atleast}' option is represented by negative tension values.
@!@:at_least_}{\&{atleast} primitive@>

For example, the \MF\ path specification
$$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
  3 and 4..p},$$
where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
by the six knots
\def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
$$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
|left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
\noalign{\yskip}
|endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
|open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
|curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
|given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
|open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
|explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
Of course, this example is more complicated than anything a normal user
would ever write.

These types must satisfy certain restrictions because of the form of \MF's
path syntax:
(i)~|open| type never appears in the same node together with |endpoint|,
|given|, or |curl|.
(ii)~The |right_type| of a node is |explicit| if and only if the
|left_type| of the following node is |explicit|.
(iii)~|endpoint| types occur only at the ends, as mentioned above.

@d left_curl==left_x {curl information when entering this knot}
@d left_given==left_x {given direction when entering this knot}
@d left_tension==left_y {tension information when entering this knot}
@d right_curl==right_x {curl information when leaving this knot}
@d right_given==right_x {given direction when leaving this knot}
@d right_tension==right_y {tension information when leaving this knot}
@d explicit=1 {|left_type| or |right_type| when control points are known}
@d given=2 {|left_type| or |right_type| when a direction is given}
@d curl=3 {|left_type| or |right_type| when a curl is desired}
@d open=4 {|left_type| or |right_type| when \MF\ should choose the direction}

@ Here is a diagnostic routine that prints a given knot list
in symbolic form. It illustrates the conventions discussed above,
and checks for anomalies that might arise while \MF\ is being debugged.

@<Declare subroutines for printing expressions@>=
procedure print_path(@!h:pointer;@!s:str_number;@!nuline:boolean);
label done,done1;
var @!p,@!q:pointer; {for list traversal}
begin print_diagnostic("Path",s,nuline); print_ln;
@.Path at line...@>
p:=h;
repeat q:=link(p);
if (p=null)or(q=null) then
  begin print_nl("???"); goto done; {this won't happen}
@.???@>
  end;
@<Print information for adjacent knots |p| and |q|@>;
p:=q;
if (p<>h)or(left_type(h)<>endpoint) then
  @<Print two dots, followed by |given| or |curl| if present@>;
until p=h;
if left_type(h)<>endpoint then print("cycle");
done:end_diagnostic(true);
end;

@ @<Print information for adjacent knots...@>=
print_two(x_coord(p),y_coord(p));
case right_type(p) of
endpoint: begin if left_type(p)=open then print("{open?}"); {can't happen}
@.open?@>
  if (left_type(q)<>endpoint)or(q<>h) then q:=null; {force an error}
  goto done1;
  end;
explicit: @<Print control points between |p| and |q|, then |goto done1|@>;
open: @<Print information for a curve that begins |open|@>;
curl,given: @<Print information for a curve that begins |curl| or |given|@>;
othercases print("???") {can't happen}
@.???@>
endcases;@/
if left_type(q)<=explicit then print("..control?") {can't happen}
@.control?@>
else if (right_tension(p)<>unity)or(left_tension(q)<>unity) then
  @<Print tension between |p| and |q|@>;
done1:

@ Since |n_sin_cos| produces |fraction| results, which we will print as if they
were |scaled|, the magnitude of a |given| direction vector will be~4096.

@<Print two dots...@>=
begin print_nl(" ..");
if left_type(p)=given then
  begin n_sin_cos(left_given(p)); print_char("{");
  print_scaled(n_cos); print_char(",");
  print_scaled(n_sin); print_char("}");
  end
else if left_type(p)=curl then
  begin print("{curl "); print_scaled(left_curl(p)); print_char("}");
  end;
end

@ @<Print tension between |p| and |q|@>=
begin print("..tension ");
if right_tension(p)<0 then print("atleast");
print_scaled(abs(right_tension(p)));
if right_tension(p)<>left_tension(q) then
  begin print(" and ");
  if left_tension(q)<0 then print("atleast");
  print_scaled(abs(left_tension(q)));
  end;
end

@ @<Print control points between |p| and |q|, then |goto done1|@>=
begin print("..controls "); print_two(right_x(p),right_y(p)); print(" and ");
if left_type(q)<>explicit then print("??") {can't happen}
@.??@>
else print_two(left_x(q),left_y(q));
goto done1;
end

@ @<Print information for a curve that begins |open|@>=
if (left_type(p)<>explicit)and(left_type(p)<>open) then
  print("{open?}") {can't happen}
@.open?@>

@ A curl of 1 is shown explicitly, so that the user sees clearly that
\MF's default curl is present.

The code here uses the fact that |left_curl==left_given| and
|right_curl==right_given|.

@<Print information for a curve that begins |curl|...@>=
begin if left_type(p)=open then print("??"); {can't happen}
@.??@>
if right_type(p)=curl then
  begin print("{curl "); print_scaled(right_curl(p));
  end
else  begin n_sin_cos(right_given(p)); print_char("{");
  print_scaled(n_cos); print_char(","); print_scaled(n_sin);
  end;
print_char("}");
end

@ If we want to duplicate a knot node, we can say |copy_knot|:

@p function copy_knot(@!p:pointer):pointer;
var @!q:pointer; {the copy}
@!k:0..knot_node_size-1; {runs through the words of a knot node}
begin q:=get_node(knot_node_size);
for k:=0 to knot_node_size-1 do mem[q+k]:=mem[p+k];
copy_knot:=q;
end;

@ The |copy_path| routine makes a clone of a given path.

@p function copy_path(@!p:pointer):pointer;
label exit;
var @!q,@!pp,@!qq:pointer; {for list manipulation}
begin q:=get_node(knot_node_size); {this will correspond to |p|}
qq:=q; pp:=p;
loop@+  begin left_type(qq):=left_type(pp);
  right_type(qq):=right_type(pp);@/
  x_coord(qq):=x_coord(pp); y_coord(qq):=y_coord(pp);@/
  left_x(qq):=left_x(pp); left_y(qq):=left_y(pp);@/
  right_x(qq):=right_x(pp); right_y(qq):=right_y(pp);@/
  if link(pp)=p then
    begin link(qq):=q; copy_path:=q; return;
    end;
  link(qq):=get_node(knot_node_size); qq:=link(qq); pp:=link(pp);
  end;
exit:end;

@ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
returns a pointer to the first node of the copy, if the path is a cycle,
but to the final node of a non-cyclic copy. The global
variable |path_tail| will point to the final node of the original path;
this trick makes it easier to implement `\&{doublepath}'.

All node types are assumed to be |endpoint| or |explicit| only.

@p function htap_ypoc(@!p:pointer):pointer;
label exit;
var @!q,@!pp,@!qq,@!rr:pointer; {for list manipulation}
begin q:=get_node(knot_node_size); {this will correspond to |p|}
qq:=q; pp:=p;
loop@+  begin right_type(qq):=left_type(pp); left_type(qq):=right_type(pp);@/
  x_coord(qq):=x_coord(pp); y_coord(qq):=y_coord(pp);@/
  right_x(qq):=left_x(pp); right_y(qq):=left_y(pp);@/
  left_x(qq):=right_x(pp); left_y(qq):=right_y(pp);@/
  if link(pp)=p then
    begin link(q):=qq; path_tail:=pp; htap_ypoc:=q; return;
    end;
  rr:=get_node(knot_node_size); link(rr):=qq; qq:=rr; pp:=link(pp);
  end;
exit:end;

@ @<Glob...@>=
@!path_tail:pointer; {the node that links to the beginning of a path}

@ When a cyclic list of knot nodes is no longer needed, it can be recycled by
calling the following subroutine.

@<Declare the recycling subroutines@>=
procedure toss_knot_list(@!p:pointer);
var @!q:pointer; {the node being freed}
@!r:pointer; {the next node}
begin q:=p;
repeat r:=link(q); free_node(q,knot_node_size); q:=r;
until q=p;
end;

@* \[18] Choosing control points.
Now we must actually delve into one of \MF's more difficult routines,
the |make_choices| procedure that chooses angles and control points for
the splines of a curve when the user has not specified them explicitly.
The parameter to |make_choices| points to a list of knots and
path information, as described above.

A path decomposes into independent segments at ``breakpoint'' knots,
which are knots whose left and right angles are both prespecified in
some way (i.e., their |left_type| and |right_type| aren't both open).

@p @t\4@>@<Declare the procedure called |solve_choices|@>@;
procedure make_choices(@!knots:pointer);
label done;
var @!h:pointer; {the first breakpoint}
@!p,@!q:pointer; {consecutive breakpoints being processed}
@<Other local variables for |make_choices|@>@;
begin check_arith; {make sure that |arith_error=false|}
if internal[tracing_choices]>0 then
  print_path(knots,", before choices",true);
@<If consecutive knots are equal, join them explicitly@>;
@<Find the first breakpoint, |h|, on the path;
  insert an artificial breakpoint if the path is an unbroken cycle@>;
p:=h;
repeat @<Fill in the control points between |p| and the next breakpoint,
  then advance |p| to that breakpoint@>;
until p=h;
if internal[tracing_choices]>0 then
  print_path(knots,", after choices",true);
if arith_error then @<Report an unexpected problem during the choice-making@>;
end;

@ @<Report an unexpected problem during the choice...@>=
begin print_err("Some number got too big");
@.Some number got too big@>
help2("The path that I just computed is out of range.")@/
  ("So it will probably look funny. Proceed, for a laugh.");
put_get_error; arith_error:=false;
end

@ Two knots in a row with the same coordinates will always be joined
by an explicit ``curve'' whose control points are identical with the
knots.

@<If consecutive knots are equal, join them explicitly@>=
p:=knots;
repeat q:=link(p);
if x_coord(p)=x_coord(q) then if y_coord(p)=y_coord(q) then
 if right_type(p)>explicit then
  begin right_type(p):=explicit;
  if left_type(p)=open then
    begin left_type(p):=curl; left_curl(p):=unity;
    end;
  left_type(q):=explicit;
  if right_type(q)=open then
    begin right_type(q):=curl; right_curl(q):=unity;
    end;
  right_x(p):=x_coord(p); left_x(q):=x_coord(p);@/
  right_y(p):=y_coord(p); left_y(q):=y_coord(p);
  end;
p:=q;
until p=knots

@ If there are no breakpoints, it is necessary to compute the direction
angles around an entire cycle. In this case the |left_type| of the first
node is temporarily changed to |end_cycle|.

@d end_cycle=open+1

@<Find the first breakpoint, |h|, on the path...@>=
h:=knots;
loop@+  begin if left_type(h)<>open then goto done;
  if right_type(h)<>open then goto done;
  h:=link(h);
  if h=knots then
    begin left_type(h):=end_cycle; goto done;
    end;
  end;
done:

@ If |right_type(p)<given| and |q=link(p)|, we must have
|right_type(p)=left_type(q)=explicit| or |endpoint|.

@<Fill in the control points between |p| and the next breakpoint...@>=
q:=link(p);
if right_type(p)>=given then
  begin while (left_type(q)=open)and(right_type(q)=open) do q:=link(q);
  @<Fill in the control information between
    consecutive breakpoints |p| and |q|@>;
  end;
p:=q

@ Before we can go further into the way choices are made, we need to
consider the underlying theory. The basic ideas implemented in |make_choices|
are due to John Hobby, who introduced the notion of ``mock curvature''
@^Hobby, John Douglas@>
at a knot. Angles are chosen so that they preserve mock curvature when
a knot is passed, and this has been found to produce excellent results.

It is convenient to introduce some notations that simplify the necessary
formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
between knots |k| and |k+1|; and let
$${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
The control points for the spline from $z_k$ to $z\k$ will be denoted by
$$\eqalign{z_k^+&=z_k+
  \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
 z\k^-&=z\k-
  \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
corresponding ``offset angles.'' These angles satisfy the condition
$$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
whenever the curve leaves an intermediate knot~|k| in the direction that
it enters.

@ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
the curve at its beginning and ending points. This means that
$\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
where $f(\theta,\phi)$ is \MF's standard velocity function defined in
the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
z\k^-,z\k^{\phantom+};t)$
has curvature
@^curvature@>
$${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
\qquad{\rm and}\qquad
{2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
at |t=0| and |t=1|, respectively. The mock curvature is the linear
@^mock curvature@>
approximation to this true curvature that arises in the limit for
small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
The standard velocity function satisfies
$$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
hence the mock curvatures are respectively
$${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
\qquad{\rm and}\qquad
{2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$

@ The turning angles $\psi_k$ are given, and equation $(*)$ above
determines $\phi_k$ when $\theta_k$ is known, so the task of
angle selection is essentially to choose appropriate values for each
$\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
from $(**)$, we obtain a system of linear equations of the form
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
where
$$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
\qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
\qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
\qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
$C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
hence they have a unique solution. Moreover, in most cases the tensions
are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
solution numerically stable, and there is an exponential damping
effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
a factor of~$O(2^{-j})$.

@ However, we still must consider the angles at the starting and ending
knots of a non-cyclic path. These angles might be given explicitly, or
they might be specified implicitly in terms of an amount of ``curl.''

Let's assume that angles need to be determined for a non-cyclic path
starting at $z_0$ and ending at~$z_n$. Then equations of the form
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
have been given for $0<k<n$, and it will be convenient to introduce
equations of the same form for $k=0$ and $k=n$, where
$$A_0=B_0=C_n=D_n=0.$$
If $\theta_0$ is supposed to have a given value $E_0$, we simply
define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
parameter, $\gamma_0$, has been specified at~$z_0$; this means
that the mock curvature at $z_0$ should be $\gamma_0$ times the
mock curvature at $z_1$; i.e.,
$${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
=\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
This equation simplifies to
$$(\alpha_0\chi_0+3-\beta_1)\theta_0+
 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
\chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
hence the linear equations remain nonsingular.

Similar considerations apply at the right end, when the final angle $\phi_n$
may or may not need to be determined. It is convenient to let $\psi_n=0$,
hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
or we have
$$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
(\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
  \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$

When |make_choices| chooses angles, it must compute the coefficients of
these linear equations, then solve the equations. To compute the coefficients,
it is necessary to compute arctangents of the given turning angles~$\psi_k$.
When the equations are solved, the chosen directions $\theta_k$ are put
back into the form of control points by essentially computing sines and
cosines.

@ OK, we are ready to make the hard choices of |make_choices|.
Most of the work is relegated to an auxiliary procedure
called |solve_choices|, which has been introduced to keep
|make_choices| from being extremely long.

@<Fill in the control information between...@>=
@<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
  set $n$ to the length of the path@>;
@<Remove |open| types at the breakpoints@>;
solve_choices(p,q,n)

@ It's convenient to precompute quantities that will be needed several
times later. The values of |delta_x[k]| and |delta_y[k]| will be the
coordinates of $z\k-z_k$, and the magnitude of this vector will be
|delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
and $z\k-z_k$ will be stored in |psi[k]|.

@<Glob...@>=
@!delta_x,@!delta_y,@!delta:array[0..path_size] of scaled; {knot differences}
@!psi:array[1..path_size] of angle; {turning angles}

@ @<Other local variables for |make_choices|@>=
@!k,@!n:0..path_size; {current and final knot numbers}
@!s,@!t:pointer; {registers for list traversal}
@!delx,@!dely:scaled; {directions where |open| meets |explicit|}
@!sine,@!cosine:fraction; {trig functions of various angles}

@ @<Calculate the turning angles...@>=
k:=0; s:=p; n:=path_size;
repeat t:=link(s);
delta_x[k]:=x_coord(t)-x_coord(s);
delta_y[k]:=y_coord(t)-y_coord(s);
delta[k]:=pyth_add(delta_x[k],delta_y[k]);
if k>0 then
  begin sine:=make_fraction(delta_y[k-1],delta[k-1]);
  cosine:=make_fraction(delta_x[k-1],delta[k-1]);
  psi[k]:=n_arg(take_fraction(delta_x[k],cosine)+
      take_fraction(delta_y[k],sine),
    take_fraction(delta_y[k],cosine)-
      take_fraction(delta_x[k],sine));
  end;
@:METAFONT capacity exceeded path size}{\quad path size@>
incr(k); s:=t;
if k=path_size then overflow("path size",path_size);
if s=q then n:=k;
until (k>=n)and(left_type(s)<>end_cycle);
if k=n then psi[n]:=0@+else psi[k]:=psi[1]

@ When we get to this point of the code, |right_type(p)| is either
|given| or |curl| or |open|. If it is |open|, we must have
|left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
case, the |open| type is converted to |given|; however, if the
velocity coming into this knot is zero, the |open| type is
converted to a |curl|, since we don't know the incoming direction.

Similarly, |left_type(q)| is either |given| or |curl| or |open| or
|end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.

@<Remove |open| types at the breakpoints@>=
if left_type(q)=open then
  begin delx:=right_x(q)-x_coord(q); dely:=right_y(q)-y_coord(q);
  if (delx=0)and(dely=0) then
    begin left_type(q):=curl; left_curl(q):=unity;
    end
  else  begin left_type(q):=given; left_given(q):=n_arg(delx,dely);
    end;
  end;
if (right_type(p)=open)and(left_type(p)=explicit) then
  begin delx:=x_coord(p)-left_x(p); dely:=y_coord(p)-left_y(p);
  if (delx=0)and(dely=0) then
    begin right_type(p):=curl; right_curl(p):=unity;
    end
  else  begin right_type(p):=given; right_given(p):=n_arg(delx,dely);
    end;
  end

@ Linear equations need to be solved whenever |n>1|; and also when |n=1|
and exactly one of the breakpoints involves a curl. The simplest case occurs
when |n=1| and there is a curl at both breakpoints; then we simply draw
a straight line.

But before coding up the simple cases, we might as well face the general case,
since we must deal with it sooner or later, and since the general case
is likely to give some insight into the way simple cases can be handled best.

When there is no cycle, the linear equations to be solved form a tri-diagonal
system, and we can apply the standard technique of Gaussian elimination
to convert that system to a sequence of equations of the form
$$\theta_0+u_0\theta_1=v_0,\quad
\theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
\theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
\theta_n=v_n.$$
It is possible to do this diagonalization while generating the equations.
Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
$\theta_1$, $\theta_0$; thus, the equations will be solved.

The procedure is slightly more complex when there is a cycle, but the
basic idea will be nearly the same. In the cyclic case the right-hand
sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
$\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
ending routine will take account of the fact that $\theta_n=\theta_0$ and
eliminate the $w$'s from the system, after which the solution can be
obtained as before.

When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.

@<Glob...@>=
@!theta:array[0..path_size] of angle; {values of $\theta_k$}
@!uu:array[0..path_size] of fraction; {values of $u_k$}
@!vv:array[0..path_size] of angle; {values of $v_k$}
@!ww:array[0..path_size] of fraction; {values of $w_k$}

@ Our immediate problem is to get the ball rolling by setting up the
first equation or by realizing that no equations are needed, and to fit
this initialization into a framework suitable for the overall computation.

@<Declare the procedure called |solve_choices|@>=
@t\4@>@<Declare subroutines needed by |solve_choices|@>@;
procedure solve_choices(@!p,@!q:pointer;@!n:halfword);
label found,exit;
var @!k:0..path_size; {current knot number}
@!r,@!s,@!t:pointer; {registers for list traversal}
@<Other local variables for |solve_choices|@>@;
begin k:=0; s:=p;
loop@+  begin t:=link(s);
  if k=0 then @<Get the linear equations started; or |return|
    with the control points in place, if linear equations
    needn't be solved@>
  else  case left_type(s) of
    end_cycle,open:@<Set up equation to match mock curvatures
      at $z_k$; then |goto found| with $\theta_n$
      adjusted to equal $\theta_0$, if a cycle has ended@>;
    curl:@<Set up equation for a curl at $\theta_n$
      and |goto found|@>;
    given:@<Calculate the given value of $\theta_n$
      and |goto found|@>;
    end; {there are no other cases}
  r:=s; s:=t; incr(k);
  end;
found:@<Finish choosing angles and assigning control points@>;
exit:end;

@ On the first time through the loop, we have |k=0| and |r| is not yet
defined. The first linear equation, if any, will have $A_0=B_0=0$.

@<Get the linear equations started...@>=
case right_type(s) of
given: if left_type(t)=given then @<Reduce to simple case of two givens
    and |return|@>
  else @<Set up the equation for a given value of $\theta_0$@>;
curl: if left_type(t)=curl then @<Reduce to simple case of straight line
    and |return|@>
  else @<Set up the equation for a curl at $\theta_0$@>;
open: begin uu[0]:=0; vv[0]:=0; ww[0]:=fraction_one;
  end; {this begins a cycle}
end {there are no other cases}

@ The general equation that specifies equality of mock curvature at $z_k$ is
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
as derived above. We want to combine this with the already-derived equation
$\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
a new equation
$\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
equation
$$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
    -A_kw_{k-1}\theta_0$$
by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
fixed-point arithmetic, avoiding the chance of overflow while retaining
suitable precision.

The calculations will be performed in several registers that
provide temporary storage for intermediate quantities.

@<Other local variables for |solve_choices|@>=
@!aa,@!bb,@!cc,@!ff,@!acc:fraction; {temporary registers}
@!dd,@!ee:scaled; {likewise, but |scaled|}
@!lt,@!rt:scaled; {tension values}

@ @<Set up equation to match mock curvatures...@>=
begin @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
  $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
  and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
uu[k]:=take_fraction(ff,bb);
@<Calculate the values of $v_k$ and $w_k$@>;
if left_type(s)=end_cycle then
  @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
end

@ Since tension values are never less than 3/4, the values |aa| and
|bb| computed here are never more than 4/5.

@<Calculate the values $\\{aa}=...@>=
if abs(right_tension(r))=unity then
  begin aa:=fraction_half; dd:=2*delta[k];
  end
else  begin aa:=make_fraction(unity,3*abs(right_tension(r))-unity);
  dd:=take_fraction(delta[k],
    fraction_three-make_fraction(unity,abs(right_tension(r))));
  end;
if abs(left_tension(t))=unity then
  begin bb:=fraction_half; ee:=2*delta[k-1];
  end
else  begin bb:=make_fraction(unity,3*abs(left_tension(t))-unity);
  ee:=take_fraction(delta[k-1],
    fraction_three-make_fraction(unity,abs(left_tension(t))));
  end;
cc:=fraction_one-take_fraction(uu[k-1],aa)

@ The ratio to be calculated in this step can be written in the form
$$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
  \\{cc}\cdot\\{dd},$$
because of the quantities just calculated. The values of |dd| and |ee|
will not be needed after this step has been performed.

@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
dd:=take_fraction(dd,cc); lt:=abs(left_tension(s)); rt:=abs(right_tension(s));
if lt<>rt then {$\beta_k^{-1}\ne\alpha_k^{-1}$}
  if lt<rt then
    begin ff:=make_fraction(lt,rt);
    ff:=take_fraction(ff,ff); {$\alpha_k^2/\beta_k^2$}
    dd:=take_fraction(dd,ff);
    end
  else  begin ff:=make_fraction(rt,lt);
    ff:=take_fraction(ff,ff); {$\beta_k^2/\alpha_k^2$}
    ee:=take_fraction(ee,ff);
    end;
ff:=make_fraction(ee,ee+dd)

@ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
equation was specified by a curl. In that case we must use a special
method of computation to prevent overflow.

Fortunately, the calculations turn out to be even simpler in this ``hard''
case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
$-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.

@<Calculate the values of $v_k$ and $w_k$@>=
acc:=-take_fraction(psi[k+1],uu[k]);
if right_type(r)=curl then
  begin ww[k]:=0;
  vv[k]:=acc-take_fraction(psi[1],fraction_one-ff);
  end
else  begin ff:=make_fraction(fraction_one-ff,cc); {this is
    $B_k/(C_k+B_k-u_{k-1}A_k)<5$}
  acc:=acc-take_fraction(psi[k],ff);
  ff:=take_fraction(ff,aa); {this is $A_k/(C_k+B_k-u_{k-1}A_k)$}
  vv[k]:=acc-take_fraction(vv[k-1],ff);
  if ww[k-1]=0 then ww[k]:=0
  else ww[k]:=-take_fraction(ww[k-1],ff);
  end

@ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
$\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
for |0<=k<n|, so that the cyclic case can be finished up just as if there
were no cycle.

The idea in the following code is to observe that
$$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
&=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
  -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
so we can solve for $\theta_n=\theta_0$.

@<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
begin aa:=0; bb:=fraction_one; {we have |k=n|}
repeat decr(k);
if k=0 then k:=n;
aa:=vv[k]-take_fraction(aa,uu[k]);
bb:=ww[k]-take_fraction(bb,uu[k]);
until k=n; {now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$}
aa:=make_fraction(aa,fraction_one-bb);
theta[n]:=aa; vv[0]:=aa;
for k:=1 to n-1 do vv[k]:=vv[k]+take_fraction(aa,ww[k]);
goto found;
end

@ @d reduce_angle(#)==if abs(#)>one_eighty_deg then
  if #>0 then #:=#-three_sixty_deg@+else #:=#+three_sixty_deg

@<Calculate the given value of $\theta_n$...@>=
begin theta[n]:=left_given(s)-n_arg(delta_x[n-1],delta_y[n-1]);
reduce_angle(theta[n]);
goto found;
end

@ @<Set up the equation for a given value of $\theta_0$@>=
begin vv[0]:=right_given(s)-n_arg(delta_x[0],delta_y[0]);
reduce_angle(vv[0]);
uu[0]:=0; ww[0]:=0;
end

@ @<Set up the equation for a curl at $\theta_0$@>=
begin cc:=right_curl(s); lt:=abs(left_tension(t)); rt:=abs(right_tension(s));
if (rt=unity)and(lt=unity) then
  uu[0]:=make_fraction(cc+cc+unity,cc+two)
else uu[0]:=curl_ratio(cc,rt,lt);
vv[0]:=-take_fraction(psi[1],uu[0]); ww[0]:=0;
end

@ @<Set up equation for a curl at $\theta_n$...@>=
begin cc:=left_curl(s); lt:=abs(left_tension(s)); rt:=abs(right_tension(r));
if (rt=unity)and(lt=unity) then
  ff:=make_fraction(cc+cc+unity,cc+two)
else ff:=curl_ratio(cc,lt,rt);
theta[n]:=-make_fraction(take_fraction(vv[n-1],ff),
    fraction_one-take_fraction(ff,uu[n-1]));
goto found;
end

@ The |curl_ratio| subroutine has three arguments, which our previous notation
encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
a somewhat tedious program to calculate
$${(3-\alpha)\alpha^2\gamma+\beta^3\over
  \alpha^3\gamma+(3-\beta)\beta^2},$$
with the result reduced to 4 if it exceeds 4. (This reduction of curl
is necessary only if the curl and tension are both large.)
The values of $\alpha$ and $\beta$ will be at most~4/3.

@<Declare subroutines needed by |solve_choices|@>=
function curl_ratio(@!gamma,@!a_tension,@!b_tension:scaled):fraction;
var @!alpha,@!beta,@!num,@!denom,@!ff:fraction; {registers}
begin alpha:=make_fraction(unity,a_tension);
beta:=make_fraction(unity,b_tension);@/
if alpha<=beta then
  begin ff:=make_fraction(alpha,beta); ff:=take_fraction(ff,ff);
  gamma:=take_fraction(gamma,ff);@/
  beta:=beta div @'10000; {convert |fraction| to |scaled|}
  denom:=take_fraction(gamma,alpha)+three-beta;
  num:=take_fraction(gamma,fraction_three-alpha)+beta;
  end
else  begin ff:=make_fraction(beta,alpha); ff:=take_fraction(ff,ff);
  beta:=take_fraction(beta,ff) div @'10000; {convert |fraction| to |scaled|}
  denom:=take_fraction(gamma,alpha)+(ff div 1365)-beta;
    {$1365\approx 2^{12}/3$}
  num:=take_fraction(gamma,fraction_three-alpha)+beta;
  end;
if num>=denom+denom+denom+denom then curl_ratio:=fraction_four
else curl_ratio:=make_fraction(num,denom);
end;

@ We're in the home stretch now.

@<Finish choosing angles and assigning control points@>=
for k:=n-1 downto 0 do theta[k]:=vv[k]-take_fraction(theta[k+1],uu[k]);
s:=p; k:=0;
repeat t:=link(s);@/
n_sin_cos(theta[k]); st:=n_sin; ct:=n_cos;@/
n_sin_cos(-psi[k+1]-theta[k+1]); sf:=n_sin; cf:=n_cos;@/
set_controls(s,t,k);@/
incr(k); s:=t;
until k=n

@ The |set_controls| routine actually puts the control points into
a pair of consecutive nodes |p| and~|q|. Global variables are used to
record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
$\cos\phi$ needed in this calculation.

@<Glob...@>=
@!st,@!ct,@!sf,@!cf:fraction; {sines and cosines}

@ @<Declare subroutines needed by |solve_choices|@>=
procedure set_controls(@!p,@!q:pointer;@!k:integer);
var @!rr,@!ss:fraction; {velocities, divided by thrice the tension}
@!lt,@!rt:scaled; {tensions}
@!sine:fraction; {$\sin(\theta+\phi)$}
begin lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
rr:=velocity(st,ct,sf,cf,rt);
ss:=velocity(sf,cf,st,ct,lt);
if (right_tension(p)<0)or(left_tension(q)<0) then @<Decrease the velocities,
  if necessary, to stay inside the bounding triangle@>;
right_x(p):=x_coord(p)+take_fraction(
  take_fraction(delta_x[k],ct)-take_fraction(delta_y[k],st),rr);
right_y(p):=y_coord(p)+take_fraction(
  take_fraction(delta_y[k],ct)+take_fraction(delta_x[k],st),rr);
left_x(q):=x_coord(q)-take_fraction(
  take_fraction(delta_x[k],cf)+take_fraction(delta_y[k],sf),ss);
left_y(q):=y_coord(q)-take_fraction(
  take_fraction(delta_y[k],cf)-take_fraction(delta_x[k],sf),ss);
right_type(p):=explicit; left_type(q):=explicit;
end;

@ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
$\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
$\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
there is no ``bounding triangle.''
@!@:at_least_}{\&{atleast} primitive@>

@<Decrease the velocities, if necessary...@>=
if((st>=0)and(sf>=0))or((st<=0)and(sf<=0)) then
  begin sine:=take_fraction(abs(st),cf)+take_fraction(abs(sf),ct);
  if sine>0 then
    begin sine:=take_fraction(sine,fraction_one+unity); {safety factor}
    if right_tension(p)<0 then
     if ab_vs_cd(abs(sf),fraction_one,rr,sine)<0 then
      rr:=make_fraction(abs(sf),sine);
    if left_tension(q)<0 then
     if ab_vs_cd(abs(st),fraction_one,ss,sine)<0 then
      ss:=make_fraction(abs(st),sine);
    end;
  end

@ Only the simple cases remain to be handled.

@<Reduce to simple case of two givens and |return|@>=
begin aa:=n_arg(delta_x[0],delta_y[0]);@/
n_sin_cos(right_given(p)-aa); ct:=n_cos; st:=n_sin;@/
n_sin_cos(left_given(q)-aa); cf:=n_cos; sf:=-n_sin;@/
set_controls(p,q,0); return;
end

@ @<Reduce to simple case of straight line and |return|@>=
begin right_type(p):=explicit; left_type(q):=explicit;
lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
if rt=unity then
  begin if delta_x[0]>=0 then right_x(p):=x_coord(p)+((delta_x[0]+1) div 3)
  else right_x(p):=x_coord(p)+((delta_x[0]-1) div 3);
  if delta_y[0]>=0 then right_y(p):=y_coord(p)+((delta_y[0]+1) div 3)
  else right_y(p):=y_coord(p)+((delta_y[0]-1) div 3);
  end
else  begin ff:=make_fraction(unity,3*rt); {$\alpha/3$}
  right_x(p):=x_coord(p)+take_fraction(delta_x[0],ff);
  right_y(p):=y_coord(p)+take_fraction(delta_y[0],ff);
  end;
if lt=unity then
  begin if delta_x[0]>=0 then left_x(q):=x_coord(q)-((delta_x[0]+1) div 3)
  else left_x(q):=x_coord(q)-((delta_x[0]-1) div 3);
  if delta_y[0]>=0 then left_y(q):=y_coord(q)-((delta_y[0]+1) div 3)
  else left_y(q):=y_coord(q)-((delta_y[0]-1) div 3);
  end
else  begin ff:=make_fraction(unity,3*lt); {$\beta/3$}
  left_x(q):=x_coord(q)-take_fraction(delta_x[0],ff);
  left_y(q):=y_coord(q)-take_fraction(delta_y[0],ff);
  end;
return;
end

@* \[19] Generating discrete moves.
The purpose of the next part of \MF\ is to compute discrete approximations
to curves described as parametric polynomial functions $z(t)$.
We shall start with the low level first, because an efficient ``engine''
is needed to support the high-level constructions.

Most of the subroutines are based on variations of a single theme,
namely the idea of {\sl bisection}. Given a Bernshte{\u\i}n polynomial
@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
$$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
we can conveniently bisect its range as follows:

\smallskip
\textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.

\smallskip
\textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
|0<=k<n-j|, for |0<=j<n|.

\smallskip\noindent
Then
$$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
This formula gives us the coefficients of polynomials to use over the ranges
$0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.

In our applications it will usually be possible to work indirectly with
numbers that allow us to deduce relevant properties of the polynomials
without actually computing the polynomial values. We will deal with
coefficients $Z_k=2^l(z_k-z_{k-1})$ for |1<=k<=n|, instead of
the actual numbers $z_0$, $z_1$, \dots,~$z_n$, and the value of~|l| will
increase by~1 at each bisection step. This technique reduces the
amount of calculation needed for bisection and also increases the
accuracy of evaluation (since one bit of precision is gained at each
bisection). Indeed, the bisection process now becomes one level shorter:

\smallskip
\textindent{$1'$)} Let $Z_k^{(1)}=Z_k$, for |1<=k<=n|.

\smallskip
\textindent{$2'$)} Let $Z_k^{(j+1)}={1\over2}(Z_k^{(j)}+Z\k^{(j)})$, for
|1<=k<=n-j|, for |1<=j<n|.

\smallskip\noindent
The relevant coefficients $(Z'_1,\ldots,Z'_n)$ and $(Z''_1,\ldots,Z''_n)$
for the two subintervals after bisection are respectively
$(Z_1^{(1)},Z_1^{(2)},\ldots,Z_1^{(n)})$ and
$(Z_1^{(n)},Z_2^{(n-1)},\ldots,Z_n^{(1)})$.
And the values of $z_0$ appropriate for the bisected interval are $z'_0=z_0$
and $z''_0=z_0+(Z_1+Z_2+\cdots+Z_n)/2^{l+1}$.

Step $2'$ involves division by~2, which introduces computational errors
of at most $1\over2$ at each step; thus after $l$~levels of bisection the
integers $Z_k$ will differ from their true values by at most $(n-1)l/2$.
This error rate is quite acceptable, considering that we have $l$~more
bits of precision in the $Z$'s by comparison with the~$z$'s.  Note also
that the $Z$'s remain bounded; there's no danger of integer overflow, even
though we have the identity $Z_k=2^l(z_k-z_{k-1})$ for arbitrarily large~$l$.

In fact, we can show not only that the $Z$'s remain bounded, but also that
they become nearly equal, since they are control points for a polynomial
of one less degree. If $\vert Z\k-Z_k\vert\L M$ initially, it is possible
to prove that $\vert Z\k-Z_k\vert\L\lceil M/2^l\rceil$ after $l$~levels
of bisection, even in the presence of rounding errors. Here's the
proof [cf.~Lane and Riesenfeld, {\sl IEEE Trans.\ on Pattern Analysis
@^Lane, Jeffrey Michael@>
@^Riesenfeld, Richard Franklin@>
and Machine Intelligence\/ \bf PAMI-2} (1980), 35--46]: Assuming that
$\vert Z\k-Z_k\vert\L M$ before bisection, we want to prove that
$\vert Z\k-Z_k\vert\L\lceil M/2\rceil$ afterward. First we show that
$\vert Z\k^{(j)}-Z_k^{(j)}\vert\L M$ for all $j$ and~$k$, by induction
on~$j$; this follows from the fact that
$$\bigl\vert\\{half}(a+b)-\\{half}(b+c)\bigr\vert\L
 \max\bigl(\vert a-b\vert,\vert b-c\vert\bigr)$$
holds for both of the rounding rules $\\{half}(x)=\lfloor x/2\rfloor$
and $\\{half}(x)={\rm sign}(x)\lfloor\vert x/2\vert\rfloor$.
(If $\vert a-b\vert$ and $\vert b-c\vert$ are equal, then
$a+b$ and $b+c$ are both even or both odd. The rounding errors either
cancel or round the numbers toward each other; hence
$$\eqalign{\bigl\vert\\{half}(a+b)-\\{half}(b+c)\bigr\vert
&\L\textstyle\bigl\vert{1\over2}(a+b)-{1\over2}(b+c)\bigr\vert\cr
&=\textstyle\bigl\vert{1\over2}(a-b)+{1\over2}(b-c)\bigr\vert
\L\max\bigl(\vert a-b\vert,\vert b-c\vert\bigr),\cr}$$
as required. A simpler argument applies if $\vert a-b\vert$ and
$\vert b-c\vert$ are unequal.)  Now it is easy to see that
$\vert Z_1^{(j+1)}-Z_1^{(j)}\vert\L\bigl\lfloor{1\over2}
\vert Z_2^{(j)}-Z_1^{(j)}\vert+{1\over2}\bigr\rfloor
\L\bigl\lfloor{1\over2}(M+1)\bigr\rfloor=\lceil M/2\rceil$.

Another interesting fact about bisection is the identity
$$Z_1'+\cdots+Z_n'+Z_1''+\cdots+Z_n''=2(Z_1+\cdots+Z_n+E),$$
where $E$ is the sum of the rounding errors in all of the halving
operations ($\vert E\vert\L n(n-1)/4$).

@ We will later reduce the problem of digitizing a complex cubic
$z(t)=B(z_0,z_1,z_2,z_3;t)$ to the following simpler problem:
Given two real cubics
$x(t)=B(x_0,x_1,x_2,x_3;t)$
and $y(t)=B(y_0,y_1,y_2,y_3;t)$ that are monotone nondecreasing,
determine the set of integer points
$$P=\bigl\{\bigl(\lfloor x(t)\rfloor,\lfloor y(t)\rfloor\bigr)
\bigm\vert 0\L t\L 1\bigr\}.$$
Well, the problem isn't actually quite so clean as this; when the path
goes very near an integer point $(a,b)$, computational errors may
make us think that $P$ contains $(a-1,b)$ while in reality it should
contain $(a,b-1)$. Furthermore, if the path goes {\sl exactly\/}
through the integer points $(a-1,b-1)$ and
$(a,b)$, we will want $P$ to contain one
of the two points $(a-1,b)$ or $(a,b-1)$, so that $P$ can be described
entirely by ``rook moves'' upwards or to the right; no diagonal
moves from $(a-1,b-1)$ to~$(a,b)$ will be allowed.

Thus, the set $P$ we wish to compute will merely be an approximation
to the set described in the formula above. It will consist of
$\lfloor x(1)\rfloor-\lfloor x(0)\rfloor$ rightward moves and
$\lfloor y(1)\rfloor-\lfloor y(0)\rfloor$ upward moves, intermixed
in some order. Our job will be to figure out a suitable order.

The following recursive strategy suggests itself, when we recall that
$x(0)=x_0$, $x(1)=x_3$, $y(0)=y_0$, and $y(1)=y_3$:

\smallskip
If $\lfloor x_0\rfloor=\lfloor x_3\rfloor$ then take
$\lfloor y_3\rfloor-\lfloor y_0\rfloor$ steps up.

Otherwise if $\lfloor y_0\rfloor=\lfloor y_3\rfloor$ then take
$\lfloor x_3\rfloor-\lfloor x_0\rfloor$ steps to the right.

Otherwise bisect the current cubics and repeat the process on both halves.

\yskip\noindent
This intuitively appealing formulation does not quite solve the problem,
because it may never terminate. For example, it's not hard to see that
no steps will {\sl ever\/} be taken if $(x_0,x_1,x_2,x_3)=(y_0,y_1,y_2,y_3)$!
However, we can surmount this difficulty with a bit of care; so let's
proceed to flesh out the algorithm as stated, before worrying about
such details.

The bisect-and-double strategy discussed above suggests that we represent
$(x_0,x_1,x_2,x_3)$ by $(X_1,X_2,X_3)$, where $X_k=2^l(x_k-x_{k-1})$
for some~$l$. Initially $l=16$, since the $x$'s are |scaled|.
In order to deal with other aspects of the algorithm we will want to
maintain also the quantities $m=\lfloor x_3\rfloor-\lfloor x_0\rfloor$
and $R=2^l(x_0\bmod 1)$. Similarly,
$(y_0,y_1,y_2,y_3)$ will be represented by $(Y_1,Y_2,Y_3)$,
$n=\lfloor y_3\rfloor-\lfloor y_0\rfloor$,
and $S=2^l(y_0\bmod 1)$. The algorithm now takes the following form:

\smallskip
If $m=0$ then take $n$ steps up.

Otherwise if $n=0$ then take $m$ steps to the right.

Otherwise bisect the current cubics and repeat the process on both halves.

\smallskip\noindent
The bisection process for $(X_1,X_2,X_3,m,R,l)$ reduces, in essence,
to the following formulas:
$$\vbox{\halign{$#\hfil$\cr
X_2'=\\{half}(X_1+X_2),\quad
X_2''=\\{half}(X_2+X_3),\quad
X_3'=\\{half}(X_2'+X_2''),\cr
X_1'=X_1,\quad
X_1''=X_3',\quad
X_3''=X_3,\cr
R'=2R,\quad
T=X_1'+X_2'+X_3'+R',\quad
R''=T\bmod 2^{l+1},\cr
m'=\lfloor T/2^{l+1}\rfloor,\quad
m''=m-m'.\cr}}$$

@ When $m=n=1$, the computation can be speeded up because we simply
need to decide between two alternatives, (up,\thinspace right)
versus (right,\thinspace up). There appears to be no simple, direct
way to make the correct decision by looking at the values of
$(X_1,X_2,X_3,R)$ and
$(Y_1,Y_2,Y_3,S)$; but we can streamline the bisection process, and
we can use the fact that only one of the two descendants needs to
be examined after each bisection. Furthermore, we observed earlier
that after several levels of bisection the $X$'s and $Y$'s will be nearly
equal; so we will be justified in assuming that the curve is essentially a
straight line. (This, incidentally, solves the problem of infinite
recursion mentioned earlier.)

It is possible to show that
$$m=\bigl\lfloor(X_1+X_2+X_3+R+E)\,/\,2^l\bigr\rfloor,$$
where $E$ is an accumulated rounding error that is at most
$3\cdot(2^{l-16}-1)$ in absolute value. We will make sure that
the $X$'s are less than $2^{28}$; hence when $l=30$ we must
have |m<=1|. This proves that the special case $m=n=1$ is
bound to be reached by the time $l=30$. Furthermore $l=30$ is
a suitable time to make the straight line approximation,
if the recursion hasn't already died out, because the maximum
difference between $X$'s will then be $<2^{14}$; this corresponds
to an error of $<1$ with respect to the original scaling.
(Stating this another way, each bisection makes the curve two bits
closer to a straight line, hence 14 bisections are sufficient for
28-bit accuracy.)

In the case of a straight line, the curve goes first right, then up,
if and only if $(T-2^l)(2^l-S)>(U-2^l)(2^l-R)$, where
$T=X_1+X_2+X_3+R$ and $U=Y_1+Y_2+Y_3+S$. For the actual curve
essentially runs from $(R/2^l,S/2^l)$ to $(T/2^l,U/2^l)$, and
we are testing whether or not $(1,1)$ is above the straight
line connecting these two points. (This formula assumes that $(1,1)$
is not exactly on the line.)

@ We have glossed over the problem of tie-breaking in ambiguous
cases when the cubic curve passes exactly through integer points.
\MF\ finesses this problem by assuming that coordinates
$(x,y)$ actually stand for slightly perturbed values $(x+\xi,y+\eta)$,
where $\xi$ and~$\eta$ are infinitesimals whose signs will determine
what to do when $x$ and/or~$y$ are exact integers. The quantities
$\lfloor x\rfloor$ and~$\lfloor y\rfloor$ in the formulas above
should actually read $\lfloor x+\xi\rfloor$ and $\lfloor y+\eta\rfloor$.

If $x$ is a |scaled| value, we have $\lfloor x+\xi\rfloor=\lfloor x\rfloor$
if $\xi>0$, and $\lfloor x+\xi\rfloor=\lfloor x-2^{-16}\rfloor$ if
$\xi<0$. It is convenient to represent $\xi$ by the integer |xi_corr|,
defined to be 0~if $\xi>0$ and 1~if $\xi<0$; then, for example, the
integer $\lfloor x+\xi\rfloor$ can be computed as
|floor_unscaled(x-xi_corr)|. Similarly, $\eta$ is conveniently
represented by~|eta_corr|.

In our applications the sign of $\xi-\eta$ will always be the same as
the sign of $\xi$. Therefore it turns out that the rule for straight
lines, as stated above, should be modified as follows in the case of
ties: The line goes first right, then up, if and only if
$(T-2^l)(2^l-S)+\xi>(U-2^l)(2^l-R)$. And this relation holds iff
$|ab_vs_cd|(T-2^l,2^l-S,U-2^l,2^l-R)-|xi_corr|\ge0$.

These conventions for rounding are symmetrical, in the sense that the
digitized moves obtained from $(x_0,x_1,x_2,x_3,y_0,y_1,y_2,y_3,\xi,\eta)$
will be exactly complementary to the moves that would be obtained from
$(-x_3,-x_2,-x_1,-x_0,-y_3,-y_2,-y_1,-y_0,-\xi,-\eta)$, if arithmetic
is exact. However, truncation errors in the bisection process might
upset the symmetry. We can restore much of the lost symmetry by adding
|xi_corr| or |eta_corr| when halving the data.

@ One further possibility needs to be mentioned: The algorithm
will be applied only to cubic polynomials $B(x_0,x_1,x_2,x_3;t)$ that
are nondecreasing as $t$~varies from 0 to~1; this condition turns
out to hold if and only if $x_0\L x_1$, $x_2\L x_3$, and either
$x_1\L x_2$ or $(x_1-x_2)^2\L(x_1-x_0)(x_3-x_2)$. If bisection were
carried out with perfect accuracy, these relations would remain
invariant. But rounding errors can creep in, hence the bisection
algorithm can produce non-monotonic subproblems from monotonic
initial conditions. This leads to the potential danger that $m$ or~$n$
could become negative in the algorithm described above.

For example, if we start with $(x_1-x_0,x_2-x_1,x_3-x_2)=
(X_1,X_2,X_3)=(7,-16,58)$, the corresponding polynomial is
monotonic, because $16^2<7\cdot39$. But the bisection algorithm
produces the left descendant $(7,-5,3)$, which is nonmonotonic;
its right descendant is~$(0,-1,3)$.

\def\xt{{\tilde x}}
Fortunately we can prove that such rounding errors will never cause
the algorithm to make a tragic mistake. At every stage we are working
with numbers corresponding to a cubic polynomial $B(\xt_0,
\xt_1,\xt_2,\xt_3)$ that approximates some
monotonic polynomial $B(x_0,x_1,x_2,x_3)$. The accumulated errors are
controlled so that $\vert x_k-\xt_k\vert<\epsilon=3\cdot2^{-16}$.
If bisection is done at some stage of the recursion, we have
$m=\lfloor\xt_3\rfloor-\lfloor\xt_0\rfloor>0$, and the algorithm
computes a bisection value $\bar x$ such that $m'=\lfloor\bar x\rfloor-
\lfloor\xt_0\rfloor$
and $m''=\lfloor\xt_3\rfloor-\lfloor\bar x\rfloor$. We want to prove
that neither $m'$ nor $m''$ can be negative. Since $\bar x$ is an
approximation to a value in the interval $[x_0,x_3]$, we have
$\bar x>x_0-\epsilon$ and $\bar x<x_3+\epsilon$, hence $\bar x>
\xt_0-2\epsilon$ and $\bar x<\xt_3+2\epsilon$.
If $m'$ is negative we must have $\xt_0\bmod 1<2\epsilon$;
if $m''$ is negative we must have $\xt_3\bmod 1>1-2\epsilon$.
In either case the condition $\lfloor\xt_3\rfloor-\lfloor\xt_0\rfloor>0$
implies that $\xt_3-\xt_0>1-2\epsilon$, hence $x_3-x_0>1-4\epsilon$.
But it can be shown that if $B(x_0,x_1,x_2,x_3;t)$ is a monotonic
cubic, then $B(x_0,x_1,x_2,x_3;{1\over2})$ is always between
$.14[x_0,x_3]$ and $.86[x_0,x_3]$; and it is impossible for $\bar x$
to be within~$\epsilon$ of such a number. Contradiction!
(The constant .14 is actually $(7-\sqrt{28}\,)/12$; the worst case
occurs for polynomials like $B(0,28-4\sqrt{28},14-5\sqrt{28},42;t)$.)

@ OK, now that a long theoretical preamble has justified the
bisection-and-doubling algorithm, we are ready to proceed with
its actual coding. But we still haven't discussed the
form of the output.

For reasons to be discussed later, we shall find it convenient to
record the output as follows: Moving one step up is represented by
appending a `1' to a list; moving one step right is represented by
adding unity to the element at the end of the list. Thus, for example,
the net effect of ``(up, right, right, up, right)'' is to append
$(3,2)$.

The list is kept in a global array called |move|. Before starting the
algorithm, \MF\ should check that $\\{move\_ptr}+\lfloor y_3\rfloor
-\lfloor y_0\rfloor\L\\{move\_size}$, so that the list won't exceed
the bounds of this array.

@<Glob...@>=
@!move:array[0..move_size] of integer; {the recorded moves}
@!move_ptr:0..move_size; {the number of items in the |move| list}

@ When bisection occurs, we ``push'' the subproblem corresponding
to the right-hand subinterval onto the |bisect_stack| while
we continue to work on the left-hand subinterval. Thus, the |bisect_stack|
will hold $(X_1,X_2,X_3,R,m,Y_1,Y_2,Y_3,S,n,l)$ values for
subproblems yet to be tackled.

At most 15 subproblems will be on the stack at once (namely, for
$l=15$,~16, \dots,~29); but the stack is bigger than this, because
it is used also for more complicated bisection algorithms.

@d stack_x1==bisect_stack[bisect_ptr] {stacked value of $X_1$}
@d stack_x2==bisect_stack[bisect_ptr+1] {stacked value of $X_2$}
@d stack_x3==bisect_stack[bisect_ptr+2] {stacked value of $X_3$}
@d stack_r==bisect_stack[bisect_ptr+3] {stacked value of $R$}
@d stack_m==bisect_stack[bisect_ptr+4] {stacked value of $m$}
@d stack_y1==bisect_stack[bisect_ptr+5] {stacked value of $Y_1$}
@d stack_y2==bisect_stack[bisect_ptr+6] {stacked value of $Y_2$}
@d stack_y3==bisect_stack[bisect_ptr+7] {stacked value of $Y_3$}
@d stack_s==bisect_stack[bisect_ptr+8] {stacked value of $S$}
@d stack_n==bisect_stack[bisect_ptr+9] {stacked value of $n$}
@d stack_l==bisect_stack[bisect_ptr+10] {stacked value of $l$}
@d move_increment=11 {number of items pushed by |make_moves|}

@<Glob...@>=
@!bisect_stack:array[0..bistack_size] of integer;
@!bisect_ptr:0..bistack_size;

@ @<Check the ``constant'' values...@>=
if 15*move_increment>bistack_size then bad:=31;

@ The |make_moves| subroutine is given |scaled| values $(x_0,x_1,x_2,x_3)$
and $(y_0,y_1,y_2,y_3)$ that represent monotone-nondecreasing polynomials;
it makes $\lfloor x_3+\xi\rfloor-\lfloor x_0+\xi\rfloor$ rightward moves
and $\lfloor y_3+\eta\rfloor-\lfloor y_0+\eta\rfloor$ upward moves, as
explained earlier.  (Here $\lfloor x+\xi\rfloor$ actually stands for
$\lfloor x/2^{16}-|xi_corr|\rfloor$, if $x$ is regarded as an integer
without scaling.) The unscaled integers $x_k$ and~$y_k$ should be less
than $2^{28}$ in magnitude.

It is assumed that $|move_ptr| + \lfloor y_3+\eta\rfloor -
\lfloor y_0+\eta\rfloor < |move_size|$ when this procedure is called,
so that the capacity of the |move| array will not be exceeded.

The variables |r| and |s| in this procedure stand respectively for
$R-|xi_corr|$ and $S-|eta_corr|$ in the theory discussed above.

@p procedure make_moves(@!xx0,@!xx1,@!xx2,@!xx3,@!yy0,@!yy1,@!yy2,@!yy3:
  scaled;@!xi_corr,@!eta_corr:small_number);
label continue, done, exit;
var @!x1,@!x2,@!x3,@!m,@!r,@!y1,@!y2,@!y3,@!n,@!s,@!l:integer;
  {bisection variables explained above}
@!q,@!t,@!u,@!x2a,@!x3a,@!y2a,@!y3a:integer; {additional temporary registers}
begin if (xx3<xx0)or(yy3<yy0) then confusion("m");
@:this can't happen m}{\quad m@>
l:=16; bisect_ptr:=0;@/
x1:=xx1-xx0; x2:=xx2-xx1; x3:=xx3-xx2;
if xx0>=xi_corr then r:=(xx0-xi_corr) mod unity
else r:=unity-1-((-xx0+xi_corr-1) mod unity);
m:=(xx3-xx0+r) div unity;@/
y1:=yy1-yy0; y2:=yy2-yy1; y3:=yy3-yy2;
if yy0>=eta_corr then s:=(yy0-eta_corr) mod unity
else s:=unity-1-((-yy0+eta_corr-1) mod unity);
n:=(yy3-yy0+s) div unity;@/
if (xx3-xx0>=fraction_one)or(yy3-yy0>=fraction_one) then
  @<Divide the variables by two, to avoid overflow problems@>;
loop@+  begin continue:@<Make moves for current subinterval;
    if bisection is necessary, push the second subinterval
    onto the stack, and |goto continue| in order to handle
    the first subinterval@>;
  if bisect_ptr=0 then return;
  @<Remove a subproblem for |make_moves| from the stack@>;
  end;
exit: end;

@ @<Remove a subproblem for |make_moves| from the stack@>=
bisect_ptr:=bisect_ptr-move_increment;@/
x1:=stack_x1; x2:=stack_x2; x3:=stack_x3; r:=stack_r; m:=stack_m;@/
y1:=stack_y1; y2:=stack_y2; y3:=stack_y3; s:=stack_s; n:=stack_n;@/
l:=stack_l

@ Our variables |(x1,x2,x3)| correspond to $(X_1,X_2,X_3)$ in the notation
of the theory developed above. We need to keep them less than $2^{28}$
in order to avoid integer overflow in weird circumstances.
For example, data like $x_0=-2^{28}+2^{16}-1$ and $x_1=x_2=x_3=2^{28}-1$
would otherwise be problematical. Hence this part of the code is
needed, if only to thwart malicious users.

@<Divide the variables by two, to avoid overflow problems@>=
begin x1:=half(x1+xi_corr); x2:=half(x2+xi_corr); x3:=half(x3+xi_corr);
r:=half(r+xi_corr);@/
y1:=half(y1+eta_corr); y2:=half(y2+eta_corr); y3:=half(y3+eta_corr);
s:=half(s+eta_corr);@/
l:=15;
end

@ @<Make moves...@>=
if m=0 then @<Move upward |n| steps@>
else if n=0 then @<Move to the right |m| steps@>
else if m+n=2 then @<Make one move of each kind@>
else  begin incr(l); stack_l:=l;@/
  stack_x3:=x3; stack_x2:=half(x2+x3+xi_corr); x2:=half(x1+x2+xi_corr);
  x3:=half(x2+stack_x2+xi_corr); stack_x1:=x3;@/
  r:=r+r+xi_corr; t:=x1+x2+x3+r;@/
  q:=t div two_to_the[l]; stack_r:=t mod two_to_the[l];@/
  stack_m:=m-q; m:=q;@/
  stack_y3:=y3; stack_y2:=half(y2+y3+eta_corr); y2:=half(y1+y2+eta_corr);
  y3:=half(y2+stack_y2+eta_corr); stack_y1:=y3;@/
  s:=s+s+eta_corr; u:=y1+y2+y3+s;@/
  q:=u div two_to_the[l]; stack_s:=u mod two_to_the[l];@/
  stack_n:=n-q; n:=q;@/
  bisect_ptr:=bisect_ptr+move_increment; goto continue;
  end

@ @<Move upward |n| steps@>=
while n>0 do
  begin incr(move_ptr); move[move_ptr]:=1; decr(n);
  end

@ @<Move to the right |m| steps@>=
move[move_ptr]:=move[move_ptr]+m

@ @<Make one move of each kind@>=
begin r:=two_to_the[l]-r; s:=two_to_the[l]-s;@/
while l<30 do
  begin x3a:=x3; x2a:=half(x2+x3+xi_corr); x2:=half(x1+x2+xi_corr);
  x3:=half(x2+x2a+xi_corr);
  t:=x1+x2+x3; r:=r+r-xi_corr;@/
  y3a:=y3; y2a:=half(y2+y3+eta_corr); y2:=half(y1+y2+eta_corr);
  y3:=half(y2+y2a+eta_corr);
  u:=y1+y2+y3; s:=s+s-eta_corr;@/
  if t<r then if u<s then @<Switch to the right subinterval@>
    else  begin @<Move up then right@>; goto done;
      end
  else if u<s then
    begin @<Move right then up@>; goto done;
    end;
  incr(l);
  end;
r:=r-xi_corr; s:=s-eta_corr;
if ab_vs_cd(x1+x2+x3,s,y1+y2+y3,r)-xi_corr>=0 then @<Move right then up@>
  else @<Move up then right@>;
done:
end

@ @<Switch to the right subinterval@>=
begin x1:=x3; x2:=x2a; x3:=x3a; r:=r-t;
y1:=y3; y2:=y2a; y3:=y3a; s:=s-u;
end

@ @<Move right then up@>=
begin incr(move[move_ptr]); incr(move_ptr); move[move_ptr]:=1;
end

@ @<Move up then right@>=
begin incr(move_ptr); move[move_ptr]:=2;
end

@ After |make_moves| has acted, possibly for several curves that move toward
the same octant, a ``smoothing'' operation might be done on the |move| array.
This removes optical glitches that can arise even when the curve has been
digitized without rounding errors.

The smoothing process replaces the integers $a_0\ldots a_n$ in
|move[b..t]| by ``smoothed'' integers $a_0'\ldots a_n'$ defined as
follows:
$$a_k'=a_k+\delta\k-\delta_k;\qquad
\delta_k=\cases{+1,&if $1<k<n$ and $a_{k-2}\G a_{k-1}\ll a_k\G a\k$;\cr
-1,&if $1<k<n$ and $a_{k-2}\L a_{k-1}\gg a_k\L a\k$;\cr
0,&otherwise.\cr}$$
Here $a\ll b$ means that $a\L b-2$, and $a\gg b$ means that $a\G b+2$.

The smoothing operation is symmetric in the sense that, if $a_0\ldots a_n$
smoothes to $a_0'\ldots a_n'$, then the reverse sequence $a_n\ldots a_0$
smoothes to $a_n'\ldots a_0'$; also the complementary sequence
$(m-a_0)\ldots(m-a_n)$ smoothes to $(m-a_0')\ldots(m-a_n')$.
We have $a_0'+\cdots+a_n'=a_0+\cdots+a_n$ because $\delta_0=\delta_{n+1}=0$.

@p procedure smooth_moves(@!b,@!t:integer);
var@!k:1..move_size; {index into |move|}
@!a,@!aa,@!aaa:integer; {original values of |move[k],move[k-1],move[k-2]|}
begin if t-b>=3 then
  begin k:=b+2; aa:=move[k-1]; aaa:=move[k-2];
  repeat a:=move[k];
  if abs(a-aa)>1 then
    @<Increase and decrease |move[k-1]| and |move[k]| by $\delta_k$@>;
  incr(k); aaa:=aa; aa:=a;
  until k=t;
  end;
end;

@ @<Increase and decrease |move[k-1]| and |move[k]| by $\delta_k$@>=
if a>aa then
  begin if aaa>=aa then if a>=move[k+1] then
    begin incr(move[k-1]); move[k]:=a-1;
    end;
  end
else  begin if aaa<=aa then if a<=move[k+1] then
    begin decr(move[k-1]); move[k]:=a+1;
    end;
  end

@* \[20] Edge structures.
Now we come to \MF's internal scheme for representing what the user can
actually ``see,'' the edges between pixels. Each pixel has an integer
weight, obtained by summing the weights on all edges to its left. \MF\
represents only the nonzero edge weights, since most of the edges are
weightless; in this way, the data storage requirements grow only linearly
with respect to the number of pixels per point, even though two-dimensional
data is being represented. (Well, the actual dependence on the underlying
resolution is order $n\log n$, but the the $\log n$ factor is buried in our
implicit restriction on the maximum raster size.) The sum of all edge
weights in each row should be zero.

The data structure for edge weights must be compact and flexible,
yet it should support efficient updating and display operations. We
want to be able to have many different edge structures in memory at
once, and we want the computer to be able to translate them, reflect them,
and/or merge them together with relative ease.

\MF's solution to this problem requires one single-word node per
nonzero edge weight, plus one two-word node for each row in a contiguous
set of rows. There's also a header node that provides global information
about the entire structure.

@ Let's consider the edge-weight nodes first. The |info| field of such
nodes contains both an $m$~value and a weight~$w$, in the form
$8m+w+c$, where $c$ is a constant that depends on data found in the header.
We shall consider $c$ in detail later; for now, it's best just to think
of it as a way to compensate for the fact that $m$ and~$w$ can be negative,
together with the fact that an |info| field must have a value between
|min_halfword| and |max_halfword|. The $m$ value is an unscaled $x$~coordinate,
so it satisfies $\vert m\vert<
4096$; the $w$ value is always in the range $1\L\vert w\vert\L3$. We can
unpack the data in the |info| field by fetching |ho(info(p))=
info(p)-min_halfword| and dividing this nonnegative number by~8;
the constant~$c$ will be chosen so that the remainder of this division
is $4+w$. Thus, for example, a remainder of~3 will correspond to
the edge weight $w=-1$.

Every row of an edge structure contains two lists of such edge-weight
nodes, called the |sorted| and |unsorted| lists, linked together by their
|link| fields in the normal way. The difference between them is that we
always have |info(p)<=info(link(p))| in the |sorted| list, but there's no
such restriction on the elements of the |unsorted| list. The reason for
this distinction is that it would take unnecessarily long to maintain
edge-weight lists in sorted order while they're being updated; but when we
need to process an entire row from left to right in order of the
$m$~values, it's fairly easy and quick to sort a short list of unsorted
elements and to merge them into place among their sorted cohorts.
Furthermore, the fact that the |unsorted| list is empty can sometimes be
used to good advantage, because it allows us to conclude that a particular
row has not changed since the last time we sorted it.

The final |link| of the |sorted| list will be |sentinel|, which points to
a special one-word node whose |info| field is essentially infinite; this
facilitates the sorting and merging operations. The final |link| of the
|unsorted| list will be either |null| or |void|, where |void=null+1|
is used to avoid redisplaying data that has not changed:
A |void| value is stored at the head of the
unsorted list whenever the corresponding row has been displayed.

@d zero_w=4
@d void==null+1

@<Initialize table entries...@>=
info(sentinel):=max_halfword; {|link(sentinel)=null|}

@ The rows themselves are represented by row-header nodes that
contain four link fields. Two of these four, |sorted| and |unsorted|,
point to the first items of the edge-weight lists just mentioned.
The other two, |link| and |knil|, point to the headers of the two
adjacent rows. If |p| points to the header for row number~|n|, then
|link(p)| points up to the header for row~|n+1|, and |knil(p)| points
down to the header for row~|n-1|. This double linking makes it
convenient to move through consecutive rows either upward or downward;
as usual, we have |link(knil(p))=knil(link(p))=p| for all row headers~|p|.

The row associated with a given value of |n| contains weights for
edges that run between the lattice points |(m,n)| and |(m,n+1)|.

@d knil==info {inverse of the |link| field, in a doubly linked list}
@d sorted_loc(#)==#+1 {where the |sorted| link field resides}
@d sorted(#)==link(sorted_loc(#)) {beginning of the list of sorted edge weights}
@d unsorted(#)==info(#+1) {beginning of the list of unsorted edge weights}
@d row_node_size=2 {number of words in a row header node}

@ The main header node |h| for an edge structure has |link| and |knil|
fields that link it above the topmost row and below the bottommost row.
It also has fields called |m_min|, |m_max|, |n_min|, and |n_max| that
bound the current extent of the edge data: All |m| values in edge-weight
nodes should lie between |m_min(h)-4096| and |m_max(h)-4096|, inclusive.
Furthermore the topmost row header, pointed to by |knil(h)|,
is for row number |n_max(h)-4096|; the bottommost row header, pointed to by
|link(h)|, is for row number |n_min(h)-4096|.

The offset constant |c| that's used in all of the edge-weight data is
represented implicitly in |m_offset(h)|; its actual value is
$$\hbox{|c=min_halfword+zero_w+8*m_offset(h)|.}$$
Notice that it's possible to shift an entire edge structure by an
amount $(\Delta m,\Delta n)$ by adding $\Delta n$ to |n_min(h)| and |n_max(h)|,
adding $\Delta m$ to |m_min(h)| and |m_max(h)|, and subtracting
$\Delta m$ from |m_offset(h)|;
none of the other edge data needs to be modified. Initially the |m_offset|
field is~4096, but it will change if the user requests such a shift.
The contents of these five fields should always be positive and less than
8192; |n_max| should, in fact, be less than 8191.  Furthermore
|m_min+m_offset-4096| and |m_max+m_offset-4096| must also lie strictly
between 0 and 8192, so that the |info| fields of edge-weight nodes will
fit in a halfword.

The header node of an edge structure also contains two somewhat unusual
fields that are called |last_window(h)| and |last_window_time(h)|. When this
structure is displayed in window~|k| of the user's screen, after that
window has been updated |t| times, \MF\ sets |last_window(h):=k| and
|last_window_time(h):=t|; it also sets |unsorted(p):=void| for all row
headers~|p|, after merging any existing unsorted weights with the sorted
ones.  A subsequent display in the same window will be able to avoid
redisplaying rows whose |unsorted| list is still |void|, if the window
hasn't been used for something else in the meantime.

A pointer to the row header of row |n_pos(h)-4096| is provided in
|n_rover(h)|. Most of the algorithms that update an edge structure
are able to get by without random row references; they usually
access rows that are neighbors of each other or of the current |n_pos| row.
Exception: If |link(h)=h| (so that the edge structure contains
no rows), we have |n_rover(h)=h|, and |n_pos(h)| is irrelevant.

@d zero_field=4096 {amount added to coordinates to make them positive}
@d n_min(#)==info(#+1) {minimum row number present, plus |zero_field|}
@d n_max(#)==link(#+1) {maximum row number present, plus |zero_field|}
@d m_min(#)==info(#+2) {minimum column number present, plus |zero_field|}
@d m_max(#)==link(#+2) {maximum column number present, plus |zero_field|}
@d m_offset(#)==info(#+3) {translation of $m$ data in edge-weight nodes}
@d last_window(#)==link(#+3) {the last display went into this window}
@d last_window_time(#)==mem[#+4].int {after this many window updates}
@d n_pos(#)==info(#+5) {the row currently in |n_rover|, plus |zero_field|}
@d n_rover(#)==link(#+5) {a row recently referenced}
@d edge_header_size=6 {number of words in an edge-structure header}
@d valid_range(#)==(abs(#-4096)<4096) {is |#| strictly between 0 and 8192?}
@d empty_edges(#)==link(#)=# {are there no rows in this edge header?}

@p procedure init_edges(@!h:pointer); {initialize an edge header to null values}
begin knil(h):=h; link(h):=h;@/
n_min(h):=zero_field+4095; n_max(h):=zero_field-4095;
m_min(h):=zero_field+4095; m_max(h):=zero_field-4095;
m_offset(h):=zero_field;@/
last_window(h):=0; last_window_time(h):=0;@/
n_rover(h):=h; n_pos(h):=0;@/
end;

@ When a lot of work is being done on a particular edge structure, we plant
a pointer to its main header in the global variable |cur_edges|.
This saves us from having to pass this pointer as a parameter over and
over again between subroutines.

Similarly, |cur_wt| is a global weight that is being used by several
procedures at once.

@<Glob...@>=
@!cur_edges:pointer; {the edge structure of current interest}
@!cur_wt:integer; {the edge weight of current interest}

@ The |fix_offset| routine goes through all the edge-weight nodes of
|cur_edges| and adds a constant to their |info| fields, so that
|m_offset(cur_edges)| can be brought back to |zero_field|. (This
is necessary only in unusual cases when the offset has gotten too
large or too small.)

@p procedure fix_offset;
var @!p,@!q:pointer; {list traversers}
@!delta:integer; {the amount of change}
begin delta:=8*(m_offset(cur_edges)-zero_field);
m_offset(cur_edges):=zero_field;
q:=link(cur_edges);
while q<>cur_edges do
  begin p:=sorted(q);
  while p<>sentinel do
    begin info(p):=info(p)-delta; p:=link(p);
    end;
  p:=unsorted(q);
  while p>void do
    begin info(p):=info(p)-delta; p:=link(p);
    end;
  q:=link(q);
  end;
end;

@ The |edge_prep| routine makes the |cur_edges| structure ready to
accept new data whose coordinates satisfy |ml<=m<=mr| and |nl<=n<=nr-1|,
assuming that |-4096<ml<=mr<4096| and |-4096<nl<=nr<4096|. It makes
appropriate adjustments to |m_min|, |m_max|, |n_min|, and |n_max|,
adding new empty rows if necessary.

@p procedure edge_prep(@!ml,@!mr,@!nl,@!nr:integer);
var @!delta:halfword; {amount of change}
@!p,@!q:pointer; {for list manipulation}
begin ml:=ml+zero_field; mr:=mr+zero_field;
nl:=nl+zero_field; nr:=nr-1+zero_field;@/
if ml<m_min(cur_edges) then m_min(cur_edges):=ml;
if mr>m_max(cur_edges) then m_max(cur_edges):=mr;
if not valid_range(m_min(cur_edges)+m_offset(cur_edges)-zero_field) or@|
 not valid_range(m_max(cur_edges)+m_offset(cur_edges)-zero_field) then
  fix_offset;
if empty_edges(cur_edges) then {there are no rows}
  begin n_min(cur_edges):=nr+1; n_max(cur_edges):=nr;
  end;
if nl<n_min(cur_edges) then
  @<Insert exactly |n_min(cur_edges)-nl| empty rows at the bottom@>;
if nr>n_max(cur_edges) then
  @<Insert exactly |nr-n_max(cur_edges)| empty rows at the top@>;
end;

@ @<Insert exactly |n_min(cur_edges)-nl| empty rows at the bottom@>=
begin delta:=n_min(cur_edges)-nl; n_min(cur_edges):=nl;
p:=link(cur_edges);
repeat q:=get_node(row_node_size); sorted(q):=sentinel; unsorted(q):=void;
knil(p):=q; link(q):=p; p:=q; decr(delta);
until delta=0;
knil(p):=cur_edges; link(cur_edges):=p;
if n_rover(cur_edges)=cur_edges then n_pos(cur_edges):=nl-1;
end

@ @<Insert exactly |nr-n_max(cur_edges)| empty rows at the top@>=
begin delta:=nr-n_max(cur_edges); n_max(cur_edges):=nr;
p:=knil(cur_edges);
repeat q:=get_node(row_node_size); sorted(q):=sentinel; unsorted(q):=void;
link(p):=q; knil(q):=p; p:=q; decr(delta);
until delta=0;
link(p):=cur_edges; knil(cur_edges):=p;
if n_rover(cur_edges)=cur_edges then n_pos(cur_edges):=nr+1;
end

@ The |print_edges| subroutine gives a symbolic rendition of an edge
structure, for use in `\&{show}' commands. A rather terse output
format has been chosen since edge structures can grow quite large.

@<Declare subroutines for printing expressions@>=
@t\4@>@<Declare the procedure called |print_weight|@>@;@/
procedure print_edges(@!s:str_number;@!nuline:boolean;@!x_off,@!y_off:integer);
var @!p,@!q,@!r:pointer; {for list traversal}
@!n:integer; {row number}
begin print_diagnostic("Edge structure",s,nuline);
p:=knil(cur_edges); n:=n_max(cur_edges)-zero_field;
while p<>cur_edges do
  begin q:=unsorted(p); r:=sorted(p);
  if(q>void)or(r<>sentinel) then
    begin print_nl("row "); print_int(n+y_off); print_char(":");
    while q>void do
      begin print_weight(q,x_off); q:=link(q);
      end;
    print(" |");
    while r<>sentinel do
      begin print_weight(r,x_off); r:=link(r);
      end;
    end;
  p:=knil(p); decr(n);
  end;
end_diagnostic(true);
end;

@ @<Declare the procedure called |print_weight|@>=
procedure print_weight(@!q:pointer;@!x_off:integer);
var @!w,@!m:integer; {unpacked weight and coordinate}
@!d:integer; {temporary data register}
begin d:=ho(info(q)); w:=d mod 8; m:=(d div 8)-m_offset(cur_edges);
if file_offset>max_print_line-9 then print_nl(" ")
else print_char(" ");
print_int(m+x_off);
while w>zero_w do
  begin print_char("+"); decr(w);
  end;
while w<zero_w do
  begin print_char("-"); incr(w);
  end;
end;

@ Here's a trivial subroutine that copies an edge structure. (Let's hope
that the given structure isn't too gigantic.)

@p function copy_edges(@!h:pointer):pointer;
var @!p,@!r:pointer; {variables that traverse the given structure}
@!hh,@!pp,@!qq,@!rr,@!ss:pointer; {variables that traverse the new structure}
begin hh:=get_node(edge_header_size);
mem[hh+1]:=mem[h+1]; mem[hh+2]:=mem[h+2];
mem[hh+3]:=mem[h+3]; mem[hh+4]:=mem[h+4]; {we've now copied |n_min|, |n_max|,
  |m_min|, |m_max|, |m_offset|, |last_window|, and |last_window_time|}
n_pos(hh):=n_max(hh)+1;n_rover(hh):=hh;@/
p:=link(h); qq:=hh;
while p<>h do
  begin pp:=get_node(row_node_size); link(qq):=pp; knil(pp):=qq;
  @<Copy both |sorted| and |unsorted| lists of |p| to |pp|@>;
  p:=link(p); qq:=pp;
  end;
link(qq):=hh; knil(hh):=qq;
copy_edges:=hh;
end;

@ @<Copy both |sorted| and |unsorted|...@>=
r:=sorted(p); rr:=sorted_loc(pp); {|link(rr)=sorted(pp)|}
while r<>sentinel do
  begin ss:=get_avail; link(rr):=ss; rr:=ss; info(rr):=info(r);@/
  r:=link(r);
  end;
link(rr):=sentinel;@/
r:=unsorted(p); rr:=temp_head;
while r>void do
  begin ss:=get_avail; link(rr):=ss; rr:=ss; info(rr):=info(r);@/
  r:=link(r);
  end;
link(rr):=r; unsorted(pp):=link(temp_head)

@ Another trivial routine flips |cur_edges| about the |x|-axis
(i.e., negates all the |y| coordinates), assuming that at least
one row is present.

@p procedure y_reflect_edges;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=n_min(cur_edges);
n_min(cur_edges):=zero_field+zero_field-1-n_max(cur_edges);
n_max(cur_edges):=zero_field+zero_field-1-p;
n_pos(cur_edges):=zero_field+zero_field-1-n_pos(cur_edges);@/
p:=link(cur_edges); q:=cur_edges; {we assume that |p<>q|}
repeat r:=link(p); link(p):=q; knil(q):=p; q:=p; p:=r;
until q=cur_edges;
last_window_time(cur_edges):=0;
end;

@ It's somewhat more difficult, yet not too hard, to reflect about the |y|-axis.

@p procedure x_reflect_edges;
var @!p,@!q,@!r,@!s:pointer; {list manipulation registers}
@!m:integer; {|info| fields will be reflected with respect to this number}
begin p:=m_min(cur_edges);
m_min(cur_edges):=zero_field+zero_field-m_max(cur_edges);
m_max(cur_edges):=zero_field+zero_field-p;
m:=(zero_field+m_offset(cur_edges))*8+zero_w+min_halfword+zero_w+min_halfword;
m_offset(cur_edges):=zero_field;
p:=link(cur_edges);
repeat @<Reflect the edge-and-weight data in |sorted(p)|@>;
@<Reflect the edge-and-weight data in |unsorted(p)|@>;
p:=link(p);
until p=cur_edges;
last_window_time(cur_edges):=0;
end;

@ We want to change the sign of the weight as we change the sign of the
|x|~coordinate. Fortunately, it's easier to do this than to negate
one without the other.

@<Reflect the edge-and-weight data in |unsorted(p)|@>=
q:=unsorted(p);
while q>void do
  begin info(q):=m-info(q); q:=link(q);
  end

@ Reversing the order of a linked list is best thought of as the process of
popping nodes off one stack and pushing them on another. In this case we
pop from stack~|q| and push to stack~|r|.

@<Reflect the edge-and-weight data in |sorted(p)|@>=
q:=sorted(p); r:=sentinel;
while q<>sentinel do
  begin s:=link(q); link(q):=r; r:=q; info(r):=m-info(q); q:=s;
  end;
sorted(p):=r

@ Now let's multiply all the $y$~coordinates of a nonempty edge structure
by a small integer $s>1$:

@p procedure y_scale_edges(@!s:integer);
var @!p,@!q,@!pp,@!r,@!rr,@!ss:pointer; {list manipulation registers}
@!t:integer; {replication counter}
begin if (s*(n_max(cur_edges)+1-zero_field)>=4096) or@|
 (s*(n_min(cur_edges)-zero_field)<=-4096) then
  begin print_err("Scaled picture would be too big");
@.Scaled picture...big@>
  help3("I can't yscale the picture as requested---it would")@/
    ("make some coordinates too large or too small.")@/
    ("Proceed, and I'll omit the transformation.");
  put_get_error;
  end
else  begin n_max(cur_edges):=s*(n_max(cur_edges)+1-zero_field)-1+zero_field;
  n_min(cur_edges):=s*(n_min(cur_edges)-zero_field)+zero_field;
  @<Replicate every row exactly $s$ times@>;
  last_window_time(cur_edges):=0;
  end;
end;

@ @<Replicate...@>=
p:=cur_edges;
repeat q:=p; p:=link(p);
for t:=2 to s do
  begin pp:=get_node(row_node_size); link(q):=pp; knil(p):=pp;
  link(pp):=p; knil(pp):=q; q:=pp;
  @<Copy both |sorted| and |unsorted|...@>;
  end;
until link(p)=cur_edges

@ Scaling the $x$~coordinates is, of course, our next task.

@p procedure x_scale_edges(@!s:integer);
var @!p,@!q:pointer; {list manipulation registers}
@!t:0..65535; {unpacked |info| field}
@!w:0..7; {unpacked weight}
@!delta:integer; {amount added to scaled |info|}
begin if (s*(m_max(cur_edges)-zero_field)>=4096) or@|
 (s*(m_min(cur_edges)-zero_field)<=-4096) then
  begin print_err("Scaled picture would be too big");
@.Scaled picture...big@>
  help3("I can't xscale the picture as requested---it would")@/
    ("make some coordinates too large or too small.")@/
    ("Proceed, and I'll omit the transformation.");
  put_get_error;
  end
else if (m_max(cur_edges)<>zero_field)or(m_min(cur_edges)<>zero_field) then
  begin m_max(cur_edges):=s*(m_max(cur_edges)-zero_field)+zero_field;
  m_min(cur_edges):=s*(m_min(cur_edges)-zero_field)+zero_field;
  delta:=8*(zero_field-s*m_offset(cur_edges))+min_halfword;
  m_offset(cur_edges):=zero_field;@/
  @<Scale the $x$~coordinates of each row by $s$@>;
  last_window_time(cur_edges):=0;
  end;
end;

@ The multiplications cannot overflow because we know that |s<4096|.

@<Scale the $x$~coordinates of each row by $s$@>=
q:=link(cur_edges);
repeat p:=sorted(q);
while p<>sentinel do
  begin t:=ho(info(p)); w:=t mod 8; info(p):=(t-w)*s+w+delta; p:=link(p);
  end;
p:=unsorted(q);
while p>void do
  begin t:=ho(info(p)); w:=t mod 8; info(p):=(t-w)*s+w+delta; p:=link(p);
  end;
q:=link(q);
until q=cur_edges

@ Here is a routine that changes the signs of all the weights, without
changing anything else.

@p procedure negate_edges(@!h:pointer);
label done;
var @!p,@!q,@!r,@!s,@!t,@!u:pointer; {structure traversers}
begin p:=link(h);
while p<>h do
  begin q:=unsorted(p);
  while q>void do
    begin info(q):=8-2*((ho(info(q))) mod 8)+info(q); q:=link(q);
    end;
  q:=sorted(p);
  if q<>sentinel then
    begin repeat info(q):=8-2*((ho(info(q))) mod 8)+info(q); q:=link(q);
    until q=sentinel;
    @<Put the list |sorted(p)| back into sort@>;
    end;
  p:=link(p);
  end;
last_window_time(h):=0;
end;

@ \MF\ would work even if the code in this section were omitted, because
a list of edge-and-weight data that is sorted only by
|m| but not~|w| turns out to be good enough for correct operation.
However, the author decided not to make the program even trickier than
it is already, since |negate_edges| isn't needed very often.
The simpler-to-state condition, ``keep the |sorted| list fully sorted,''
is therefore being preserved at the cost of extra computation.

@<Put the list |sorted(p)|...@>=
u:=sorted_loc(p); q:=link(u); r:=q; s:=link(r); {|q=sorted(p)|}
loop@+  if info(s)>info(r) then
    begin link(u):=q;
    if s=sentinel then goto done;
    u:=r; q:=s; r:=q; s:=link(r);
    end
  else  begin t:=s; s:=link(t); link(t):=q; q:=t;
    end;
done: link(r):=sentinel

@ The |unsorted| edges of a row are merged into the |sorted| ones by
a subroutine called |sort_edges|. It uses simple insertion sort,
followed by a merge, because the unsorted list is supposedly quite short.
However, the unsorted list is assumed to be nonempty.

@p procedure sort_edges(@!h:pointer); {|h| is a row header}
label done;
var @!k:halfword; {key register that we compare to |info(q)|}
@!p,@!q,@!r,@!s:pointer;
begin r:=unsorted(h); unsorted(h):=null;
p:=link(r); link(r):=sentinel; link(temp_head):=r;
while p>void do {sort node |p| into the list that starts at |temp_head|}
  begin k:=info(p); q:=temp_head;
  repeat r:=q; q:=link(r);
  until k<=info(q);
  link(r):=p; r:=link(p); link(p):=q; p:=r;
  end;
@<Merge the |temp_head| list into |sorted(h)|@>;
end;

@ In this step we use the fact that |sorted(h)=link(sorted_loc(h))|.

@<Merge the |temp_head| list into |sorted(h)|@>=
begin r:=sorted_loc(h); q:=link(r); p:=link(temp_head);
loop@+  begin k:=info(p);
  while k>info(q) do
    begin r:=q; q:=link(r);
    end;
  link(r):=p; s:=link(p); link(p):=q;
  if s=sentinel then goto done;
  r:=p; p:=s;
  end;
done:end

@ The |cull_edges| procedure ``optimizes'' an edge structure by making all
the pixel weights either |w_out| or~|w_in|. The weight will be~|w_in| after the
operation if and only if it was in the closed interval |[w_lo,w_hi]|
before, where |w_lo<=w_hi|. Either |w_out| or |w_in| is zero, while the other is
$\pm1$, $\pm2$, or $\pm3$. The parameters will be such that zero-weight
pixels will remain of weight zero.  (This is fortunate,
because there are infinitely many of them.)

The procedure also computes the tightest possible bounds on the resulting
data, by updating |m_min|, |m_max|, |n_min|, and~|n_max|.

@p procedure cull_edges(@!w_lo,@!w_hi,@!w_out,@!w_in:integer);
label done;
var @!p,@!q,@!r,@!s:pointer; {for list manipulation}
@!w:integer; {new weight after culling}
@!d:integer; {data register for unpacking}
@!m:integer; {the previous column number, including |m_offset|}
@!mm:integer; {the next column number, including |m_offset|}
@!ww:integer; {accumulated weight before culling}
@!prev_w:integer; {value of |w| before column |m|}
@!n,@!min_n,@!max_n:pointer; {current and extreme row numbers}
@!min_d,@!max_d:pointer; {extremes of the new edge-and-weight data}
begin min_d:=max_halfword; max_d:=min_halfword;
min_n:=max_halfword; max_n:=min_halfword;@/
p:=link(cur_edges); n:=n_min(cur_edges);
while p<>cur_edges do
  begin if unsorted(p)>void then sort_edges(p);
  if sorted(p)<>sentinel then
    @<Cull superfluous edge-weight entries from |sorted(p)|@>;
  p:=link(p); incr(n);
  end;
@<Delete empty rows at the top and/or bottom;
  update the boundary values in the header@>;
last_window_time(cur_edges):=0;
end;

@ The entire |sorted| list is returned to available memory in this step;
a new list is built starting (temporarily) at |temp_head|.
Since several edges can occur at the same column, we need to be looking
ahead of where the actual culling takes place. This means that it's
slightly tricky to get the iteration started and stopped.

@<Cull superfluous...@>=
begin r:=temp_head; q:=sorted(p); ww:=0; m:=1000000; prev_w:=0;
loop@+  begin if q=sentinel then mm:=1000000
  else  begin d:=ho(info(q)); mm:=d div 8; ww:=ww+(d mod 8)-zero_w;
    end;
  if mm>m then
    begin @<Insert an edge-weight for edge |m|, if the new pixel
      weight has changed@>;
    if q=sentinel then goto done;
    end;
  m:=mm;
  if ww>=w_lo then if ww<=w_hi then w:=w_in
    else w:=w_out
  else w:=w_out;
  s:=link(q); free_avail(q); q:=s;
  end;
done: link(r):=sentinel; sorted(p):=link(temp_head);
if r<>temp_head then @<Update the max/min amounts@>;
end

@ @<Insert an edge-weight for edge |m|, if...@>=
if w<>prev_w then
  begin s:=get_avail; link(r):=s;
  info(s):=8*m+min_halfword+zero_w+w-prev_w;
  r:=s; prev_w:=w;
  end

@ @<Update the max/min amounts@>=
begin if min_n=max_halfword then min_n:=n;
max_n:=n;
if min_d>info(link(temp_head)) then min_d:=info(link(temp_head));
if max_d<info(r) then max_d:=info(r);
end

@ @<Delete empty rows at the top and/or bottom...@>=
if min_n>max_n then @<Delete all the row headers@>
else  begin n:=n_min(cur_edges); n_min(cur_edges):=min_n;
  while min_n>n do
    begin p:=link(cur_edges); link(cur_edges):=link(p);
    knil(link(p)):=cur_edges;
    free_node(p,row_node_size); incr(n);
    end;
  n:=n_max(cur_edges); n_max(cur_edges):=max_n;
  n_pos(cur_edges):=max_n+1; n_rover(cur_edges):=cur_edges;
  while max_n<n do
    begin p:=knil(cur_edges); knil(cur_edges):=knil(p);
    link(knil(p)):=cur_edges;
    free_node(p,row_node_size); decr(n);
    end;
  m_min(cur_edges):=((ho(min_d)) div 8)-m_offset(cur_edges)+zero_field;
  m_max(cur_edges):=((ho(max_d)) div 8)-m_offset(cur_edges)+zero_field;
  end

@ We get here if the edges have been entirely culled away.

@<Delete all the row headers@>=
begin p:=link(cur_edges);
while p<>cur_edges do
  begin q:=link(p); free_node(p,row_node_size); p:=q;
  end;
init_edges(cur_edges);
end


@ The last and most difficult routine for transforming an edge structure---and
the most interesting one!---is |xy_swap_edges|, which interchanges the
r\^^Doles of rows and columns. Its task can be viewed as the job of
creating an edge structure that contains only horizontal edges, linked
together in columns, given an edge structure that contains only
vertical edges linked together in rows; we must do this without changing
the implied pixel weights.

Given any two adjacent rows of an edge structure, it is not difficult to
determine the horizontal edges that lie ``between'' them: We simply look
for vertically adjacent pixels that have different weight, and insert
a horizontal edge containing the difference in weights. Every horizontal
edge determined in this way should be put into an appropriate linked
list. Since random access to these linked lists is desirable, we use
the |move| array to hold the list heads. If we work through the given
edge structure from top to bottom, the constructed lists will not need
to be sorted, since they will already be in order.

The following algorithm makes use of some ideas suggested by John Hobby.
@^Hobby, John Douglas@>
It assumes that the edge structure is non-null, i.e., that |link(cur_edges)
<>cur_edges|, hence |m_max(cur_edges)>=m_min(cur_edges)|.

@p procedure xy_swap_edges; {interchange |x| and |y| in |cur_edges|}
label done;
var @!m_magic,@!n_magic:integer; {special values that account for offsets}
@!p,@!q,@!r,@!s:pointer; {pointers that traverse the given structure}
@<Other local variables for |xy_swap_edges|@>@;
begin @<Initialize the array of new edge list heads@>;
@<Insert blank rows at the top and bottom, and set |p| to the new top row@>;
@<Compute the magic offset values@>;
repeat q:=knil(p);@+if unsorted(q)>void then sort_edges(q);
@<Insert the horizontal edges defined by adjacent rows |p,q|,
  and destroy row~|p|@>;
p:=q; n_magic:=n_magic-8;
until knil(p)=cur_edges;
free_node(p,row_node_size); {now all original rows have been recycled}
@<Adjust the header to reflect the new edges@>;
end;

@ Here we don't bother to keep the |link| entries up to date, since the
procedure looks only at the |knil| fields as it destroys the former
edge structure.

@<Insert blank rows at the top and bottom...@>=
p:=get_node(row_node_size); sorted(p):=sentinel; unsorted(p):=null;@/
knil(p):=cur_edges; knil(link(cur_edges)):=p; {the new bottom row}
p:=get_node(row_node_size); sorted(p):=sentinel;
knil(p):=knil(cur_edges); {the new top row}

@ The new lists will become |sorted| lists later, so we initialize
empty lists to |sentinel|.

@<Initialize the array of new edge list heads@>=
m_spread:=m_max(cur_edges)-m_min(cur_edges); {this is |>=0| by assumption}
if m_spread>move_size then overflow("move table size",move_size);
@:METAFONT capacity exceeded move table size}{\quad move table size@>
for j:=0 to m_spread do move[j]:=sentinel

@ @<Other local variables for |xy_swap_edges|@>=
@!m_spread:integer; {the difference between |m_max| and |m_min|}
@!j,@!jj:0..move_size; {indices into |move|}
@!m,@!mm:integer; {|m| values at vertical edges}
@!pd,@!rd:integer; {data fields from edge-and-weight nodes}
@!pm,@!rm:integer; {|m| values from edge-and-weight nodes}
@!w:integer; {the difference in accumulated weight}
@!ww:integer; {as much of |w| that can be stored in a single node}
@!dw:integer; {an increment to be added to |w|}

@ At the point where we test |w<>0|, variable |w| contains
the accumulated weight from edges already passed in
row~|p| minus the accumulated weight from edges already passed in row~|q|.

@<Insert the horizontal edges defined by adjacent rows |p,q|...@>=
r:=sorted(p); free_node(p,row_node_size); p:=r;@/
pd:=ho(info(p)); pm:=pd div 8;@/
r:=sorted(q); rd:=ho(info(r)); rm:=rd div 8; w:=0;
loop@+  begin if pm<rm then mm:=pm@+else mm:=rm;
  if w<>0 then
    @<Insert horizontal edges of weight |w| between |m| and~|mm|@>;
  if pd<rd then
    begin dw:=(pd mod 8)-zero_w;
    @<Advance pointer |p| to the next vertical edge,
      after destroying the previous one@>;
    end
  else  begin if r=sentinel then goto done; {|rd=pd=ho(max_halfword)|}
    dw:=-((rd mod 8)-zero_w);
    @<Advance pointer |r| to the next vertical edge@>;
    end;
  m:=mm; w:=w+dw;
  end;
done:

@ @<Advance pointer |r| to the next vertical edge@>=
r:=link(r); rd:=ho(info(r)); rm:=rd div 8

@ @<Advance pointer |p| to the next vertical edge...@>=
s:=link(p); free_avail(p); p:=s; pd:=ho(info(p)); pm:=pd div 8

@ Certain ``magic'' values are needed to make the following code work,
because of the various offsets in our data structure. For now, let's not
worry about their precise values; we shall compute |m_magic| and |n_magic|
later, after we see what the code looks like.

@ @<Insert horizontal edges of weight |w| between |m| and~|mm|@>=
if m<>mm then
  begin if mm-m_magic>=move_size then confusion("xy");
@:this can't happen xy}{\quad xy@>
  extras:=(abs(w)-1) div 3;
  if extras>0 then
    begin if w>0 then xw:=+3@+else xw:=-3;
    ww:=w-extras*xw;
    end
  else ww:=w;
  repeat j:=m-m_magic;
  for k:=1 to extras do
    begin s:=get_avail; info(s):=n_magic+xw;
    link(s):=move[j]; move[j]:=s;
    end;
  s:=get_avail; info(s):=n_magic+ww;
  link(s):=move[j]; move[j]:=s;@/
  incr(m);
  until m=mm;
  end

@ @<Other local variables for |xy...@>=
@!extras:integer; {the number of additional nodes to make weights |>3|}
@!xw:-3..3; {the additional weight in extra nodes}
@!k:integer; {loop counter for inserting extra nodes}

@ At the beginning of this step, |move[m_spread]=sentinel|, because no
horizontal edges will extend to the right of column |m_max(cur_edges)|.

@<Adjust the header to reflect the new edges@>=
move[m_spread]:=0; j:=0;
while move[j]=sentinel do incr(j);
if j=m_spread then init_edges(cur_edges) {all edge weights are zero}
else  begin mm:=m_min(cur_edges);
  m_min(cur_edges):=n_min(cur_edges);
  m_max(cur_edges):=n_max(cur_edges)+1;
  m_offset(cur_edges):=zero_field;
  jj:=m_spread-1;
  while move[jj]=sentinel do decr(jj);
  n_min(cur_edges):=j+mm; n_max(cur_edges):=jj+mm; q:=cur_edges;
  repeat p:=get_node(row_node_size); link(q):=p; knil(p):=q;
  sorted(p):=move[j]; unsorted(p):=null; incr(j); q:=p;
  until j>jj;
  link(q):=cur_edges; knil(cur_edges):=q;
  n_pos(cur_edges):=n_max(cur_edges)+1; n_rover(cur_edges):=cur_edges;
  last_window_time(cur_edges):=0;
  end;

@ The values of |m_magic| and |n_magic| can be worked out by trying the
code above on a small example; if they work correctly in simple cases,
they should work in general.

@<Compute the magic offset values@>=
m_magic:=m_min(cur_edges)+m_offset(cur_edges)-zero_field;
n_magic:=8*n_max(cur_edges)+8+zero_w+min_halfword

@ Now let's look at the subroutine that merges the edges from a given
edge structure into |cur_edges|. The given edge structure loses all its
edges.

@p procedure merge_edges(@!h:pointer);
label done;
var @!p,@!q,@!r,@!pp,@!qq,@!rr:pointer; {list manipulation registers}
@!n:integer; {row number}
@!k:halfword; {key register that we compare to |info(q)|}
@!delta:integer; {change to the edge/weight data}
begin if link(h)<>h then
  begin if (m_min(h)<m_min(cur_edges))or(m_max(h)>m_max(cur_edges))or@|
    (n_min(h)<n_min(cur_edges))or(n_max(h)>n_max(cur_edges)) then
    edge_prep(m_min(h)-zero_field,m_max(h)-zero_field,
      n_min(h)-zero_field,n_max(h)-zero_field+1);
  if m_offset(h)<>m_offset(cur_edges) then
    @<Adjust the data of |h| to account for a difference of offsets@>;
  n:=n_min(cur_edges); p:=link(cur_edges); pp:=link(h);
  while n<n_min(h) do
    begin incr(n); p:=link(p);
    end;
  repeat @<Merge row |pp| into row |p|@>;
  pp:=link(pp); p:=link(p);
  until pp=h;
  end;
end;

@ @<Adjust the data of |h| to account for a difference of offsets@>=
begin pp:=link(h); delta:=8*(m_offset(cur_edges)-m_offset(h));
repeat qq:=sorted(pp);
while qq<>sentinel do
  begin info(qq):=info(qq)+delta; qq:=link(qq);
  end;
qq:=unsorted(pp);
while qq>void do
  begin info(qq):=info(qq)+delta; qq:=link(qq);
  end;
pp:=link(pp);
until pp=h;
end

@ The |sorted| and |unsorted| lists are merged separately. After this
step, row~|pp| will have no edges remaining, since they will all have
been merged into row~|p|.

@<Merge row |pp|...@>=
qq:=unsorted(pp);
if qq>void then
  if unsorted(p)<=void then unsorted(p):=qq
  else  begin while link(qq)>void do qq:=link(qq);
    link(qq):=unsorted(p); unsorted(p):=unsorted(pp);
    end;
unsorted(pp):=null; qq:=sorted(pp);
if qq<>sentinel then
  begin if unsorted(p)=void then unsorted(p):=null;
  sorted(pp):=sentinel; r:=sorted_loc(p); q:=link(r); {|q=sorted(p)|}
  if q=sentinel then sorted(p):=qq
  else loop@+begin k:=info(qq);
    while k>info(q) do
      begin r:=q; q:=link(r);
      end;
    link(r):=qq; rr:=link(qq); link(qq):=q;
    if rr=sentinel then goto done;
    r:=qq; qq:=rr;
    end;
  end;
done:

@ The |total_weight| routine computes the total of all pixel weights
in a given edge structure. It's not difficult to prove that this is
the sum of $(-w)$ times $x$ taken over all edges,
where $w$ and~$x$ are the weight and $x$~coordinates stored in an edge.
It's not necessary to worry that this quantity will overflow the
size of an |integer| register, because it will be less than~$2^{31}$
unless the edge structure has more than 174,762 edges. However, we had
better not try to compute it as a |scaled| integer, because a total
weight of almost $12\times 2^{12}$ can be produced by only four edges.

@p function total_weight(@!h:pointer):integer; {|h| is an edge header}
var @!p,@!q:pointer; {variables that traverse the given structure}
@!n:integer; {accumulated total so far}
@!m:0..65535; {packed $x$ and $w$ values, including offsets}
begin n:=0; p:=link(h);
while p<>h do
  begin q:=sorted(p);
  while q<>sentinel do
    @<Add the contribution of node |q| to the total weight,
      and set |q:=link(q)|@>;
  q:=unsorted(p);
  while q>void do
    @<Add the contribution of node |q| to the total weight,
      and set |q:=link(q)|@>;
  p:=link(p);
  end;
total_weight:=n;
end;

@ It's not necessary to add the offsets to the $x$ coordinates, because
an entire edge structure can be shifted without affecting its total weight.
Similarly, we don't need to subtract |zero_field|.

@<Add the contribution of node |q| to the total weight...@>=
begin m:=ho(info(q)); n:=n-((m mod 8)-zero_w)*(m div 8);
q:=link(q);
end

@ So far we've done lots of things to edge structures assuming that
edges are actually present, but we haven't seen how edges get created
in the first place. Let's turn now to the problem of generating new edges.

\MF\ will display new edges as they are being computed, if |tracing_edges|
is positive. In order to keep such data reasonably compact, only the
points at which the path makes a $90^\circ$ or $180^\circ$ turn are listed.

The tracing algorithm must remember some past history in order to suppress
unnecessary data. Three variables |trace_x|, |trace_y|, and |trace_yy|
provide this history: The last coordinates printed were |(trace_x,trace_y)|,
and the previous edge traced ended at |(trace_x,trace_yy)|. Before anything
at all has been traced, |trace_x=-4096|.

@<Glob...@>=
@!trace_x:integer; {$x$~coordinate most recently shown in a trace}
@!trace_y:integer; {$y$~coordinate most recently shown in a trace}
@!trace_yy:integer; {$y$~coordinate most recently encountered}

@ Edge tracing is initiated by the |begin_edge_tracing| routine,
continued by the |trace_a_corner| routine, and terminated by the
|end_edge_tracing| routine.

@p procedure begin_edge_tracing;
begin print_diagnostic("Tracing edges","",true);
print(" (weight "); print_int(cur_wt); print_char(")"); trace_x:=-4096;
end;
@#
procedure trace_a_corner;
begin if file_offset>max_print_line-13 then print_nl("");
print_char("("); print_int(trace_x); print_char(","); print_int(trace_yy);
print_char(")"); trace_y:=trace_yy;
end;
@#
procedure end_edge_tracing;
begin if trace_x=-4096 then print_nl("(No new edges added.)")
@.No new edges added@>
else  begin trace_a_corner; print_char(".");
  end;
end_diagnostic(true);
end;

@ Just after a new edge weight has been put into the |info| field of
node~|r|, in row~|n|, the following routine continues an ongoing trace.

@p procedure trace_new_edge(@!r:pointer;@!n:integer);
var @!d:integer; {temporary data register}
@!w:-3..3; {weight associated with an edge transition}
@!m,@!n0,@!n1:integer; {column and row numbers}
begin d:=ho(info(r)); w:=(d mod 8)-zero_w; m:=(d div 8)-m_offset(cur_edges);
if w=cur_wt then
  begin n0:=n+1; n1:=n;
  end
else  begin n0:=n; n1:=n+1;
  end; {the edges run from |(m,n0)| to |(m,n1)|}
if m<>trace_x then
  begin if trace_x=-4096 then
    begin print_nl(""); trace_yy:=n0;
    end
  else if trace_yy<>n0 then print_char("?") {shouldn't happen}
  else trace_a_corner;
  trace_x:=m; trace_a_corner;
  end
else  begin if n0<>trace_yy then print_char("!"); {shouldn't happen}
  if ((n0<n1)and(trace_y>trace_yy))or((n0>n1)and(trace_y<trace_yy)) then
    trace_a_corner;
  end;
trace_yy:=n1;
end;

@ One way to put new edge weights into an edge structure is to use the
following routine, which simply draws a straight line from |(x0,y0)| to
|(x1,y1)|. More precisely, it introduces weights for the edges of the
discrete path $\bigl(\lfloor t[x_0,x_1]+{1\over2}+\epsilon\rfloor,
\lfloor t[y_0,y_1]+{1\over2}+\epsilon\delta\rfloor\bigr)$,
as $t$ varies from 0 to~1, where $\epsilon$ and $\delta$ are extremely small
positive numbers.

The structure header is assumed to be |cur_edges|; downward edge weights
will be |cur_wt|, while upward ones will be |-cur_wt|.

Of course, this subroutine will be called only in connection with others
that eventually draw a complete cycle, so that the sum of the edge weights
in each row will be zero whenever the row is displayed.

@p procedure line_edges(@!x0,@!y0,@!x1,@!y1:scaled);
label done,done1;
var @!m0,@!n0,@!m1,@!n1:integer; {rounded and unscaled coordinates}
@!delx,@!dely:scaled; {the coordinate differences of the line}
@!yt:scaled; {smallest |y| coordinate that rounds the same as |y0|}
@!tx:scaled; {tentative change in |x|}
@!p,@!r:pointer; {list manipulation registers}
@!base:integer; {amount added to edge-and-weight data}
@!n:integer; {current row number}
begin n0:=round_unscaled(y0);
n1:=round_unscaled(y1);
if n0<>n1 then
  begin m0:=round_unscaled(x0); m1:=round_unscaled(x1);
  delx:=x1-x0; dely:=y1-y0;
  yt:=n0*unity-half_unit; y0:=y0-yt; y1:=y1-yt;
  if n0<n1 then @<Insert upward edges for a line@>
  else @<Insert downward edges for a line@>;
  n_rover(cur_edges):=p; n_pos(cur_edges):=n+zero_field;
  end;
end;

@ Here we are careful to cancel any effect of rounding error.

@<Insert upward edges for a line@>=
begin base:=8*m_offset(cur_edges)+min_halfword+zero_w-cur_wt;
if m0<=m1 then edge_prep(m0,m1,n0,n1)@+else edge_prep(m1,m0,n0,n1);
@<Move to row |n0|, pointed to by |p|@>;
y0:=unity-y0;
loop@+  begin r:=get_avail; link(r):=unsorted(p); unsorted(p):=r;@/
  tx:=take_fraction(delx,make_fraction(y0,dely));
  if ab_vs_cd(delx,y0,dely,tx)<0 then decr(tx);
    {now $|tx|=\lfloor|y0|\cdot|delx|/|dely|\rfloor$}
  info(r):=8*round_unscaled(x0+tx)+base;@/
  y1:=y1-unity;
  if internal[tracing_edges]>0 then trace_new_edge(r,n);
  if y1<unity then goto done;
  p:=link(p); y0:=y0+unity; incr(n);
  end;
done: end

@ @<Insert downward edges for a line@>=
begin base:=8*m_offset(cur_edges)+min_halfword+zero_w+cur_wt;
if m0<=m1 then edge_prep(m0,m1,n1,n0)@+else edge_prep(m1,m0,n1,n0);
decr(n0); @<Move to row |n0|, pointed to by |p|@>;
loop@+  begin r:=get_avail; link(r):=unsorted(p); unsorted(p):=r;@/
  tx:=take_fraction(delx,make_fraction(y0,dely));
  if ab_vs_cd(delx,y0,dely,tx)<0 then incr(tx);
    {now $|tx|=\lceil|y0|\cdot|delx|/|dely|\rceil$, since |dely<0|}
  info(r):=8*round_unscaled(x0-tx)+base;@/
  y1:=y1+unity;
  if internal[tracing_edges]>0 then trace_new_edge(r,n);
  if y1>=0 then goto done1;
  p:=knil(p); y0:=y0+unity; decr(n);
  end;
done1: end

@ @<Move to row |n0|, pointed to by |p|@>=
n:=n_pos(cur_edges)-zero_field; p:=n_rover(cur_edges);
if n<>n0 then
  if n<n0 then
    repeat incr(n); p:=link(p);
    until n=n0
  else  repeat decr(n); p:=knil(p);
    until n=n0

@ \MF\ inserts most of its edges into edge structures via the
|move_to_edges| subroutine, which uses the data stored in the |move| array
to specify a sequence of ``rook moves.'' The starting point |(m0,n0)|
and finishing point |(m1,n1)| of these moves, as seen from the standpoint
of the first octant, are supplied as parameters; the moves should, however,
be rotated into a given octant.  (We're going to study octant
transformations in great detail later; the reader may wish to come back to
this part of the program after mastering the mysteries of octants.)

The rook moves themselves are defined as follows, from a |first_octant|
point of view: ``Go right |move[k]| steps, then go up one, for |0<=k<n1-n0|;
then go right |move[n1-n0]| steps and stop.'' The sum of |move[k]|
for |0<=k<=n1-n0| will be equal to |m1-m0|.

As in the |line_edges| routine, we use |+cur_wt| as the weight of
all downward edges and |-cur_wt| as the weight of all upward edges,
after the moves have been rotated to the proper octant direction.

There are two main cases to consider: \\{fast\_case} is for moves that
travel in the direction of octants 1, 4, 5, and~8, while \\{slow\_case}
is for moves that travel toward octants 2, 3, 6, and~7. The latter directions
are comparatively cumbersome because they generate more upward or downward
edges; a curve that travels horizontally doesn't produce any edges at all,
but a curve that travels vertically touches lots of rows.

@d fast_case_up=60 {for octants 1 and 4}
@d fast_case_down=61 {for octants 5 and 8}
@d slow_case_up=62 {for octants 2 and 3}
@d slow_case_down=63 {for octants 6 and 7}

@p procedure move_to_edges(@!m0,@!n0,@!m1,@!n1:integer);
label fast_case_up,fast_case_down,slow_case_up,slow_case_down,done;
var @!delta:0..move_size; {extent of |move| data}
@!k:0..move_size; {index into |move|}
@!p,@!r:pointer; {list manipulation registers}
@!dx:integer; {change in edge-weight |info| when |x| changes by 1}
@!edge_and_weight:integer; {|info| to insert}
@!j:integer; {number of consecutive vertical moves}
@!n:integer; {the current row pointed to by |p|}
debug @!sum:integer;@+gubed@;@/
begin delta:=n1-n0;
debug sum:=move[0]; for k:=1 to delta do sum:=sum+abs(move[k]);
if sum<>m1-m0 then confusion("0");@+gubed@;@/
@:this can't happen 0}{\quad 0@>
@<Prepare for and switch to the appropriate case, based on |octant|@>;
fast_case_up:@<Add edges for first or fourth octants, then |goto done|@>;
fast_case_down:@<Add edges for fifth or eighth octants, then |goto done|@>;
slow_case_up:@<Add edges for second or third octants, then |goto done|@>;
slow_case_down:@<Add edges for sixth or seventh octants, then |goto done|@>;
done: n_pos(cur_edges):=n+zero_field; n_rover(cur_edges):=p;
end;

@ The current octant code appears in a global variable. If, for example,
we have |octant=third_octant|, it means that a curve traveling in a north to
north-westerly direction has been rotated for the purposes of internal
calculations so that the |move| data travels in an east to north-easterly
direction. We want to unrotate as we update the edge structure.

@<Glob...@>=
@!octant:first_octant..sixth_octant; {the current octant of interest}

@ @<Prepare for and switch to the appropriate case, based on |octant|@>=
case octant of
first_octant:begin dx:=8; edge_prep(m0,m1,n0,n1); goto fast_case_up;
  end;
second_octant:begin dx:=8; edge_prep(n0,n1,m0,m1); goto slow_case_up;
  end;
third_octant:begin dx:=-8; edge_prep(-n1,-n0,m0,m1); negate(n0);
  goto slow_case_up;
  end;
fourth_octant:begin dx:=-8; edge_prep(-m1,-m0,n0,n1); negate(m0);
  goto fast_case_up;
  end;
fifth_octant:begin dx:=-8; edge_prep(-m1,-m0,-n1,-n0); negate(m0);
  goto fast_case_down;
  end;
sixth_octant:begin dx:=-8; edge_prep(-n1,-n0,-m1,-m0); negate(n0);
  goto slow_case_down;
  end;
seventh_octant:begin dx:=8; edge_prep(n0,n1,-m1,-m0); goto slow_case_down;
  end;
eighth_octant:begin dx:=8; edge_prep(m0,m1,-n1,-n0); goto fast_case_down;
  end;
end; {there are only eight octants}

@ @<Add edges for first or fourth octants, then |goto done|@>=
@<Move to row |n0|, pointed to by |p|@>;
if delta>0 then
  begin k:=0;
  edge_and_weight:=8*(m0+m_offset(cur_edges))+min_halfword+zero_w-cur_wt;
  repeat edge_and_weight:=edge_and_weight+dx*move[k];
  fast_get_avail(r); link(r):=unsorted(p); info(r):=edge_and_weight;
  if internal[tracing_edges]>0 then trace_new_edge(r,n);
  unsorted(p):=r; p:=link(p); incr(k); incr(n);
  until k=delta;
  end;
goto done

@ @<Add edges for fifth or eighth octants, then |goto done|@>=
n0:=-n0-1; @<Move to row |n0|, pointed to by |p|@>;
if delta>0 then
  begin k:=0;
  edge_and_weight:=8*(m0+m_offset(cur_edges))+min_halfword+zero_w+cur_wt;
  repeat edge_and_weight:=edge_and_weight+dx*move[k];
  fast_get_avail(r); link(r):=unsorted(p); info(r):=edge_and_weight;
  if internal[tracing_edges]>0 then trace_new_edge(r,n);
  unsorted(p):=r; p:=knil(p); incr(k); decr(n);
  until k=delta;
  end;
goto done

@ @<Add edges for second or third octants, then |goto done|@>=
edge_and_weight:=8*(n0+m_offset(cur_edges))+min_halfword+zero_w-cur_wt;
n0:=m0; k:=0; @<Move to row |n0|, pointed to by |p|@>;
repeat j:=move[k];
while j>0 do
  begin fast_get_avail(r); link(r):=unsorted(p); info(r):=edge_and_weight;
  if internal[tracing_edges]>0 then trace_new_edge(r,n);
  unsorted(p):=r; p:=link(p); decr(j); incr(n);
  end;
edge_and_weight:=edge_and_weight+dx; incr(k);
until k>delta;
goto done

@ @<Add edges for sixth or seventh octants, then |goto done|@>=
edge_and_weight:=8*(n0+m_offset(cur_edges))+min_halfword+zero_w+cur_wt;
n0:=-m0-1; k:=0; @<Move to row |n0|, pointed to by |p|@>;
repeat j:=move[k];
while j>0 do
  begin fast_get_avail(r); link(r):=unsorted(p); info(r):=edge_and_weight;
  if internal[tracing_edges]>0 then trace_new_edge(r,n);
  unsorted(p):=r; p:=knil(p); decr(j); decr(n);
  end;
edge_and_weight:=edge_and_weight+dx; incr(k);
until k>delta;
goto done

@ All the hard work of building an edge structure is undone by the following
subroutine.

@<Declare the recycling subroutines@>=
procedure toss_edges(@!h:pointer);
var @!p,@!q:pointer; {for list manipulation}
begin q:=link(h);
while q<>h do
  begin flush_list(sorted(q));
  if unsorted(q)>void then flush_list(unsorted(q));
  p:=q; q:=link(q); free_node(p,row_node_size);
  end;
free_node(h,edge_header_size);
end;

@* \[21] Subdivision into octants.
When \MF\ digitizes a path, it reduces the problem to the special
case of paths that travel in ``first octant'' directions; i.e.,
each cubic $z(t)=\bigl(x(t),y(t)\bigr)$ being digitized will have the property
that $0\L y'(t)\L x'(t)$. This assumption makes digitizing simpler
and faster than if the direction of motion has to be tested repeatedly.

When $z(t)$ is cubic, $x'(t)$ and $y'(t)$ are quadratic, hence the four
polynomials $x'(t)$, $y'(t)$, $x'(t)-y'(t)$, and $x'(t)+y'(t)$ cross
through~0 at most twice each. If we subdivide the given cubic at these
places, we get at most nine subintervals in each of which
$x'(t)$, $y'(t)$, $x'(t)-y'(t)$, and $x'(t)+y'(t)$ all have a constant
sign. The curve can be transformed in each of these subintervals so that
it travels entirely in first octant directions, if we reflect $x\swap-x$,
$y\swap-y$, and/or $x\swap y$ as necessary. (Incidentally, it can be
shown that a cubic such that $x'(t)=16(2t-1)^2+2(2t-1)-1$ and
$y'(t)=8(2t-1)^2+4(2t-1)$ does indeed split into nine subintervals.)

@ The transformation that rotates coordinates, so that first octant motion
can be assumed, is defined by the |skew| subroutine, which sets global
variables |cur_x| and |cur_y| to the values that are appropriate in a
given octant.  (Octants are encoded as they were in the |n_arg| subroutine.)

This transformation is ``skewed'' by replacing |(x,y)| by |(x-y,y)|,
once first octant motion has been established. It turns out that
skewed coordinates are somewhat better to work with when curves are
actually digitized.

@d set_two_end(#)==cur_y:=#;@+end
@d set_two(#)==begin cur_x:=#; set_two_end

@p procedure skew(@!x,@!y:scaled;@!octant:small_number);
begin case octant of
first_octant: set_two(x-y)(y);
second_octant: set_two(y-x)(x);
third_octant: set_two(y+x)(-x);
fourth_octant: set_two(-x-y)(y);
fifth_octant: set_two(-x+y)(-y);
sixth_octant: set_two(-y+x)(-x);
seventh_octant: set_two(-y-x)(x);
eighth_octant: set_two(x+y)(-y);
end; {there are no other cases}
end;

@ Conversely, the following subroutine sets |cur_x| and
|cur_y| to the original coordinate values of a point, given an octant
code and the point's coordinates |(x,y)| after they have been mapped into
the first octant and skewed.

@<Declare subroutines for printing expressions@>=
procedure unskew(@!x,@!y:scaled;@!octant:small_number);
begin case octant of
first_octant: set_two(x+y)(y);
second_octant: set_two(y)(x+y);
third_octant: set_two(-y)(x+y);
fourth_octant: set_two(-x-y)(y);
fifth_octant: set_two(-x-y)(-y);
sixth_octant: set_two(-y)(-x-y);
seventh_octant: set_two(y)(-x-y);
eighth_octant: set_two(x+y)(-y);
end; {there are no other cases}
end;

@ @<Glob...@>=
@!cur_x,@!cur_y:scaled;
  {outputs of |rotate|, |unrotate|, and a few other routines}

@ The conversion to skewed and rotated coordinates takes place in
stages, and at one point in the transformation we will have negated the
$x$ and/or $y$ coordinates so as to make curves travel in the first
{\sl quadrant}. At this point the relevant ``octant'' code will be
either |first_octant| (when no transformation has been done),
or |fourth_octant=first_octant+negate_x| (when $x$ has been negated),
or |fifth_octant=first_octant+negate_x+negate_y| (when both have been
negated), or |eighth_octant=first_octant+negate_y| (when $y$ has been
negated). The |abnegate| routine is sometimes needed to convert
from one of these transformations to another.

@p procedure abnegate(@!x,@!y:scaled;
  @!octant_before,@!octant_after:small_number);
begin if odd(octant_before)=odd(octant_after) then cur_x:=x
  else cur_x:=-x;
if (octant_before>negate_y)=(octant_after>negate_y) then cur_y:=y
  else cur_y:=-y;
end;

@ Now here's a subroutine that's handy for subdivision: Given a
quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
returns the unique |fraction| value |t| between 0 and~1 at which
$B(a,b,c;t)$ changes from positive to negative, or returns
|t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
is already negative at |t=0|), |crossing_point| returns the value zero.

@d no_crossing==begin crossing_point:=fraction_one+1; return;
  end
@d one_crossing==begin crossing_point:=fraction_one; return;
  end
@d zero_crossing==begin crossing_point:=0; return;
  end

@p function crossing_point(@!a,@!b,@!c:integer):fraction;
label exit;
var @!d:integer; {recursive counter}
@!x,@!xx,@!x0,@!x1,@!x2:integer; {temporary registers for bisection}
begin if a<0 then zero_crossing;
if c>=0 then
  begin if b>=0 then
    if c>0 then no_crossing
    else if (a=0)and(b=0) then no_crossing
    else one_crossing;
  if a=0 then zero_crossing;
  end
else if a=0 then if b<=0 then zero_crossing;
@<Use bisection to find the crossing point, if one exists@>;
exit:end;

@ The general bisection method is quite simple when $n=2$, hence
|crossing_point| does not take much time. At each stage in the
recursion we have a subinterval defined by |l| and~|j| such that
$B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.

It is convenient for purposes of calculation to combine the values
of |l| and~|j| in a single variable $d=2^l+j$, because the operation
of bisection then corresponds simply to doubling $d$ and possibly
adding~1. Furthermore it proves to be convenient to modify
our previous conventions for bisection slightly, maintaining the
variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.

The following code maintains the invariant relations
$0\L|x0|<\max(|x1|,|x1|+|x2|)$,
$\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
it has been constructed in such a way that no arithmetic overflow
will occur if the inputs satisfy
$a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.

@<Use bisection to find the crossing point...@>=
d:=1; x0:=a; x1:=a-b; x2:=b-c;
repeat x:=half(x1+x2);
if x1-x0>x0 then
  begin x2:=x; double(x0); double(d);
  end
else  begin xx:=x1+x-x0;
  if xx>x0 then
    begin x2:=x; double(x0); double(d);
    end
  else  begin x0:=x0-xx;
    if x<=x0 then if x+x2<=x0 then no_crossing;
    x1:=x; d:=d+d+1;
    end;
  end;
until d>=fraction_one;
crossing_point:=d-fraction_one

@ Octant subdivision is applied only to cycles, i.e., to closed paths.
A ``cycle spec'' is a data structure that contains specifications of
@!@^cycle spec@>
cubic curves and octant mappings for the cycle that has been subdivided
into segments belonging to single octants. It is composed entirely of
knot nodes, similar to those in the representation of paths; but the
|explicit| type indications have been replaced by positive numbers
that give further information. Additional |endpoint| data is also
inserted at the octant boundaries.

Recall that a cubic polynomial is represented by four control points
that appear in adjacent nodes |p| and~|q| of a knot list. The |x|~coordinates
are |x_coord(p)|, |right_x(p)|, |left_x(q)|, and |x_coord(q)|; the
|y|~coordinates are similar. We shall call this ``the cubic following~|p|''
or ``the cubic between |p| and~|q|'' or ``the cubic preceding~|q|.''

Cycle specs are circular lists of cubic curves mixed with octant
boundaries. Like cubics, the octant boundaries are represented in
consecutive knot nodes |p| and~|q|. In such cases |right_type(p)=
left_type(q)=endpoint|, and the fields |right_x(p)|, |right_y(p)|,
|left_x(q)|, and |left_y(q)| are replaced by other fields called
|right_octant(p)|, |right_transition(p)|, |left_octant(q)|, and
|left_transition(q)|, respectively. For example, when the curve direction
moves from the third octant to the fourth octant, the boundary nodes say
|right_octant(p)=third_octant|, |left_octant(q)=fourth_octant|,
and |right_transition(p)=left_transition(q)=diagonal|. A |diagonal|
transition occurs when moving between octants 1~\AM~2, 3~\AM~4, 5~\AM~6, or
7~\AM~8; an |axis| transition occurs when moving between octants 8~\AM~1,
2~\AM~3, 4~\AM~5, 6~\AM~7. (Such transition information is redundant
but convenient.) Fields |x_coord(p)| and |y_coord(p)| will contain
coordinates of the transition point after rotation from third octant
to first octant; i.e., if the true coordinates are $(x,y)$, the
coordinates $(y,\bar x)$ will appear in node~|p|. Similarly, a fourth-octant
transformation will have been applied after the transition, so
we will have |x_coord(q)=@t$\bar x$@>| and |y_coord(q)=y|.

The cubic between |p| and |q| will contain positive numbers in the
fields |right_type(p)| and |left_type(q)|; this makes cubics
distinguishable from octant boundaries, because |endpoint=0|.
The value of |right_type(p)| will be the current octant code,
during the time that cycle specs are being constructed; it will
refer later to a pen offset position, if the envelope of a cycle is
being computed. A cubic that comes from some subinterval of the $k$th
step in the original cyclic path will have |left_type(q)=k|.

@d right_octant==right_x {the octant code before a transition}
@d left_octant==left_x {the octant after a transition}
@d right_transition==right_y {the type of transition}
@d left_transition==left_y {ditto, either |axis| or |diagonal|}
@d axis=0 {a transition across the $x'$- or $y'$-axis}
@d diagonal=1 {a transition where $y'=\pm x'$}

@ Here's a routine that prints a cycle spec in symbolic form, so that it
is possible to see what subdivision has been made.  The point coordinates
are converted back from \MF's internal ``rotated'' form to the external
``true'' form. The global variable~|cur_spec| should point to a knot just
after the beginning of an octant boundary, i.e., such that
|left_type(cur_spec)=endpoint|.

@d print_two_true(#)==unskew(#,octant); print_two(cur_x,cur_y)

@p procedure print_spec(@!s:str_number);
label not_found,done;
var @!p,@!q:pointer; {for list traversal}
@!octant:small_number; {the current octant code}
begin print_diagnostic("Cycle spec",s,true);
@.Cycle spec at line...@>
p:=cur_spec; octant:=left_octant(p); print_ln;
print_two_true(x_coord(cur_spec),y_coord(cur_spec));
print(" % beginning in octant `");
loop@+  begin print(octant_dir[octant]); print_char("'");
  loop@+  begin q:=link(p);
    if right_type(p)=endpoint then goto not_found;
    @<Print the cubic between |p| and |q|@>;
    p:=q;
    end;
not_found: if q=cur_spec then goto done;
  p:=q; octant:=left_octant(p); print_nl("% entering octant `");
  end;
@.entering the nth octant@>
done: print_nl(" & cycle"); end_diagnostic(true);
end;

@ Symbolic octant direction names are kept in the |octant_dir| array.

@<Glob...@>=
@!octant_dir:array[first_octant..sixth_octant] of str_number;

@ @<Set init...@>=
octant_dir[first_octant]:="ENE";
octant_dir[second_octant]:="NNE";
octant_dir[third_octant]:="NNW";
octant_dir[fourth_octant]:="WNW";
octant_dir[fifth_octant]:="WSW";
octant_dir[sixth_octant]:="SSW";
octant_dir[seventh_octant]:="SSE";
octant_dir[eighth_octant]:="ESE";

@ @<Print the cubic between...@>=
begin print_nl("   ..controls ");
print_two_true(right_x(p),right_y(p));
print(" and ");
print_two_true(left_x(q),left_y(q));
print_nl(" ..");
print_two_true(x_coord(q),y_coord(q));
print(" % segment "); print_int(left_type(q)-1);
end

@ A much more compact version of a spec is printed to help users identify
``strange paths.''

@p procedure print_strange(@!s:str_number);
var @!p:pointer; {for list traversal}
@!f:pointer; {starting point in the cycle}
@!q:pointer; {octant boundary to be printed}
@!t:integer; {segment number, plus 1}
begin if interaction=error_stop_mode then wake_up_terminal;
print_nl(">");
@.>\relax@>
@<Find the starting point, |f|@>;
@<Determine the octant boundary |q| that precedes |f|@>;
t:=0;
repeat if left_type(p)<>endpoint then
  begin if left_type(p)<>t then
    begin t:=left_type(p); print_char(" "); print_int(t-1);
    end;
  if q<>null then
    begin @<Print the turns, if any, that start at |q|, and advance |q|@>;
    print_char(" "); print(octant_dir[left_octant(q)]); q:=null;
    end;
  end
else if q=null then q:=p;
p:=link(p);
until p=f;
print_char(" "); print_int(left_type(p)-1);
if q<>null then @<Print the turns...@>;
print_err(s);
end;

@ If the segment numbers on the cycle are $t_1$, $t_2$, \dots, $t_m$,
we have $t_{k-1}\L t_k$ except for at most one value of~$k$. If there are
no exceptions, $f$ will point to $t_1$; otherwise it will point to the
exceptional~$t_k$.

There is at least one segment number (i.e., we always have $m>0$), because
|print_strange| is never called upon to display an entirely ``dead'' cycle.

@<Find the starting point, |f|@>=
p:=cur_spec; t:=max_quarterword+1;
repeat p:=link(p);
if left_type(p)<>endpoint then
  begin if left_type(p)<t then f:=p;
  t:=left_type(p);
  end;
until p=cur_spec

@ @<Determine the octant boundary...@>=
p:=cur_spec; q:=p;
repeat p:=link(p);
if left_type(p)=endpoint then q:=p;
until p=f

@ When two octant boundaries are adjacent, the path is simply changing direction
without moving. Such octant directions are shown in parentheses.

@<Print the turns...@>=
if left_type(link(q))=endpoint then
  begin print(" ("); print(octant_dir[left_octant(q)]); q:=link(q);
  while left_type(link(q))=endpoint do
    begin print_char(" "); print(octant_dir[left_octant(q)]); q:=link(q);
    end;
  print_char(")");
  end

@ The |make_spec| routine is what subdivides paths into octants:
Given a pointer |cur_spec| to a cyclic path, |make_spec| mungs the path data
and returns a pointer to the corresponding cyclic spec.
All ``dead'' cubics (i.e., cubics that don't move at all from
their starting points) will have been removed from the result.
@!@^dead cubics@>

The idea of |make_spec| is fairly simple: Each cubic is first
subdivided, if necessary, into pieces belonging to single octants;
then the octant boundaries are inserted. But some of the details of
this transformation are not quite obvious.

If |autorounding>0|, the path will be adjusted so that critical tangent
directions occur at ``good'' points with respect to the pen called |cur_pen|.

The resulting spec will have all |x| and |y| coordinates at most
$2^{28}-|half_unit|-1-|safety_margin|$ in absolute value.  The pointer
that is returned will start some octant, as required by |print_spec|.

@p @t\4@>@<Declare subroutines needed by |make_spec|@>@;
function make_spec(@!h:pointer;
  @!safety_margin:scaled;@!tracing:integer):pointer;
  {converts a path to a cycle spec}
label continue,done;
var @!p,@!q,@!r,@!s:pointer; {for traversing the lists}
@!k:integer; {serial number of path segment, or octant code}
@!chopped:boolean; {have we truncated any of the data?}
@<Other local variables for |make_spec|@>@;
begin cur_spec:=h;
if tracing>0 then
  print_path(cur_spec,", before subdivision into octants",true);
max_allowed:=fraction_one-half_unit-1-safety_margin;
@<Truncate the values of all coordinates that exceed |max_allowed|, and stamp
  segment numbers in each |left_type| field@>;
quadrant_subdivide; {subdivide each cubic into pieces belonging to quadrants}
if internal[autorounding]>0 then xy_round;
octant_subdivide; {complete the subdivision}
if internal[autorounding]>unity then diag_round;
@<Remove dead cubics@>;
@<Insert octant boundaries and compute the turning number@>;
while left_type(cur_spec)<>endpoint do cur_spec:=link(cur_spec);
if tracing>0 then
  if internal[autorounding]<=0 then print_spec(", after subdivision")
  else if internal[autorounding]>unity then
    print_spec(", after subdivision and double autorounding")
  else print_spec(", after subdivision and autorounding");
make_spec:=cur_spec;
end;

@ The |make_spec| routine has an interesting side effect, namely to set
the global variable |turning_number| to the number of times the tangent
vector of the given cyclic path winds around the origin.

Another global variable |cur_spec| points to the specification as it is
being made, since several subroutines must go to work on it.

And there are two global variables that affect the rounding
decisions, as we'll see later; they are called |cur_pen| and |cur_path_type|.
The latter will be |double_path_code| if |make_spec| is being
applied to a double path.

@d double_path_code=0 {command modifier for `\&{doublepath}'}
@d contour_code=1 {command modifier for `\&{contour}'}
@d also_code=2 {command modifier for `\&{also}'}

@<Glob...@>=
@!cur_spec:pointer; {the principal output of |make_spec|}
@!turning_number:integer; {another output of |make_spec|}
@!cur_pen:pointer; {an implicit input of |make_spec|, used in autorounding}
@!cur_path_type:double_path_code..contour_code; {likewise}
@!max_allowed:scaled; {coordinates must be at most this big}

@ First we do a simple preprocessing step. The segment numbers inserted
here will propagate to all descendants of cubics that are split into
subintervals. These numbers must be nonzero, but otherwise they are
present merely for diagnostic purposes. The cubic from |p| to~|q|
that represents ``time interval'' |(t-1)..t| usually has |right_type(q)=t|,
except when |t| is too large to be stored in a quarterword.

@d procrustes(#)==if abs(#)>max_allowed then
    begin chopped:=true;
    if #>0 then #:=max_allowed@+else #:=-max_allowed;
    end

@<Truncate the values of all coordinates that exceed...@>=
p:=cur_spec; k:=1; chopped:=false;
repeat procrustes(left_x(p)); procrustes(left_y(p));
procrustes(x_coord(p)); procrustes(y_coord(p));
procrustes(right_x(p)); procrustes(right_y(p));@/
p:=link(p); left_type(p):=k;
if k<max_quarterword then incr(k)@+else k:=1;
until p=cur_spec;
if chopped then
  begin print_err("Curve out of range");
@.Curve out of range@>
  help4("At least one of the coordinates in the path I'm about to")@/
    ("digitize was really huge (potentially bigger than 4095).")@/
    ("So I've cut it back to the maximum size.")@/
    ("The results will probably be pretty wild.");
  put_get_error;
  end

@ We may need to get rid of constant ``dead'' cubics that clutter up
the data structure and interfere with autorounding.

@<Declare subroutines needed by |make_spec|@>=
procedure remove_cubic(@!p:pointer); {removes the cubic following~|p|}
var @!q:pointer; {the node that disappears}
begin q:=link(p); right_type(p):=right_type(q); link(p):=link(q);@/
x_coord(p):=x_coord(q); y_coord(p):=y_coord(q);@/
right_x(p):=right_x(q); right_y(p):=right_y(q);@/
free_node(q,knot_node_size);
end;

@ The subdivision process proceeds by first swapping $x\swap-x$, if
necessary, to ensure that $x'\G0$; then swapping $y\swap-y$, if necessary,
to ensure that $y'\G0$; and finally swapping $x\swap y$, if necessary,
to ensure that $x'\G y'$.

Recall that the octant codes have been defined in such a way that, for
example, |third_octant=first_octant+negate_x+switch_x_and_y|. The program
uses the fact that |negate_x<negate_y<switch_x_and_y| to handle ``double
negation'': If |c| is an octant code that possibly involves |negate_x|
and/or |negate_y|, but not |switch_x_and_y|, then negating~|y| changes~|c|
either to |c+negate_y| or |c-negate_y|, depending on whether
|c<=negate_y| or |c>negate_y|. Octant codes are always greater than zero.

The first step is to subdivide on |x| and |y| only, so that horizontal
and vertical autorounding can be done before we compare $x'$ to $y'$.

@<Declare subroutines needed by |make_spec|@>=
@t\4@>@<Declare the procedure called |split_cubic|@>@;
procedure quadrant_subdivide;
label continue,exit;
var @!p,@!q,@!r,@!s,@!pp,@!qq:pointer; {for traversing the lists}
@!first_x,@!first_y:scaled; {unnegated coordinates of node |cur_spec|}
@!del1,@!del2,@!del3,@!del,@!dmax:scaled; {proportional to the control
  points of a quadratic derived from a cubic}
@!t:fraction; {where a quadratic crosses zero}
@!dest_x,@!dest_y:scaled; {final values of |x| and |y| in the current cubic}
@!constant_x:boolean; {is |x| constant between |p| and |q|?}
begin p:=cur_spec; first_x:=x_coord(cur_spec); first_y:=y_coord(cur_spec);
repeat continue: q:=link(p);
@<Subdivide the cubic between |p| and |q| so that the results travel
  toward the right halfplane@>;
@<Subdivide all cubics between |p| and |q| so that the results travel
  toward the first quadrant; but |return| or |goto continue| if the
  cubic from |p| to |q| was dead@>;
p:=q;
until p=cur_spec;
exit:end;

@ All three subdivision processes are similar, so it's possible to
get the general idea by studying the first one (which is the simplest).
The calculation makes use of the fact that the derivatives of
Bernshte{\u\i}n polynomials satisfy
$B'(z_0,z_1,\ldots,z_n;t)=nB(z_1-z_0,\ldots,z_n-z_{n-1};t)$.

When this routine begins, |right_type(p)| is |explicit|; we should
set |right_type(p):=first_octant|. However, no assignment is made,
because |explicit=first_octant|. The author apologizes for using
such trickery here; it is really hard to do redundant computations
just for the sake of purity.

@<Subdivide the cubic between |p| and |q| so that the results travel
  toward the right halfplane...@>=
if q=cur_spec then
  begin dest_x:=first_x; dest_y:=first_y;
  end
else  begin dest_x:=x_coord(q); dest_y:=y_coord(q);
  end;
del1:=right_x(p)-x_coord(p); del2:=left_x(q)-right_x(p);
del3:=dest_x-left_x(q);
@<Scale up |del1|, |del2|, and |del3| for greater accuracy;
  also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
if del=0 then constant_x:=true
else  begin constant_x:=false;
  if del<0 then @<Complement the |x| coordinates of the
    cubic between |p| and~|q|@>;
  t:=crossing_point(del1,del2,del3);
  if t<fraction_one then
    @<Subdivide the cubic with respect to $x'$, possibly twice@>;
  end

@ If |del1=del2=del3=0|, it's impossible to obey the title of this
section. We just set |del=0| in that case.
@^inner loop@>

@<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
if del1<>0 then del:=del1
else if del2<>0 then del:=del2
else del:=del3;
if del<>0 then
  begin dmax:=abs(del1);
  if abs(del2)>dmax then dmax:=abs(del2);
  if abs(del3)>dmax then dmax:=abs(del3);
  while dmax<fraction_half do
    begin double(dmax); double(del1); double(del2); double(del3);
    end;
  end

@ During the subdivision phases of |make_spec|, the |x_coord| and |y_coord|
fields of node~|q| are not transformed to agree with the octant
stated in |right_type(p)|; they remain consistent with |right_type(q)|.
But |left_x(q)| and |left_y(q)| are governed by |right_type(p)|.

@<Complement the |x| coordinates...@>=
begin negate(x_coord(p)); negate(right_x(p));
negate(left_x(q));@/
negate(del1); negate(del2); negate(del3);@/
negate(dest_x);
right_type(p):=first_octant+negate_x;
end

@ When a cubic is split at a |fraction| value |t|, we obtain two cubics
whose B\'ezier control points are obtained by a generalization of the
bisection process: The formula
`$z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$' becomes
`$z_k^{(j+1)}=t[z_k^{(j)},z\k^{(j)}]$'.

It is convenient to define a \.{WEB} macro |t_of_the_way| such that
|t_of_the_way(a)(b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.

If |0<=t<=1|, the quantity |t[a,b]| is always between |a| and~|b|, even in
the presence of rounding errors. Our subroutines
also obey the identity |t[a,b]+t[b,a]=a+b|.

@d t_of_the_way_end(#)==#,t@=)@>
@d t_of_the_way(#)==#-take_fraction@=(@>#-t_of_the_way_end

@<Declare the procedure called |split_cubic|@>=
procedure split_cubic(@!p:pointer;@!t:fraction;
  @!xq,@!yq:scaled); {splits the cubic after |p|}
var @!v:scaled; {an intermediate value}
@!q,@!r:pointer; {for list manipulation}
begin q:=link(p); r:=get_node(knot_node_size); link(p):=r; link(r):=q;@/
left_type(r):=left_type(q); right_type(r):=right_type(p);@#
v:=t_of_the_way(right_x(p))(left_x(q));
right_x(p):=t_of_the_way(x_coord(p))(right_x(p));
left_x(q):=t_of_the_way(left_x(q))(xq);
left_x(r):=t_of_the_way(right_x(p))(v);
right_x(r):=t_of_the_way(v)(left_x(q));
x_coord(r):=t_of_the_way(left_x(r))(right_x(r));@#
v:=t_of_the_way(right_y(p))(left_y(q));
right_y(p):=t_of_the_way(y_coord(p))(right_y(p));
left_y(q):=t_of_the_way(left_y(q))(yq);
left_y(r):=t_of_the_way(right_y(p))(v);
right_y(r):=t_of_the_way(v)(left_y(q));
y_coord(r):=t_of_the_way(left_y(r))(right_y(r));
end;

@ Since $x'(t)$ is a quadratic equation, it can cross through zero
at~most twice. When it does cross zero, we make doubly sure that the
derivative is really zero at the splitting point, in case rounding errors
have caused the split cubic to have an apparently nonzero derivative.
We also make sure that the split cubic is monotonic.

@<Subdivide the cubic with respect to $x'$, possibly twice@>=
begin split_cubic(p,t,dest_x,dest_y); r:=link(p);
if right_type(r)>negate_x then right_type(r):=first_octant
else right_type(r):=first_octant+negate_x;
if x_coord(r)<x_coord(p) then x_coord(r):=x_coord(p);
left_x(r):=x_coord(r);
if right_x(p)>x_coord(r) then right_x(p):=x_coord(r);
 {we always have |x_coord(p)<=right_x(p)|}
negate(x_coord(r)); right_x(r):=x_coord(r);
negate(left_x(q)); negate(dest_x);@/
del2:=t_of_the_way(del2)(del3);
  {now |0,del2,del3| represent $x'$ on the remaining interval}
if del2>0 then del2:=0;
t:=crossing_point(0,-del2,-del3);
if t<fraction_one then @<Subdivide the cubic a second time
  with respect to $x'$@>
else begin if x_coord(r)>dest_x then
    begin x_coord(r):=dest_x; left_x(r):=-x_coord(r); right_x(r):=x_coord(r);
    end;
  if left_x(q)>dest_x then left_x(q):=dest_x
  else if left_x(q)<x_coord(r) then left_x(q):=x_coord(r);
  end;
end

@ @<Subdivide the cubic a second time with respect to $x'$@>=
begin split_cubic(r,t,dest_x,dest_y); s:=link(r);
if x_coord(s)<dest_x then x_coord(s):=dest_x;
if x_coord(s)<x_coord(r) then x_coord(s):=x_coord(r);
right_type(s):=right_type(p);
left_x(s):=x_coord(s); {now |x_coord(r)=right_x(r)<=left_x(s)|}
if left_x(q)<dest_x then left_x(q):=-dest_x
else if left_x(q)>x_coord(s) then left_x(q):=-x_coord(s)
else negate(left_x(q));
negate(x_coord(s)); right_x(s):=x_coord(s);
end

@ The process of subdivision with respect to $y'$ is like that with respect
to~$x'$, with the slight additional complication that two or three cubics
might now appear between |p| and~|q|.

@<Subdivide all cubics between |p| and |q| so that the results travel
  toward the first quadrant...@>=
pp:=p;
repeat qq:=link(pp);
abnegate(x_coord(qq),y_coord(qq),right_type(qq),right_type(pp));
dest_x:=cur_x; dest_y:=cur_y;@/
del1:=right_y(pp)-y_coord(pp); del2:=left_y(qq)-right_y(pp);
del3:=dest_y-left_y(qq);
@<Scale up |del1|, |del2|, and |del3| for greater accuracy;
  also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
if del<>0 then {they weren't all zero}
  begin if del<0 then @<Complement the |y| coordinates of the
    cubic between |pp| and~|qq|@>;
  t:=crossing_point(del1,del2,del3);
  if t<fraction_one then
    @<Subdivide the cubic with respect to $y'$, possibly twice@>;
  end
else @<Do any special actions needed when |y| is constant;
  |return| or |goto continue| if a dead cubic from |p| to |q| is removed@>;
pp:=qq;
until pp=q;
if constant_x then @<Correct the octant code in segments with decreasing |y|@>

@ @<Complement the |y| coordinates...@>=
begin negate(y_coord(pp)); negate(right_y(pp));
negate(left_y(qq));@/
negate(del1); negate(del2); negate(del3);@/
negate(dest_y);
right_type(pp):=right_type(pp)+negate_y;
end

@ @<Subdivide the cubic with respect to $y'$, possibly twice@>=
begin split_cubic(pp,t,dest_x,dest_y); r:=link(pp);
if right_type(r)>negate_y then right_type(r):=right_type(r)-negate_y
else right_type(r):=right_type(r)+negate_y;
if y_coord(r)<y_coord(pp) then y_coord(r):=y_coord(pp);
left_y(r):=y_coord(r);
if right_y(pp)>y_coord(r) then right_y(pp):=y_coord(r);
 {we always have |y_coord(pp)<=right_y(pp)|}
negate(y_coord(r)); right_y(r):=y_coord(r);
negate(left_y(qq)); negate(dest_y);@/
if x_coord(r)<x_coord(pp) then x_coord(r):=x_coord(pp)
else if x_coord(r)>dest_x then x_coord(r):=dest_x;
if left_x(r)>x_coord(r) then
  begin left_x(r):=x_coord(r);
  if right_x(pp)>x_coord(r) then right_x(pp):=x_coord(r);
  end;
if right_x(r)<x_coord(r) then
  begin right_x(r):=x_coord(r);
  if left_x(qq)<x_coord(r) then left_x(qq):=x_coord(r);
  end;
del2:=t_of_the_way(del2)(del3);
  {now |0,del2,del3| represent $y'$ on the remaining interval}
if del2>0 then del2:=0;
t:=crossing_point(0,-del2,-del3);
if t<fraction_one then @<Subdivide the cubic a second time
  with respect to $y'$@>
else begin if y_coord(r)>dest_y then
    begin y_coord(r):=dest_y; left_y(r):=-y_coord(r); right_y(r):=y_coord(r);
    end;
  if left_y(qq)>dest_y then left_y(qq):=dest_y
  else if left_y(qq)<y_coord(r) then left_y(qq):=y_coord(r);
  end;
end

@ @<Subdivide the cubic a second time with respect to $y'$@>=
begin split_cubic(r,t,dest_x,dest_y); s:=link(r);@/
if y_coord(s)<dest_y then y_coord(s):=dest_y;
if y_coord(s)<y_coord(r) then y_coord(s):=y_coord(r);
right_type(s):=right_type(pp);
left_y(s):=y_coord(s); {now |y_coord(r)=right_y(r)<=left_y(s)|}
if left_y(qq)<dest_y then left_y(qq):=-dest_y
else if left_y(qq)>y_coord(s) then left_y(qq):=-y_coord(s)
else negate(left_y(qq));
negate(y_coord(s)); right_y(s):=y_coord(s);
if x_coord(s)<x_coord(r) then x_coord(s):=x_coord(r)
else if x_coord(s)>dest_x then x_coord(s):=dest_x;
if left_x(s)>x_coord(s) then
  begin left_x(s):=x_coord(s);
  if right_x(r)>x_coord(s) then right_x(r):=x_coord(s);
  end;
if right_x(s)<x_coord(s) then
  begin right_x(s):=x_coord(s);
  if left_x(qq)<x_coord(s) then left_x(qq):=x_coord(s);
  end;
end

@ If the cubic is constant in $y$ and increasing in $x$, we have classified
it as traveling in the first octant. If the cubic is constant
in~$y$ and decreasing in~$x$, it is desirable to classify it as traveling
in the fifth octant (not the fourth), because autorounding will be consistent
with respect to doublepaths only if the octant number changes by four when
the path is reversed. Therefore we negate the $y$~coordinates
when they are constant but the curve is decreasing in~$x$; this gives
the desired result except in pathological paths.

If the cubic is ``dead,'' i.e., constant in both |x| and |y|, we remove
it unless it is the only cubic in the entire path. We |goto continue|
if it wasn't the final cubic, so that the test |p=cur_spec| does not
falsely imply that all cubics have been processed.

@<Do any special actions needed when |y| is constant...@>=
if constant_x then {|p=pp|, |q=qq|, and the cubic is dead}
  begin if q<>p then
    begin remove_cubic(p); {remove the dead cycle and recycle node |q|}
    if cur_spec<>q then goto continue
    else  begin cur_spec:=p; return;
      end; {the final cubic was dead and is gone}
    end;
  end
else if not odd(right_type(pp)) then {the $x$ coordinates were negated}
  @<Complement the |y| coordinates...@>

@ A similar correction to octant codes deserves to be made when |x| is
constant and |y| is decreasing.

@<Correct the octant code in segments with decreasing |y|@>=
begin pp:=p;
repeat qq:=link(pp);
if right_type(pp)>negate_y then {the $y$ coordinates were negated}
  begin right_type(pp):=right_type(pp)+negate_x;
  negate(x_coord(pp)); negate(right_x(pp)); negate(left_x(qq));
  end;
pp:=qq;
until pp=q;
end

@ Finally, the process of subdividing to make $x'\G y'$ is like the other
two subdivisions, with a few new twists. We skew the coordinates at this time.

@<Declare subroutines needed by |make_spec|@>=
procedure octant_subdivide;
var @!p,@!q,@!r,@!s:pointer; {for traversing the lists}
@!del1,@!del2,@!del3,@!del,@!dmax:scaled; {proportional to the control
  points of a quadratic derived from a cubic}
@!t:fraction; {where a quadratic crosses zero}
@!dest_x,@!dest_y:scaled; {final values of |x| and |y| in the current cubic}
begin p:=cur_spec;
repeat q:=link(p);@/
x_coord(p):=x_coord(p)-y_coord(p);
right_x(p):=right_x(p)-right_y(p);
left_x(q):=left_x(q)-left_y(q);@/
@<Subdivide the cubic between |p| and |q| so that the results travel
  toward the first octant@>;
p:=q;
until p=cur_spec;
end;

@ @<Subdivide the cubic between |p| and |q| so that the results travel
  toward the first octant@>=
@<Set up the variables |(del1,del2,del3)| to represent $x'-y'$@>;
@<Scale up |del1|, |del2|, and |del3| for greater accuracy;
  also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
if del<>0 then {they weren't all zero}
  begin if del<0 then @<Swap the |x| and |y| coordinates of the
    cubic between |p| and~|q|@>;
  t:=crossing_point(del1,del2,del3);
  if t<fraction_one then
    @<Subdivide the cubic with respect to $x'-y'$, possibly twice@>;
  end

@ @<Set up the variables |(del1,del2,del3)| to represent $x'-y'$@>=
if q=cur_spec then
  begin unskew(x_coord(q),y_coord(q),right_type(q));
  skew(cur_x,cur_y,right_type(p)); dest_x:=cur_x; dest_y:=cur_y;
  end
else  begin abnegate(x_coord(q),y_coord(q),right_type(q),right_type(p));
  dest_x:=cur_x-cur_y; dest_y:=cur_y;
  end;
del1:=right_x(p)-x_coord(p); del2:=left_x(q)-right_x(p);
del3:=dest_x-left_x(q)

@ The swapping here doesn't simply interchange |x| and |y| values,
because the coordinates are skewed. It turns out that this is easier
than ordinary swapping, because it can be done in two assignment statements
rather than three.

@ @<Swap the |x| and |y| coordinates...@>=
begin y_coord(p):=x_coord(p)+y_coord(p); negate(x_coord(p));@/
right_y(p):=right_x(p)+right_y(p); negate(right_x(p));@/
left_y(q):=left_x(q)+left_y(q); negate(left_x(q));@/
negate(del1); negate(del2); negate(del3);@/
dest_y:=dest_x+dest_y; negate(dest_x);@/
right_type(p):=right_type(p)+switch_x_and_y;
end

@ A somewhat tedious case analysis is carried out here to make sure that
nasty rounding errors don't destroy our assumptions of monotonicity.

@<Subdivide the cubic with respect to $x'-y'$, possibly twice@>=
begin split_cubic(p,t,dest_x,dest_y); r:=link(p);
if right_type(r)>switch_x_and_y then right_type(r):=right_type(r)-switch_x_and_y
else right_type(r):=right_type(r)+switch_x_and_y;
if y_coord(r)<y_coord(p) then y_coord(r):=y_coord(p)
else if y_coord(r)>dest_y then y_coord(r):=dest_y;
if x_coord(p)+y_coord(r)>dest_x+dest_y then
  y_coord(r):=dest_x+dest_y-x_coord(p);
if left_y(r)>y_coord(r) then
  begin left_y(r):=y_coord(r);
  if right_y(p)>y_coord(r) then right_y(p):=y_coord(r);
  end;
if right_y(r)<y_coord(r) then
  begin right_y(r):=y_coord(r);
  if left_y(q)<y_coord(r) then left_y(q):=y_coord(r);
  end;
if x_coord(r)<x_coord(p) then x_coord(r):=x_coord(p)
else if x_coord(r)+y_coord(r)>dest_x+dest_y then
  x_coord(r):=dest_x+dest_y-y_coord(r);
left_x(r):=x_coord(r);
if right_x(p)>x_coord(r) then right_x(p):=x_coord(r);
 {we always have |x_coord(p)<=right_x(p)|}
y_coord(r):=y_coord(r)+x_coord(r); right_y(r):=right_y(r)+x_coord(r);@/
negate(x_coord(r)); right_x(r):=x_coord(r);@/
left_y(q):=left_y(q)+left_x(q); negate(left_x(q));@/
dest_y:=dest_y+dest_x; negate(dest_x);
if right_y(r)<y_coord(r) then
  begin right_y(r):=y_coord(r);
  if left_y(q)<y_coord(r) then left_y(q):=y_coord(r);
  end;
del2:=t_of_the_way(del2)(del3);
  {now |0,del2,del3| represent $x'-y'$ on the remaining interval}
if del2>0 then del2:=0;
t:=crossing_point(0,-del2,-del3);
if t<fraction_one then
  @<Subdivide the cubic a second time with respect to $x'-y'$@>
else begin if x_coord(r)>dest_x then
    begin x_coord(r):=dest_x; left_x(r):=-x_coord(r); right_x(r):=x_coord(r);
    end;
  if left_x(q)>dest_x then left_x(q):=dest_x
  else if left_x(q)<x_coord(r) then left_x(q):=x_coord(r);
  end;
end

@ @<Subdivide the cubic a second time with respect to $x'-y'$@>=
begin split_cubic(r,t,dest_x,dest_y); s:=link(r);@/
if y_coord(s)<y_coord(r) then y_coord(s):=y_coord(r)
else if y_coord(s)>dest_y then y_coord(s):=dest_y;
if x_coord(r)+y_coord(s)>dest_x+dest_y then
  y_coord(s):=dest_x+dest_y-x_coord(r);
if left_y(s)>y_coord(s) then
  begin left_y(s):=y_coord(s);
  if right_y(r)>y_coord(s) then right_y(r):=y_coord(s);
  end;
if right_y(s)<y_coord(s) then
  begin right_y(s):=y_coord(s);
  if left_y(q)<y_coord(s) then left_y(q):=y_coord(s);
  end;
if x_coord(s)+y_coord(s)>dest_x+dest_y then x_coord(s):=dest_x+dest_y-y_coord(s)
else begin if x_coord(s)<dest_x then x_coord(s):=dest_x;
  if x_coord(s)<x_coord(r) then x_coord(s):=x_coord(r);
  end;
right_type(s):=right_type(p);
left_x(s):=x_coord(s); {now |x_coord(r)=right_x(r)<=left_x(s)|}
if left_x(q)<dest_x then
  begin left_y(q):=left_y(q)+dest_x; left_x(q):=-dest_x;@+end
else if left_x(q)>x_coord(s) then
  begin left_y(q):=left_y(q)+x_coord(s); left_x(q):=-x_coord(s);@+end
else begin left_y(q):=left_y(q)+left_x(q); negate(left_x(q));@+end;
y_coord(s):=y_coord(s)+x_coord(s); right_y(s):=right_y(s)+x_coord(s);@/
negate(x_coord(s)); right_x(s):=x_coord(s);@/
if right_y(s)<y_coord(s) then
  begin right_y(s):=y_coord(s);
  if left_y(q)<y_coord(s) then left_y(q):=y_coord(s);
  end;
end

@ It's time now to consider ``autorounding,'' which tries to make horizontal,
vertical, and diagonal tangents occur at places that will produce appropriate
images after the curve is digitized.

The first job is to fix things so that |x(t)| is an integer multiple of the
current ``granularity'' when the derivative $x'(t)$ crosses through zero.
The given cyclic path contains regions where $x'(t)\G0$ and regions
where $x'(t)\L0$. The |quadrant_subdivide| routine is called into action
before any of the path coordinates have been skewed, but some of them
may have been negated. In regions where $x'(t)\G0$ we have |right_type=
first_octant| or |right_type=fourth_octant|; in regions where $x'(t)\L0$,
we have |right_type=fifth_octant| or |right_type=eighth_octant|.

Within any such region the transformed $x$ values increase monotonically
from, say, $x_0$ to~$x_1$. We want to modify things by applying a linear
transformation to all $x$ coordinates in the region, after which
the $x$ values will increase monotonically from round$(x_0)$ to round$(x_1)$.

This rounding scheme sounds quite simple, and it usually is. But several
complications can arise that might make the task more difficult. In the
first place, autorounding is inappropriate at cusps where $x'$ jumps
discontinuously past zero without ever being zero. In the second place,
the current pen might be unsymmetric in such a way that $x$ coordinates
should round differently when $x'$ becomes positive than when it becomes
negative. These considerations imply that round$(x_0)$ might be greater
than round$(x_1)$, even though $x_0\L x_1$; in such cases we do not want
to carry out the linear transformation. Furthermore, it's possible to have
round$(x_1)-\hbox{round} (x_0)$ positive but much greater than $x_1-x_0$;
then the transformation might distort the curve drastically, and again we
want to avoid it. Finally, the rounded points must be consistent between
adjacent regions, hence we can't transform one region without knowing
about its neighbors.

To handle all these complications, we must first look at the whole
cycle and choose rounded $x$ values that are ``safe.'' The following
procedure does this: Given $m$~values $(b_0,b_1,\ldots,b_{m-1})$ before
rounding and $m$~corresponding values $(a_0,a_1,\ldots,a_{m-1})$ that would
be desirable after rounding, the |make_safe| routine sets $a$'s to $b$'s
if necessary so that $0\L(a\k-a_k)/(b\k-b_k)\L2$ afterwards. It is
symmetric under cyclic permutation, reversal, and/or negation of the inputs.
(Instead of |a|, |b|, and~|m|, the program uses the names |after|,
|before|, and |cur_rounding_ptr|.)

@<Declare subroutines needed by |make_spec|@>=
procedure make_safe;
var @!k:0..max_wiggle; {runs through the list of inputs}
@!all_safe:boolean; {does everything look OK so far?}
@!next_a:scaled; {|after[k]| before it might have changed}
@!delta_a,@!delta_b:scaled; {|after[k+1]-after[k]| and |before[k+1]-before[k]|}
begin before[cur_rounding_ptr]:=before[0]; {wrap around}
node_to_round[cur_rounding_ptr]:=node_to_round[0];
repeat after[cur_rounding_ptr]:=after[0]; all_safe:=true; next_a:=after[0];
for k:=0 to cur_rounding_ptr-1 do
  begin delta_b:=before[k+1]-before[k];
  if delta_b>=0 then delta_a:=after[k+1]-next_a
  else delta_a:=next_a-after[k+1];
  next_a:=after[k+1];
  if (delta_a<0)or(delta_a>abs(delta_b+delta_b)) then
    begin all_safe:=false; after[k]:=before[k];
    if k=cur_rounding_ptr-1 then after[0]:=before[0]
    else after[k+1]:=before[k+1];
    end;
  end;
until all_safe;
end;

@ The global arrays used by |make_safe| are accompanied by an array of
pointers into the current knot list.

@<Glob...@>=
@!before,@!after:array[0..max_wiggle] of scaled; {data for |make_safe|}
@!node_to_round:array[0..max_wiggle] of pointer; {reference back to the path}
@!cur_rounding_ptr:0..max_wiggle; {how many are being used}
@!max_rounding_ptr:0..max_wiggle; {how many have been used}

@ @<Set init...@>=
max_rounding_ptr:=0;

@ New entries go into the tables via the |before_and_after| routine:

@<Declare subroutines needed by |make_spec|@>=
procedure before_and_after(@!b,@!a:scaled;@!p:pointer);
begin if cur_rounding_ptr=max_rounding_ptr then
  if max_rounding_ptr<max_wiggle then incr(max_rounding_ptr)
  else overflow("rounding table size",max_wiggle);
@:METAFONT capacity exceeded rounding table size}{\quad rounding table size@>
after[cur_rounding_ptr]:=a; before[cur_rounding_ptr]:=b;
node_to_round[cur_rounding_ptr]:=p; incr(cur_rounding_ptr);
end;

@ A global variable called |cur_gran| is used instead of |internal[
granularity]|, because we want to work with a number that's guaranteed to
be positive.

@<Glob...@>=
@!cur_gran:scaled; {the current granularity (which normally is |unity|)}

@ The |good_val| function computes a number |a| that's as close as
possible to~|b|, with the property that |a+o| is a multiple of
|cur_gran|.

If we assume that |cur_gran| is even (since it will in fact be a multiple
of |unity| in all reasonable applications), we have the identity
|good_val(-b-1,-o)=-good_val(b,o)|.

@<Declare subroutines needed by |make_spec|@>=
function good_val(@!b,@!o:scaled):scaled;
var @!a:scaled; {accumulator}
begin a:=b+o;
if a>=0 then a:=a-(a mod cur_gran)-o
else a:=a+((-(a+1)) mod cur_gran)-cur_gran+1-o;
if b-a<a+cur_gran-b then good_val:=a
else good_val:=a+cur_gran;
end;

@ When we're rounding a doublepath, we might need to compromise between
two opposing tendencies, if the pen thickness is not a multiple of the
granularity. The following ``compromise'' adjustment, suggested by
John Hobby, finds the best way out of the dilemma. (Only the value
@^Hobby, John Douglas@>
modulo |cur_gran| is relevant in our applications, so the result turns
out to be essentially symmetric in |u| and~|v|.)

@<Declare subroutines needed by |make_spec|@>=
function compromise(@!u,@!v:scaled):scaled;
begin compromise:=half(good_val(u+u,-u-v));
end;

@ Here, then, is the procedure that rounds $x$ coordinates as described;
it does the same for $y$ coordinates too, independently.

@<Declare subroutines needed by |make_spec|@>=
procedure xy_round;
var @!p,@!q:pointer; {list manipulation registers}
@!b,@!a:scaled; {before and after values}
@!pen_edge:scaled; {offset that governs rounding}
@!alpha:fraction; {coefficient of linear transformation}
begin cur_gran:=abs(internal[granularity]);
if cur_gran=0 then cur_gran:=unity;
p:=cur_spec; cur_rounding_ptr:=0;
repeat q:=link(p);
@<If node |q| is a transition point for |x| coordinates,
  compute and save its before-and-after coordinates@>;
p:=q;
until p=cur_spec;
if cur_rounding_ptr>0 then @<Transform the |x| coordinates@>;
p:=cur_spec; cur_rounding_ptr:=0;
repeat q:=link(p);
@<If node |q| is a transition point for |y| coordinates,
  compute and save its before-and-after coordinates@>;
p:=q;
until p=cur_spec;
if cur_rounding_ptr>0 then @<Transform the |y| coordinates@>;
end;

@ When |x| has been negated, the |octant| codes are even. We allow
for an error of up to .01 pixel (i.e., 655 |scaled| units) in the
derivative calculations at transition nodes.

@<If node |q| is a transition point for |x| coordinates...@>=
if odd(right_type(p))<>odd(right_type(q)) then
  begin if odd(right_type(q)) then b:=x_coord(q)@+else b:=-x_coord(q);
  if (abs(x_coord(q)-right_x(q))<655)or@|
    (abs(x_coord(q)+left_x(q))<655) then
    @<Compute before-and-after |x| values based on the current pen@>
  else a:=b;
  if abs(a)>max_allowed then
    if a>0 then a:=max_allowed@+else a:=-max_allowed;
  before_and_after(b,a,q);
  end

@ When we study the data representation for pens, we'll learn that the
|x|~coordinate of the current pen's west edge is
$$\hbox{|y_coord(link(cur_pen+seventh_octant))|},$$
and that there are similar ways to address other important offsets.
An ``|east_west_edge|'' is computed as a compromise between east and
west, for use in doublepaths, in case the two edges have conflicting
tendencies.

@d north_edge(#)==y_coord(link(#+fourth_octant))
@d south_edge(#)==y_coord(link(#+first_octant))
@d east_edge(#)==y_coord(link(#+second_octant))
@d west_edge(#)==y_coord(link(#+seventh_octant))
@d north_south_edge(#)==mem[#+10].int {compromise between north and south}
@d east_west_edge(#)==mem[#+11].int {compromise between east and west}
@d NE_SW_edge(#)==mem[#+12].int {compromise between northeast and southwest}
@d NW_SE_edge(#)==mem[#+13].int {compromise between northwest and southeast}

@<Compute before-and-after |x| values based on the current pen@>=
begin if cur_pen=null_pen then pen_edge:=0
else if cur_path_type=double_path_code then
  pen_edge:=compromise(east_edge(cur_pen),west_edge(cur_pen))
else if odd(right_type(q)) then pen_edge:=west_edge(cur_pen)
else pen_edge:=east_edge(cur_pen);
a:=good_val(b,pen_edge);
end

@  The monotone transformation computed here with fixed-point arithmetic is
guaranteed to take consecutive |before| values $(b,b')$ into consecutive
|after| values $(a,a')$, even in the presence of rounding errors,
as long as $\vert b-b'\vert<2^{28}$.

@<Transform the |x| coordinates@>=
begin make_safe;
repeat decr(cur_rounding_ptr);
if (after[cur_rounding_ptr]<>before[cur_rounding_ptr])or@|
 (after[cur_rounding_ptr+1]<>before[cur_rounding_ptr+1]) then
  begin p:=node_to_round[cur_rounding_ptr];
  if odd(right_type(p)) then
    begin b:=before[cur_rounding_ptr]; a:=after[cur_rounding_ptr];
    end
  else  begin b:=-before[cur_rounding_ptr]; a:=-after[cur_rounding_ptr];
    end;
  if before[cur_rounding_ptr]=before[cur_rounding_ptr+1] then
    alpha:=fraction_one
  else alpha:=make_fraction(after[cur_rounding_ptr+1]-after[cur_rounding_ptr],@|
    before[cur_rounding_ptr+1]-before[cur_rounding_ptr]);
  repeat x_coord(p):=take_fraction(alpha,x_coord(p)-b)+a;
  right_x(p):=take_fraction(alpha,right_x(p)-b)+a;
  p:=link(p); left_x(p):=take_fraction(alpha,left_x(p)-b)+a;
  until p=node_to_round[cur_rounding_ptr+1];
  end;
until cur_rounding_ptr=0;
end

@ When |y| has been negated, the |octant| codes are |>negate_y|. Otherwise
these routines are essentially identical to the routines for |x| coordinates
that we have just seen.

@<If node |q| is a transition point for |y| coordinates...@>=
if (right_type(p)>negate_y)<>(right_type(q)>negate_y) then
  begin if right_type(q)<=negate_y then b:=y_coord(q)@+else b:=-y_coord(q);
  if (abs(y_coord(q)-right_y(q))<655)or@|
    (abs(y_coord(q)+left_y(q))<655) then
    @<Compute before-and-after |y| values based on the current pen@>
  else a:=b;
  if abs(a)>max_allowed then
    if a>0 then a:=max_allowed@+else a:=-max_allowed;
  before_and_after(b,a,q);
  end

@ @<Compute before-and-after |y| values based on the current pen@>=
begin if cur_pen=null_pen then pen_edge:=0
else if cur_path_type=double_path_code then
  pen_edge:=compromise(north_edge(cur_pen),south_edge(cur_pen))
else if right_type(q)<=negate_y then pen_edge:=south_edge(cur_pen)
else pen_edge:=north_edge(cur_pen);
a:=good_val(b,pen_edge);
end

@ @<Transform the |y| coordinates@>=
begin make_safe;
repeat decr(cur_rounding_ptr);
if (after[cur_rounding_ptr]<>before[cur_rounding_ptr])or@|
 (after[cur_rounding_ptr+1]<>before[cur_rounding_ptr+1]) then
  begin p:=node_to_round[cur_rounding_ptr];
  if right_type(p)<=negate_y then
    begin b:=before[cur_rounding_ptr]; a:=after[cur_rounding_ptr];
    end
  else  begin b:=-before[cur_rounding_ptr]; a:=-after[cur_rounding_ptr];
    end;
  if before[cur_rounding_ptr]=before[cur_rounding_ptr+1] then
    alpha:=fraction_one
  else alpha:=make_fraction(after[cur_rounding_ptr+1]-after[cur_rounding_ptr],@|
    before[cur_rounding_ptr+1]-before[cur_rounding_ptr]);
  repeat y_coord(p):=take_fraction(alpha,y_coord(p)-b)+a;
  right_y(p):=take_fraction(alpha,right_y(p)-b)+a;
  p:=link(p); left_y(p):=take_fraction(alpha,left_y(p)-b)+a;
  until p=node_to_round[cur_rounding_ptr+1];
  end;
until cur_rounding_ptr=0;
end

@ Rounding at diagonal tangents takes place after the subdivision into
octants is complete, hence after the coordinates have been skewed.
The details are somewhat tricky, because we want to round to points
whose skewed coordinates are halfway between integer multiples of
the granularity. Furthermore, both coordinates change when they are
rounded; this means we need a generalization of the |make_safe| routine,
ensuring safety in both |x| and |y|.

In spite of these extra complications, we can take comfort in the fact
that the basic structure of the routine is the same as before.

@<Declare subroutines needed by |make_spec|@>=
procedure diag_round;
var @!p,@!q,@!pp:pointer; {list manipulation registers}
@!b,@!a,@!bb,@!aa,@!d,@!c,@!dd,@!cc:scaled; {before and after values}
@!pen_edge:scaled; {offset that governs rounding}
@!alpha,@!beta:fraction; {coefficients of linear transformation}
@!next_a:scaled; {|after[k]| before it might have changed}
@!all_safe:boolean; {does everything look OK so far?}
@!k:0..max_wiggle; {runs through before-and-after values}
@!first_x,@!first_y:scaled; {coordinates before rounding}
begin p:=cur_spec; cur_rounding_ptr:=0;
repeat q:=link(p);
@<If node |q| is a transition point between octants,
  compute and save its before-and-after coordinates@>;
p:=q;
until p=cur_spec;
if cur_rounding_ptr>0 then @<Transform the skewed coordinates@>;
end;

@ We negate the skewed |x| coordinates in the before-and-after table when
the octant code is greater than |switch_x_and_y|.

@<If node |q| is a transition point between octants...@>=
if right_type(p)<>right_type(q) then
  begin if right_type(q)>switch_x_and_y then b:=-x_coord(q)
  else b:=x_coord(q);
  if abs(right_type(q)-right_type(p))=switch_x_and_y then
    if (abs(x_coord(q)-right_x(q))<655)or(abs(x_coord(q)+left_x(q))<655) then
      @<Compute a good coordinate at a diagonal transition@>
    else a:=b
  else a:=b;
  before_and_after(b,a,q);
  end

@ In octants whose code number is even, $x$~has been
negated; we want to round ambiguous cases downward instead of upward,
so that the rounding will be consistent with octants whose code
number is odd. This downward bias can be achieved by
subtracting~1 from the first argument of |good_val|.

@d diag_offset(#)==x_coord(knil(link(cur_pen+#)))

@<Compute a good coordinate at a diagonal transition@>=
begin if cur_pen=null_pen then pen_edge:=0
else if cur_path_type=double_path_code then @<Compute a compromise |pen_edge|@>
else if right_type(q)<=switch_x_and_y then pen_edge:=diag_offset(right_type(q))
else pen_edge:=-diag_offset(right_type(q));
if odd(right_type(q)) then a:=good_val(b,pen_edge+half(cur_gran))
else a:=good_val(b-1,pen_edge+half(cur_gran));
end

@ (It seems a shame to compute these compromise offsets repeatedly. The
author would have stored them directly in the pen data structure, if the
granularity had been constant.)

@<Compute a compromise...@>=
case right_type(q) of
first_octant,second_octant:pen_edge:=compromise(diag_offset(first_octant),@|
    -diag_offset(fifth_octant));
fifth_octant,sixth_octant:pen_edge:=-compromise(diag_offset(first_octant),@|
    -diag_offset(fifth_octant));
third_octant,fourth_octant:pen_edge:=compromise(diag_offset(fourth_octant),@|
    -diag_offset(eighth_octant));
seventh_octant,eighth_octant:pen_edge:=-compromise(diag_offset(fourth_octant),@|
    -diag_offset(eighth_octant));
end {there are no other cases}

@ @<Transform the skewed coordinates@>=
begin p:=node_to_round[0]; first_x:=x_coord(p); first_y:=y_coord(p);
@<Make sure that all the diagonal roundings are safe@>;
for k:=0 to cur_rounding_ptr-1 do
  begin a:=after[k]; b:=before[k];
  aa:=after[k+1]; bb:=before[k+1];
  if (a<>b)or(aa<>bb) then
    begin p:=node_to_round[k]; pp:=node_to_round[k+1];
    @<Determine the before-and-after values of both coordinates@>;
    if b=bb then alpha:=fraction_one
    else alpha:=make_fraction(aa-a,bb-b);
    if d=dd then beta:=fraction_one
    else beta:=make_fraction(cc-c,dd-d);
    repeat x_coord(p):=take_fraction(alpha,x_coord(p)-b)+a;
    y_coord(p):=take_fraction(beta,y_coord(p)-d)+c;
    right_x(p):=take_fraction(alpha,right_x(p)-b)+a;
    right_y(p):=take_fraction(beta,right_y(p)-d)+c;
    p:=link(p); left_x(p):=take_fraction(alpha,left_x(p)-b)+a;
    left_y(p):=take_fraction(beta,left_y(p)-d)+c;
    until p=pp;
    end;
  end;
end

@ In node |p|, the coordinates |(b,d)| will be rounded to |(a,c)|;
in node |pp|, the coordinates |(bb,dd)| will be rounded to |(aa,cc)|.
(We transform the values from node |pp| so that they agree with the
conventions of node |p|.)

If |aa<>bb|, we know that |abs(right_type(p)-right_type(pp))=switch_x_and_y|.

@<Determine the before-and-after values of both coordinates@>=
if aa=bb then
  begin if pp=node_to_round[0] then
    unskew(first_x,first_y,right_type(pp))
  else unskew(x_coord(pp),y_coord(pp),right_type(pp));
  skew(cur_x,cur_y,right_type(p));
  bb:=cur_x; aa:=bb; dd:=cur_y; cc:=dd;
  if right_type(p)>switch_x_and_y then
    begin b:=-b; a:=-a;
    end;
  end
else  begin if right_type(p)>switch_x_and_y then
    begin bb:=-bb; aa:=-aa; b:=-b; a:=-a;
    end;
  if pp=node_to_round[0] then dd:=first_y-bb@+else dd:=y_coord(pp)-bb;
  if odd(aa-bb) then
    if right_type(p)>switch_x_and_y then cc:=dd-half(aa-bb+1)
    else cc:=dd-half(aa-bb-1)
  else cc:=dd-half(aa-bb);
  end;
d:=y_coord(p);
if odd(a-b) then
  if right_type(p)>switch_x_and_y then c:=d-half(a-b-1)
  else c:=d-half(a-b+1)
else c:=d-half(a-b)

@ @<Make sure that all the diagonal roundings are safe@>=
before[cur_rounding_ptr]:=before[0]; {cf.~|make_safe|}
node_to_round[cur_rounding_ptr]:=node_to_round[0];
repeat after[cur_rounding_ptr]:=after[0]; all_safe:=true; next_a:=after[0];
for k:=0 to cur_rounding_ptr-1 do
  begin a:=next_a; b:=before[k]; next_a:=after[k+1];
  aa:=next_a; bb:=before[k+1];
  if (a<>b)or(aa<>bb) then
    begin p:=node_to_round[k]; pp:=node_to_round[k+1];
    @<Determine the before-and-after values of both coordinates@>;
    if (aa<a)or(cc<c)or(aa-a>2*(bb-b))or(cc-c>2*(dd-d)) then
      begin all_safe:=false; after[k]:=before[k];
      if k=cur_rounding_ptr-1 then after[0]:=before[0]
      else after[k+1]:=before[k+1];
      end;
    end;
  end;
until all_safe

@ Here we get rid of ``dead'' cubics, i.e., polynomials that don't move at
all when |t|~changes, since the subdivision process might have introduced
such things.  If the cycle reduces to a single point, however, we are left
with a single dead cubic that will not be removed until later.

@<Remove dead cubics@>=
p:=cur_spec;
repeat continue: q:=link(p);
if p<>q then
  begin if x_coord(p)=right_x(p) then
   if y_coord(p)=right_y(p) then
    if x_coord(p)=left_x(q) then
     if y_coord(p)=left_y(q) then
    begin unskew(x_coord(q),y_coord(q),right_type(q));
    skew(cur_x,cur_y,right_type(p));
    if x_coord(p)=cur_x then if y_coord(p)=cur_y then
      begin remove_cubic(p); {remove the cubic following |p|}
      if q<>cur_spec then goto continue;
      cur_spec:=p; q:=p;
      end;
    end;
  end;
p:=q;
until p=cur_spec;

@ Finally we come to the last steps of |make_spec|, when boundary nodes
are inserted between cubics that move in different octants. The main
complication remaining arises from consecutive cubics whose octants
are not adjacent; we should insert more than one octant boundary
at such sharp turns, so that the envelope-forming routine will work.

For this purpose, conversion tables between numeric and Gray codes for
octants are desirable.

@<Glob...@>=
@!octant_number:array[first_octant..sixth_octant] of 1..8;
@!octant_code:array[1..8] of first_octant..sixth_octant;

@ @<Set init...@>=
octant_code[1]:=first_octant;
octant_code[2]:=second_octant;
octant_code[3]:=third_octant;
octant_code[4]:=fourth_octant;
octant_code[5]:=fifth_octant;
octant_code[6]:=sixth_octant;
octant_code[7]:=seventh_octant;
octant_code[8]:=eighth_octant;
for k:=1 to 8 do octant_number[octant_code[k]]:=k;

@ The main loop for boundary insertion deals with three consecutive
nodes |p,q,r|.

@<Insert octant boundaries and compute the turning number@>=
turning_number:=0;
p:=cur_spec; q:=link(p);
repeat r:=link(q);
if (right_type(p)<>right_type(q))or(q=r) then
  @<Insert one or more octant boundary nodes just before~|q|@>;
p:=q; q:=r;
until p=cur_spec;

@ The |new_boundary| subroutine comes in handy at this point. It inserts
a new boundary node just after a given node |p|, using a given octant code
to transform the new node's coordinates. The ``transition'' fields are
not computed here.

@<Declare subroutines needed by |make_spec|@>=
procedure new_boundary(@!p:pointer;@!octant:small_number);
var @!q,@!r:pointer; {for list manipulation}
begin q:=link(p); {we assume that |right_type(q)<>endpoint|}
r:=get_node(knot_node_size); link(r):=q; link(p):=r;
left_type(r):=left_type(q); {but possibly |left_type(q)=endpoint|}
left_x(r):=left_x(q); left_y(r):=left_y(q);
right_type(r):=endpoint; left_type(q):=endpoint;
right_octant(r):=octant; left_octant(q):=right_type(q);
unskew(x_coord(q),y_coord(q),right_type(q));
skew(cur_x,cur_y,octant); x_coord(r):=cur_x; y_coord(r):=cur_y;
end;

@ The case |q=r| occurs if and only if |p=q=r=cur_spec|, when we want to turn
$360^\circ$ in eight steps and then remove a solitary dead cubic.
The program below happens to work in that case, but the reader isn't
expected to understand why.

@<Insert one or more octant boundary nodes just before~|q|@>=
begin new_boundary(p,right_type(p)); s:=link(p);
o1:=octant_number[right_type(p)]; o2:=octant_number[right_type(q)];
case o2-o1 of
1,-7,7,-1: goto done;
2,-6: clockwise:=false;
3,-5,4,-4,5,-3: @<Decide whether or not to go clockwise@>;
6,-2: clockwise:=true;
0:clockwise:=rev_turns;
end; {there are no other cases}
@<Insert additional boundary nodes, then |goto done|@>;
done: if q=r then
  begin q:=link(q); r:=q; p:=s; link(s):=q; left_octant(q):=right_octant(q);
  left_type(q):=endpoint; free_node(cur_spec,knot_node_size); cur_spec:=q;
  end;
@<Fix up the transition fields and adjust the turning number@>;
end

@ @<Other local variables for |make_spec|@>=
@!o1,@!o2:small_number; {octant numbers}
@!clockwise:boolean; {should we turn clockwise?}
@!dx1,@!dy1,@!dx2,@!dy2:integer; {directions of travel at a cusp}
@!dmax,@!del:integer; {temporary registers}

@ A tricky question arises when a path jumps four octants. We want the
direction of turning to be counterclockwise if the curve has changed
direction by $180^\circ$, or by something so close to $180^\circ$ that
the difference is probably due to rounding errors; otherwise we want to
turn through an angle of less than $180^\circ$. This decision needs to
be made even when a curve seems to have jumped only three octants, since
a curve may approach direction $(-1,0)$ from the fourth octant, then
it might leave from direction $(+1,0)$ into the first.

The following code solves the problem by analyzing the incoming
direction |(dx1,dy1)| and the outgoing direction |(dx2,dy2)|.

@<Decide whether or not to go clockwise@>=
begin @<Compute the incoming and outgoing directions@>;
unskew(dx1,dy1,right_type(p)); del:=pyth_add(cur_x,cur_y);@/
dx1:=make_fraction(cur_x,del); dy1:=make_fraction(cur_y,del);
  {$\cos\theta_1$ and $\sin\theta_1$}
unskew(dx2,dy2,right_type(q)); del:=pyth_add(cur_x,cur_y);@/
dx2:=make_fraction(cur_x,del); dy2:=make_fraction(cur_y,del);
  {$\cos\theta_2$ and $\sin\theta_2$}
del:=take_fraction(dx1,dy2)-take_fraction(dx2,dy1); {$\sin(\theta_2-\theta_1)$}
if del>4684844 then clockwise:=false
else if del<-4684844 then clockwise:=true
  {$2^{28}\cdot\sin 1^\circ\approx4684844.68$}
else clockwise:=rev_turns;
end

@ Actually the turnarounds just computed will be clockwise,
not counterclockwise, if
the global variable |rev_turns| is |true|; it is usually |false|.

@<Glob...@>=
@!rev_turns:boolean; {should we make U-turns in the English manner?}

@ @<Set init...@>=
rev_turns:=false;

@ @<Compute the incoming and outgoing directions@>=
dx1:=x_coord(s)-left_x(s); dy1:=y_coord(s)-left_y(s);
if dx1=0 then if dy1=0 then
  begin dx1:=x_coord(s)-right_x(p); dy1:=y_coord(s)-right_y(p);
  if dx1=0 then if dy1=0 then
    begin dx1:=x_coord(s)-x_coord(p); dy1:=y_coord(s)-y_coord(p);
    end;  {and they {\sl can't} both be zero}
  end;
dmax:=abs(dx1);@+if abs(dy1)>dmax then dmax:=abs(dy1);
while dmax<fraction_one do
  begin double(dmax); double(dx1); double(dy1);
  end;
dx2:=right_x(q)-x_coord(q); dy2:=right_y(q)-y_coord(q);
if dx2=0 then if dy2=0 then
  begin dx2:=left_x(r)-x_coord(q); dy2:=left_y(r)-y_coord(q);
  if dx2=0 then if dy2=0 then
    begin if right_type(r)=endpoint then
      begin cur_x:=x_coord(r); cur_y:=y_coord(r);
      end
    else  begin unskew(x_coord(r),y_coord(r),right_type(r));
      skew(cur_x,cur_y,right_type(q));
      end;
    dx2:=cur_x-x_coord(q); dy2:=cur_y-y_coord(q);
    end;  {and they {\sl can't} both be zero}
  end;
dmax:=abs(dx2);@+if abs(dy2)>dmax then dmax:=abs(dy2);
while dmax<fraction_one do
  begin double(dmax); double(dx2); double(dy2);
  end

@ @<Insert additional boundary nodes...@>=
loop@+  begin if clockwise then
    if o1=1 then o1:=8@+else decr(o1)
  else if o1=8 then o1:=1@+else incr(o1);
  if o1=o2 then goto done;
  new_boundary(s,octant_code[o1]);
  s:=link(s); left_octant(s):=right_octant(s);
  end

@ Now it remains to insert the redundant
transition information into the |left_transition|
and |right_transition| fields between adjacent octants, in the octant
boundary nodes that have just been inserted between |link(p)| and~|q|.
The turning number is easily computed from these transitions.

@<Fix up the transition fields and adjust the turning number@>=
p:=link(p);
repeat s:=link(p);
o1:=octant_number[right_octant(p)]; o2:=octant_number[left_octant(s)];
if abs(o1-o2)=1 then
  begin if o2<o1 then o2:=o1;
  if odd(o2) then right_transition(p):=axis
  else right_transition(p):=diagonal;
  end
else  begin if o1=8 then incr(turning_number)@+else decr(turning_number);
  right_transition(p):=axis;
  end;
left_transition(s):=right_transition(p);
p:=s;
until p=q

@* \[22] Filling a contour.
Given the low-level machinery for making moves and for transforming a
cyclic path into a cycle spec, we're almost able to fill a digitized path.
All we need is a high-level routine that walks through the cycle spec and
controls the overall process.

Our overall goal is to plot the integer points $\bigl(\round(x(t)),
\round(y(t))\bigr)$ and to connect them by rook moves, assuming that
$\round(x(t))$ and $\round(y(t))$ don't both jump simultaneously from
one integer to another as $t$~varies; these rook moves will be the edge
of the contour that will be filled. We have reduced this problem to the
case of curves that travel in first octant directions, i.e., curves
such that $0\L y'(t)\L x'(t)$, by transforming the original coordinates.

\def\xtilde{{\tilde x}} \def\ytilde{{\tilde y}}
Another transformation makes the problem still simpler. We shall say that
we are working with {\sl biased coordinates\/} when $(x,y)$ has been
replaced by $(\xtilde,\ytilde)=(x-y,y+{1\over2})$. When a curve travels
in first octant directions, the corresponding curve with biased
coordinates travels in first {\sl quadrant\/} directions; the latter
condition is symmetric in $x$ and~$y$, so it has advantages for the
design of algorithms. The |make_spec| routine gives us skewed coordinates
$(x-y,y)$, hence we obtain biased coordinates by simply adding $1\over2$
to the second component.

The most important fact about biased coordinates is that we can determine the
rounded unbiased path $\bigl(\round(x(t)),\round(y(t))\bigr)$ from the
truncated biased path $\bigl(\lfloor\xtilde(t)\rfloor,\lfloor\ytilde(t)\rfloor
\bigr)$ and information about the initial and final endpoints. If the
unrounded and unbiased
path begins at $(x_0,y_0)$ and ends at $(x_1,y_1)$, it's possible to
prove (by induction on the length of truncated biased path) that the
rounded unbiased path is obtained by the following construction:

\yskip\textindent{1)} Start at $\bigl(\round(x_0),\round(y_0)\bigr)$.

\yskip\textindent{2)} If $(x_0+{1\over2})\bmod1\G(y_0+{1\over2})\bmod1$,
move one step right.

\yskip\textindent{3)} Whenever the path
$\bigl(\lfloor\xtilde(t)\rfloor,\lfloor\ytilde(t)\rfloor\bigr)$
takes an upward step (i.e., when
$\lfloor\xtilde(t+\epsilon)\rfloor=\lfloor\xtilde(t)\rfloor$ and
$\lfloor\ytilde(t+\epsilon)\rfloor=\lfloor\ytilde(t)\rfloor+1$),
move one step up and then one step right.

\yskip\textindent{4)} Whenever the path
$\bigl(\lfloor\xtilde(t)\rfloor,\lfloor\ytilde(t)\rfloor\bigr)$
takes a rightward step (i.e., when
$\lfloor\xtilde(t+\epsilon)\rfloor=\lfloor\xtilde(t)\rfloor+1$ and
$\lfloor\ytilde(t+\epsilon)\rfloor=\lfloor\ytilde(t)\rfloor$),
move one step right.

\yskip\textindent{5)} Finally, if
$(x_1+{1\over2})\bmod1\G(y_1+{1\over2})\bmod1$, move one step left (thereby
cancelling the previous move, which was one step right). You will now be
at the point $\bigl(\round(x_1),\round(y_1)\bigr)$.

@ In order to validate the assumption that $\round(x(t))$ and $\round(y(t))$
don't both jump simultaneously, we shall consider that a coordinate pair
$(x,y)$ actually represents $(x+\epsilon,y+\epsilon\delta)$, where
$\epsilon$ and $\delta$ are extremely small positive numbers---so small
that their precise values never matter.  This convention makes rounding
unambiguous, since there is always a unique integer point nearest to any
given scaled numbers~$(x,y)$.

When coordinates are transformed so that \MF\ needs to work only in ``first
octant'' directions, the transformations involve negating~$x$, negating~$y$,
and/or interchanging $x$ with~$y$. Corresponding adjustments to the
rounding conventions must be made so that consistent values will be
obtained. For example, suppose that we're working with coordinates that
have been transformed so that a third-octant curve travels in first-octant
directions. The skewed coordinates $(x,y)$ in our data structure represent
unskewed coordinates $(-y,x+y)$, which are actually $-y+\epsilon,
x+y+\epsilon\delta$. We should therefore round as if our skewed coordinates
were $(x+\epsilon+\epsilon\delta,y-\epsilon)$ instead of $(x,y)$. The following
table shows how the skewed coordinates should be perturbed when rounding
decisions are made:
$$\vcenter{\halign{#\hfil&&\quad$#$\hfil&\hskip4em#\hfil\cr
|first_octant|&(x+\epsilon-\epsilon\delta,y+\epsilon\delta)&
 |fifth_octant|&(x-\epsilon+\epsilon\delta,y-\epsilon\delta)\cr
|second_octant|&(x-\epsilon+\epsilon\delta,y+\epsilon)&
 |sixth_octant|&(x+\epsilon-\epsilon\delta,y-\epsilon)\cr
|third_octant|&(x+\epsilon+\epsilon\delta,y-\epsilon)&
 |seventh_octant|&(x-\epsilon-\epsilon\delta,y+\epsilon)\cr
|fourth_octant|&(x-\epsilon-\epsilon\delta,y+\epsilon\delta)&
 |eighth_octant|&(x+\epsilon+\epsilon\delta,y-\epsilon\delta)\cr}}$$

Four small arrays are set up so that the rounding operations will be
fairly easy in any given octant.

@<Glob...@>=
@!y_corr,@!xy_corr,@!z_corr:array[first_octant..sixth_octant] of 0..1;
@!x_corr:array[first_octant..sixth_octant] of -1..1;

@ Here |xy_corr| is 1 if and only if the $x$ component of a skewed coordinate
is to be decreased by an infinitesimal amount; |y_corr| is similar, but for
the $y$ components. The other tables are set up so that the condition
$$(x+y+|half_unit|)\bmod|unity|\G(y+|half_unit|)\bmod|unity|$$
is properly perturbed to the condition
$$(x+y+|half_unit|-|x_corr|-|y_corr|)\bmod|unity|\G
  (y+|half_unit|-|y_corr|)\bmod|unity|+|z_corr|.$$

@<Set init...@>=
x_corr[first_octant]:=0; y_corr[first_octant]:=0;
xy_corr[first_octant]:=0;@/
x_corr[second_octant]:=0; y_corr[second_octant]:=0;
xy_corr[second_octant]:=1;@/
x_corr[third_octant]:=-1; y_corr[third_octant]:=1;
xy_corr[third_octant]:=0;@/
x_corr[fourth_octant]:=1; y_corr[fourth_octant]:=0;
xy_corr[fourth_octant]:=1;@/
x_corr[fifth_octant]:=0; y_corr[fifth_octant]:=1;
xy_corr[fifth_octant]:=1;@/
x_corr[sixth_octant]:=0; y_corr[sixth_octant]:=1;
xy_corr[sixth_octant]:=0;@/
x_corr[seventh_octant]:=1; y_corr[seventh_octant]:=0;
xy_corr[seventh_octant]:=1;@/
x_corr[eighth_octant]:=-1; y_corr[eighth_octant]:=1;
xy_corr[eighth_octant]:=0;@/
for k:=1 to 8 do z_corr[k]:=xy_corr[k]-x_corr[k];

@ Here's a procedure that handles the details of rounding at the
endpoints: Given skewed coordinates |(x,y)|, it sets |(m1,n1)|
to the corresponding rounded lattice points, taking the current
|octant| into account. Global variable |d1| is also set to 1 if
$(x+y+{1\over2})\bmod1\G(y+{1\over2})\bmod1$.

@p procedure end_round(@!x,@!y:scaled);
begin y:=y+half_unit-y_corr[octant];
x:=x+y-x_corr[octant];
m1:=floor_unscaled(x); n1:=floor_unscaled(y);
if x-unity*m1>=y-unity*n1+z_corr[octant] then d1:=1@+else d1:=0;
end;

@ The outputs |(m1,n1,d1)| of |end_round| will sometimes be moved
to |(m0,n0,d0)|.

@<Glob...@>=
@!m0,@!n0,@!m1,@!n1:integer; {lattice point coordinates}
@!d0,@!d1:0..1; {displacement corrections}

@ We're ready now to fill the pixels enclosed by a given cycle spec~|h|;
the knot list that represents the cycle is destroyed in the process.
The edge structure that gets all the resulting data is |cur_edges|,
and the edges are weighted by |cur_wt|.

@p procedure fill_spec(@!h:pointer);
var @!p,@!q,@!r,@!s:pointer; {for list traversal}
begin if internal[tracing_edges]>0 then begin_edge_tracing;
p:=h; {we assume that |left_type(h)=endpoint|}
repeat octant:=left_octant(p);
@<Set variable |q| to the node at the end of the current octant@>;
if q<>p then
  begin @<Determine the starting and ending
    lattice points |(m0,n0)| and |(m1,n1)|@>;
  @<Make the moves for the current octant@>;
  move_to_edges(m0,n0,m1,n1);
  end;
p:=link(q);
until p=h;
toss_knot_list(h);
if internal[tracing_edges]>0 then end_edge_tracing;
end;

@ @<Set variable |q| to the node at the end of the current octant@>=
q:=p;
while right_type(q)<>endpoint do q:=link(q)

@ @<Determine the starting and ending lattice points |(m0,n0)| and |(m1,n1)|@>=
end_round(x_coord(p),y_coord(p)); m0:=m1; n0:=n1; d0:=d1;@/
end_round(x_coord(q),y_coord(q))

@ Finally we perform the five-step process that was explained at
the very beginning of this part of the program.

@<Make the moves for the current octant@>=
if n1-n0>=move_size then overflow("move table size",move_size);
@:METAFONT capacity exceeded move table size}{\quad move table size@>
move[0]:=d0; move_ptr:=0; r:=p;
repeat s:=link(r);@/
make_moves(x_coord(r),right_x(r),left_x(s),x_coord(s),@|
  y_coord(r)+half_unit,right_y(r)+half_unit,left_y(s)+half_unit,
  y_coord(s)+half_unit,@| xy_corr[octant],y_corr[octant]);
r:=s;
until r=q;
move[move_ptr]:=move[move_ptr]-d1;
if internal[smoothing]>0 then smooth_moves(0,move_ptr)

@* \[23] Polygonal pens.
The next few parts of the program deal with the additional complications
associated with ``envelopes,'' leading up to an algorithm that fills a
contour with respect to a pen whose boundary is a convex polygon. The
mathematics underlying this algorithm is based on simple aspects of the
theory of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge
Stolfi [``A kinetic framework for computational geometry,''
{\sl Proc.\ IEEE Symp.\ Foundations of Computer Science\/ \bf24} (1983),
100--111].
@^Guibas, Leonidas Ioannis@>
@^Ramshaw, Lyle Harold@>
@^Stolfi, Jorge@>

If the vertices of the polygon are $w_0$, $w_1$, \dots, $w_{n-1}$, $w_n=w_0$,
in counterclockwise order, the convexity condition requires that ``left
turns'' are made at each vertex when a person proceeds from $w_0$ to
$w_1$ to $\cdots$ to~$w_n$. The envelope is obtained if we offset a given
curve $z(t)$ by $w_k$ when that curve is traveling in a direction
$z'(t)$ lying between the directions $w_k-w_{k-1}$ and $w\k-w_k$.
At times~$t$ when the curve direction $z'(t)$ increases past
$w\k-w_k$, we temporarily stop plotting the offset curve and we insert
a straight line from $z(t)+w_k$ to $z(t)+w\k$; notice that this straight
line is tangent to the offset curve. Similarly, when the curve direction
decreases past $w_k-w_{k-1}$, we stop plotting and insert a straight
line from $z(t)+w_k$ to $z(t)+w_{k-1}$; the latter line is actually a
``retrograde'' step, which won't be part of the final envelope under
\MF's assumptions. The result of this construction is a continuous path
that consists of alternating curves and straight line segments. The
segments are usually so short, in practice, that they blend with the
curves; after all, it's possible to represent any digitized path as
a sequence of digitized straight lines.

The nicest feature of this approach to envelopes is that it blends
perfectly with the octant subdivision process we have already developed.
The envelope travels in the same direction as the curve itself, as we
plot it, and we need merely be careful what offset is being added.
Retrograde motion presents a problem, but we will see that there is
a decent way to handle it.

@ We shall represent pens by maintaining eight lists of offsets,
one for each octant direction. The offsets at the boundary points
where a curve turns into a new octant will appear in the lists for
both octants. This means that we can restrict consideration to
segments of the original polygon whose directions aim in the first
octant, as we have done in the simpler case when envelopes were not
required.

An example should help to clarify this situation: Consider the
quadrilateral whose vertices are $w_0=(0,-1)$, $w_1=(3,-1)$,
$w_2=(6,1)$, and $w_3=(1,2)$. A curve that travels in the first octant
will be offset by $w_1$ or $w_2$, unless its slope drops to zero
en route to the eighth octant; in the latter case we should switch to $w_0$ as
we cross the octant boundary. Our list for the first octant will
contain the three offsets $w_0$, $w_1$,~$w_2$. By convention we will
duplicate a boundary offset if the angle between octants doesn't
explicitly appear; in this case there is no explicit line of slope~1
at the end of the list, so the full list is
$$w_0\;w_1\;w_2\;w_2\;=\;(0,-1)\;(3,-1)\;(6,1)\;(6,1).$$
With skewed coordinates $(u-v,v)$ instead of $(u,v)$ we obtain the list
$$w_0\;w_1\;w_2\;w_2\;\mapsto\;(1,-1)\;(4,-1)\;(5,1)\;(5,1),$$
which is what actually appears in the data structure. In the second
octant there's only one offset; we list it three times (with coordinates
interchanged, so as to make the second octant look like the first),
and skew those coordinates, obtaining
$$\tabskip\centering
\halign to\hsize{$\hfil#\;\mapsto\;{}$\tabskip=0pt&
  $#\hfil$&\quad in the #\hfil\tabskip\centering\cr
w_2\;w_2\;w_2&(-5,6)\;(-5,6)\;(-5,6)\cr
\noalign{\vskip\belowdisplayskip
\vbox{\noindent\strut as the list of transformed and skewed offsets to use
when curves that travel in the second octant. Similarly, we will have\strut}
\vskip\abovedisplayskip}
w_2\;w_2\;w_2&(7,-6)\;(7,-6)\;(7,-6)&third;\cr
w_2\;w_2\;w_3\;w_3&(-7,1)\;(-7,1)\;(-3,2)\;(-3,2)&fourth;\cr
w_3\;w_3\;w_3&(3,-2)\;(3,-2)\;(3,-2)&fifth;\cr
w_3\;w_3\;w_0\;w_0&(-3,1)\;(-3,1)\;(1,0)\;(1,0)&sixth;\cr
w_0\;w_0\;w_0&(1,0)\;(1,0)\;(1,0)&seventh;\cr
w_0\;w_0\;w_0&(-1,1)\;(-1,1)\;(-1,1)&eighth.\cr}$$
Notice that $w_1$ is considered here to be internal to the first octant;
it's not part of the eighth. We could equally well have taken $w_0$ out
of the first octant list and put it into the eighth; then the first octant
list would have been
$$w_1\;w_1\;w_2\;w_2\;\mapsto\;(4,-1)\;(4,-1)\;(5,1)\;(5,1)$$
and the eighth octant list would have been
$$w_0\;w_0\;w_1\;\mapsto\;(-1,1)\;(-1,1)\;(2,1).$$

Actually, there's one more complication: The order of offsets is reversed
in even-numbered octants, because the transformation of coordinates has
reversed counterclockwise and clockwise orientations in those octants.
The offsets in the fourth octant, for example, are really $w_3$, $w_3$,
$w_2$,~$w_2$, not $w_2$, $w_2$, $w_3$,~$w_3$.

@ In general, the list of offsets for an octant will have the form
$$w_0\;\;w_1\;\;\ldots\;\;w_n\;\;w_{n+1}$$
(if we renumber the subscripts in each list), where $w_0$ and $w_{n+1}$
are offsets common to the neighboring lists. We'll often have $w_0=w_1$
and/or $w_n=w_{n+1}$, but the other $w$'s will be distinct. Curves
that travel between slope~0 and direction $w_2-w_1$ will use offset~$w_1$;
curves that travel between directions $w_k-w_{k-1}$ and $w\k-w_k$ will
use offset~$w_k$, for $1<k<n$; curves between direction $w_n-w_{n-1}$
and slope~1 (actually slope~$\infty$ after skewing) will use offset~$w_n$.
In even-numbered octants, the directions are actually $w_k-w\k$ instead
of $w\k-w_k$, because the offsets have been listed in reverse order.

Each offset $w_k$ is represented by skewed coordinates $(u_k-v_k,v_k)$,
where $(u_k,v_k)$ is the representation of $w_k$ after it has been rotated
into a first-octant disguise.

@ The top-level data structure of a pen polygon is a 10-word node containing
a reference count followed by pointers to the eight pen lists, followed
by an indication of the pen's range of values.

If |p|~points to such a node, and if the
offset list for, say, the fourth octant has entries $w_0$, $w_1$, \dots,
$w_n$,~$w_{n+1}$, then |info(p+fourth_octant)| will equal~$n$, and
|link(p+fourth_octant)| will point to the offset node containing~$w_0$.
Memory location |p+fourth_octant| is said to be the {\sl header\/} of
the pen-offset list for the fourth octant. Since this is an even-numbered
octant, $w_0$ is the offset that goes with the fifth octant, and
$w_{n+1}$ goes with the third.

The elements of the offset list themselves are doubly linked 3-word nodes,
containing coordinates in their |x_coord| and |y_coord| fields.
The two link fields are called |link| and |knil|; if |w|~points to
the node for~$w_k$, then |link(w)| and |knil(w)| point respectively
to the nodes for $w\k$ and~$w_{k-1}$. If |h| is the list header,
|link(h)| points to the node for~$w_0$ and |knil(link(h))| to the
node for~$w_{n+1}$.

The tenth word of a pen header node contains the maximum absolute value of
an $x$ or $y$ coordinate among all of the unskewed pen offsets.

The |link| field of a pen header node should be |null| if and only if
the pen has no offsets.

@d pen_node_size=10
@d coord_node_size=3
@d max_offset(#)==mem[#+9].sc

@ The |print_pen| subroutine illustrates these conventions by
reconstructing the vertices of a polygon from \MF's complicated
internal offset representation.

@<Declare subroutines for printing expressions@>=
procedure print_pen(@!p:pointer;@!s:str_number;@!nuline:boolean);
var @!nothing_printed:boolean; {has there been any action yet?}
@!k:1..8; {octant number}
@!h:pointer; {offset list head}
@!m,@!n:integer; {offset indices}
@!w,@!ww:pointer; {pointers that traverse the offset list}
begin print_diagnostic("Pen polygon",s,nuline);
nothing_printed:=true; print_ln;
for k:=1 to 8 do
  begin octant:=octant_code[k]; h:=p+octant; n:=info(h); w:=link(h);
  if not odd(k) then w:=knil(w); {in even octants, start at $w_{n+1}$}
  for m:=1 to n+1 do
    begin if odd(k) then ww:=link(w)@+else ww:=knil(w);
    if (x_coord(ww)<>x_coord(w))or(y_coord(ww)<>y_coord(w)) then
      @<Print the unskewed and unrotated coordinates of node |ww|@>;
    w:=ww;
    end;
  end;
if nothing_printed then
  begin w:=link(p+first_octant); print_two(x_coord(w)+y_coord(w),y_coord(w));
  end;
print_nl(" .. cycle"); end_diagnostic(true);
end;

@ @<Print the unskewed and unrotated coordinates of node |ww|@>=
begin if nothing_printed then nothing_printed:=false
else print_nl(" .. ");
print_two_true(x_coord(ww),y_coord(ww));
end

@ A null pen polygon, which has just one vertex $(0,0)$, is
predeclared for error recovery. It doesn't need a proper
reference count, because the |toss_pen| procedure below
will never delete it from memory.

@<Initialize table entries...@>=
ref_count(null_pen):=null; link(null_pen):=null;@/
info(null_pen+1):=1; link(null_pen+1):=null_coords;
for k:=null_pen+2 to null_pen+8 do mem[k]:=mem[null_pen+1];
max_offset(null_pen):=0;@/
link(null_coords):=null_coords;
knil(null_coords):=null_coords;@/
x_coord(null_coords):=0;
y_coord(null_coords):=0;

@ Here's a trivial subroutine that inserts a copy of an offset
on the |link| side of its clone in the doubly linked list.

@p procedure dup_offset(@!w:pointer);
var @!r:pointer; {the new node}
begin r:=get_node(coord_node_size);
x_coord(r):=x_coord(w);
y_coord(r):=y_coord(w);
link(r):=link(w); knil(link(w)):=r;
knil(r):=w; link(w):=r;
end;

@ The following algorithm is somewhat more interesting: It converts a
knot list for a cyclic path into a pen polygon, ignoring everything
but the |x_coord|, |y_coord|, and |link| fields. If the given path
vertices do not define a convex polygon, an error message is issued
and the null pen is returned.

@p function make_pen(@!h:pointer):pointer;
label done,done1,not_found,found;
var @!o,@!oo,@!k:small_number; {octant numbers---old, new, and current}
@!p:pointer; {top-level node for the new pen}
@!q,@!r,@!s,@!w,@!hh:pointer; {for list manipulation}
@!n:integer; {offset counter}
@!dx,@!dy:scaled; {polygon direction}
@!mc:scaled; {the largest coordinate}
begin @<Stamp all nodes with an octant code, compute the maximum offset,
  and set |hh| to the node that begins the first octant;
  |goto not_found| if there's a problem@>;
if mc>=fraction_one-half_unit then goto not_found;
p:=get_node(pen_node_size); q:=hh; max_offset(p):=mc; ref_count(p):=null;
if link(q)<>q then link(p):=null+1;
for k:=1 to 8 do @<Construct the offset list for the |k|th octant@>;
goto found;
not_found:p:=null_pen; @<Complain about a bad pen path@>;
found: if internal[tracing_pens]>0 then print_pen(p," (newly created)",true);
make_pen:=p;
end;

@ @<Complain about a bad pen path@>=
if mc>=fraction_one-half_unit then
  begin print_err("Pen too large");
@.Pen too large@>
  help2("The cycle you specified has a coordinate of 4095.5 or more.")@/
  ("So I've replaced it by the trivial path `(0,0)..cycle'.");@/
  end
else  begin print_err("Pen cycle must be convex");
@.Pen cycle must be convex@>
  help3("The cycle you specified either has consecutive equal points")@/
    ("or turns right or turns through more than 360 degrees.")@/
  ("So I've replaced it by the trivial path `(0,0)..cycle'.");@/
  end;
put_get_error

@ There should be exactly one node whose octant number is less than its
predecessor in the cycle; that is node~|hh|.

The loop here will terminate in all cases, but the proof is somewhat tricky:
If there are at least two distinct $y$~coordinates in the cycle, we will have
|o>4| and |o<=4| at different points of the cycle. Otherwise there are
at least two distinct $x$~coordinates, and we will have |o>2| somewhere,
|o<=2| somewhere.

@<Stamp all nodes...@>=
q:=h; r:=link(q); mc:=abs(x_coord(h));
if q=r then
  begin hh:=h; right_type(h):=0; {this trick is explained below}
  if mc<abs(y_coord(h)) then mc:=abs(y_coord(h));
  end
else  begin o:=0; hh:=null;
  loop@+  begin s:=link(r);
    if mc<abs(x_coord(r)) then mc:=abs(x_coord(r));
    if mc<abs(y_coord(r)) then mc:=abs(y_coord(r));
    dx:=x_coord(r)-x_coord(q); dy:=y_coord(r)-y_coord(q);
    if dx=0 then if dy=0 then goto not_found; {double point}
    if ab_vs_cd(dx,y_coord(s)-y_coord(r),dy,x_coord(s)-x_coord(r))<0 then
      goto not_found; {right turn}
    @<Determine the octant code for direction |(dx,dy)|@>;
    right_type(q):=octant; oo:=octant_number[octant];
    if o>oo then
      begin if hh<>null then goto not_found; {$>360^\circ$}
      hh:=q;
      end;
    o:=oo;
    if (q=h)and(hh<>null) then goto done;
    q:=r; r:=s;
    end;
  done:end


@ We want the octant for |(-dx,-dy)| to be
exactly opposite the octant for |(dx,dy)|.

@<Determine the octant code for direction |(dx,dy)|@>=
if dx>0 then octant:=first_octant
else if dx=0 then
  if dy>0 then octant:=first_octant@+else octant:=first_octant+negate_x
else  begin negate(dx); octant:=first_octant+negate_x;
  end;
if dy<0 then
  begin negate(dy); octant:=octant+negate_y;
  end
else if dy=0 then
  if octant>first_octant then octant:=first_octant+negate_x+negate_y;
if dx<dy then octant:=octant+switch_x_and_y

@ Now |q| points to the node that the present octant shares with the previous
octant, and |right_type(q)| is the octant code during which |q|~should advance.
We have set |right_type(q)=0| in the special case that |q| should never advance
(because the pen is degenerate).

The number of offsets |n| must be smaller than |max_quarterword|, because
the |fill_envelope| routine stores |n+1| in the |right_type| field
of a knot node.

@<Construct the offset list...@>=
begin octant:=octant_code[k]; n:=0; h:=p+octant;
loop@+  begin r:=get_node(coord_node_size);
  skew(x_coord(q),y_coord(q),octant); x_coord(r):=cur_x; y_coord(r):=cur_y;
  if n=0 then link(h):=r
  else  @<Link node |r| to the previous node@>;
  w:=r;
  if right_type(q)<>octant then goto done1;
  q:=link(q); incr(n);
  end;
done1: @<Finish linking the offset nodes, and duplicate the
  borderline offset nodes if necessary@>;
if n>=max_quarterword then overflow("pen polygon size",max_quarterword);
@:METAFONT capacity exceeded pen polygon size}{\quad pen polygon size@>
info(h):=n;
end

@ Now |w| points to the node that was inserted most recently, and
|k| is the current octant number.

@<Link node |r| to the previous node@>=
if odd(k) then
  begin link(w):=r; knil(r):=w;
  end
else  begin knil(w):=r; link(r):=w;
  end

@ We have inserted |n+1| nodes; it remains to duplicate the nodes at the
ends, if slopes 0 and~$\infty$ aren't already represented. At the end of
this section the total number of offset nodes should be |n+2|
(since we call them $w_0$, $w_1$, \dots,~$w_{n+1}$).

@<Finish linking the offset nodes, and duplicate...@>=
r:=link(h);
if odd(k) then
  begin link(w):=r; knil(r):=w;
  end
else  begin knil(w):=r; link(r):=w; link(h):=w; r:=w;
  end;
if (y_coord(r)<>y_coord(link(r)))or(n=0) then
  begin dup_offset(r); incr(n);
  end;
r:=knil(r);
if x_coord(r)<>x_coord(knil(r)) then dup_offset(r)
else decr(n)

@ Conversely, |make_path| goes back from a pen to a cyclic path that
might have generated it. The structure of this subroutine is essentially
the same as |print_pen|.

@p @t\4@>@<Declare the function called |trivial_knot|@>@;
function make_path(@!pen_head:pointer):pointer;
var @!p:pointer; {the most recently copied knot}
@!k:1..8; {octant number}
@!h:pointer; {offset list head}
@!m,@!n:integer; {offset indices}
@!w,@!ww:pointer; {pointers that traverse the offset list}
begin p:=temp_head;
for k:=1 to 8 do
  begin octant:=octant_code[k]; h:=pen_head+octant; n:=info(h); w:=link(h);
  if not odd(k) then w:=knil(w); {in even octants, start at $w_{n+1}$}
  for m:=1 to n+1 do
    begin if odd(k) then ww:=link(w)@+else ww:=knil(w);
    if (x_coord(ww)<>x_coord(w))or(y_coord(ww)<>y_coord(w)) then
      @<Copy the unskewed and unrotated coordinates of node |ww|@>;
    w:=ww;
    end;
  end;
if p=temp_head then
  begin w:=link(pen_head+first_octant);
  p:=trivial_knot(x_coord(w)+y_coord(w),y_coord(w)); link(temp_head):=p;
  end;
link(p):=link(temp_head); make_path:=link(temp_head);
end;

@ @<Copy the unskewed and unrotated coordinates of node |ww|@>=
begin unskew(x_coord(ww),y_coord(ww),octant);
link(p):=trivial_knot(cur_x,cur_y); p:=link(p);
end

@ @<Declare the function called |trivial_knot|@>=
function trivial_knot(@!x,@!y:scaled):pointer;
var @!p:pointer; {a new knot for explicit coordinates |x| and |y|}
begin p:=get_node(knot_node_size);
left_type(p):=explicit; right_type(p):=explicit;@/
x_coord(p):=x; left_x(p):=x; right_x(p):=x;@/
y_coord(p):=y; left_y(p):=y; right_y(p):=y;@/
trivial_knot:=p;
end;

@ That which can be created can be destroyed.

@d add_pen_ref(#)==incr(ref_count(#))
@d delete_pen_ref(#)==if ref_count(#)=null then toss_pen(#)
  else decr(ref_count(#))

@<Declare the recycling subroutines@>=
procedure toss_pen(@!p:pointer);
var @!k:1..8; {relative header locations}
@!w,@!ww:pointer; {pointers to offset nodes}
begin if p<>null_pen then
  begin for k:=1 to 8 do
    begin w:=link(p+k);
    repeat ww:=link(w); free_node(w,coord_node_size); w:=ww;
    until w=link(p+k);
    end;
  free_node(p,pen_node_size);
  end;
end;

@ The |find_offset| procedure sets |(cur_x,cur_y)| to the offset associated
with a given direction~|(x,y)| and a given pen~|p|. If |x=y=0|, the
result is |(0,0)|. If two different offsets apply, one of them is
chosen arbitrarily.

@p procedure find_offset(@!x,@!y:scaled; @!p:pointer);
label done,exit;
var @!octant:first_octant..sixth_octant; {octant code for |(x,y)|}
@!s:-1..+1; {sign of the octant}
@!n:integer; {number of offsets remaining}
@!h,@!w,@!ww:pointer; {list traversal registers}
begin @<Compute the octant code; skew and rotate the coordinates |(x,y)|@>;
if odd(octant_number[octant]) then s:=-1@+else s:=+1;
h:=p+octant; w:=link(link(h)); ww:=link(w); n:=info(h);
while n>1 do
  begin if ab_vs_cd(x,y_coord(ww)-y_coord(w),@|
    y,x_coord(ww)-x_coord(w))<>s then goto done;
  w:=ww; ww:=link(w); decr(n);
  end;
done:unskew(x_coord(w),y_coord(w),octant);
exit:end;

@ @<Compute the octant code; skew and rotate the coordinates |(x,y)|@>=
if x>0 then octant:=first_octant
else if x=0 then
  if y<=0 then
    if y=0 then
      begin cur_x:=0; cur_y:=0; return;
      end
    else octant:=first_octant+negate_x
  else octant:=first_octant
else  begin x:=-x;
  if y=0 then octant:=first_octant+negate_x+negate_y
  else octant:=first_octant+negate_x;
  end;
if y<0 then
  begin octant:=octant+negate_y; y:=-y;
  end;
if x>=y then x:=x-y
else  begin octant:=octant+switch_x_and_y; x:=y-x; y:=y-x;
  end

@* \[24] Filling an envelope.
We are about to reach the culmination of \MF's digital plotting routines:
Almost all of the previous algorithms will be brought to bear on \MF's
most difficult task, which is to fill the envelope of a given cyclic path
with respect to a given pen polygon.

But we still must complete some of the preparatory work before taking such
a big plunge.

@ Given a pointer |c| to a nonempty list of cubics,
and a pointer~|h| to the header information of a pen polygon segment,
the |offset_prep| routine changes the list into cubics that are
associated with particular pen offsets. Namely, the cubic between |p|
and~|q| should be associated with the |k|th offset when |right_type(p)=k|.

List |c| is actually part of a cycle spec, so it terminates at the
first node whose |right_type| is |endpoint|. The cubics all have
monotone-nondecreasing $x'(t)$ and $y'(t)$.

@p @t\4@>@<Declare subroutines needed by |offset_prep|@>@;
procedure offset_prep(@!c,@!h:pointer);
label done,not_found;
var @!n:halfword; {the number of pen offsets}
@!p,@!q,@!r,@!lh,@!ww:pointer; {for list manipulation}
@!k:halfword; {the current offset index}
@!w:pointer; {a pointer to offset $w_k$}
@<Other local variables for |offset_prep|@>@;
begin p:=c; n:=info(h); lh:=link(h); {now |lh| points to $w_0$}
while right_type(p)<>endpoint do
  begin q:=link(p);
  @<Split the cubic between |p| and |q|, if necessary, into cubics
    associated with single offsets, after which |q| should
    point to the end of the final such cubic@>;
  @<Advance |p| to node |q|, removing any ``dead'' cubics that
    might have been introduced by the splitting process@>;
  end;
end;

@ @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
repeat r:=link(p);
if x_coord(p)=right_x(p) then if y_coord(p)=right_y(p) then
 if x_coord(p)=left_x(r) then if y_coord(p)=left_y(r) then
  if x_coord(p)=x_coord(r) then if y_coord(p)=y_coord(r) then
  begin remove_cubic(p);
  if r=q then q:=p;
  r:=p;
  end;
p:=r;
until p=q

@ The splitting process uses a subroutine like |split_cubic|, but
(for ``bulletproof'' operation) we check to make sure that the
resulting (skewed) coordinates satisfy $\Delta x\G0$ and $\Delta y\G0$
after splitting; |make_spec| has made sure that these relations hold
before splitting. (This precaution is surely unnecessary, now that
|make_spec| is so much more careful than it used to be. But who
wants to take a chance? Maybe the hardware will fail or something.)

@<Declare subroutines needed by |offset_prep|@>=
procedure split_for_offset(@!p:pointer;@!t:fraction);
var @!q:pointer; {the successor of |p|}
@!r:pointer; {the new node}
begin q:=link(p); split_cubic(p,t,x_coord(q),y_coord(q)); r:=link(p);
if y_coord(r)<y_coord(p) then y_coord(r):=y_coord(p)
else if y_coord(r)>y_coord(q) then y_coord(r):=y_coord(q);
if x_coord(r)<x_coord(p) then x_coord(r):=x_coord(p)
else if x_coord(r)>x_coord(q) then x_coord(r):=x_coord(q);
end;

@ If the pen polygon has |n| offsets, and if $w_k=(u_k,v_k)$ is the $k$th
of these, the $k$th pen slope is defined by the formula
$$s_k={v\k-v_k\over u\k-u_k},\qquad\hbox{for $0<k<n$}.$$
In odd-numbered octants, the numerator and denominator of this fraction
will be positive; in even-numbered octants they will both be negative.
Furthermore we always have $0=s_0<s_1<\cdots<s_n=\infty$. The goal of
|offset_prep| is to find an offset index~|k| to associate with
each cubic, such that the slope $s(t)$ of the cubic satisfies
$$s_{k-1}\le s(t)\le s_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
We may have to split a cubic into as many as $2n-1$ pieces before each
piece corresponds to a unique offset.

@<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
if n<=1 then right_type(p):=1 {this case is easy}
else  begin @<Prepare for derivative computations;
    |goto not_found| if the current cubic is dead@>;
  @<Find the initial slope, |dy/dx|@>;
  if dx=0 then @<Handle the special case of infinite slope@>
  else  begin @<Find the index |k| such that $s_{k-1}\L\\{dy}/\\{dx}<s_k$@>;
    @<Complete the offset splitting process@>;
    end;
not_found: end

@ The slope of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
calculated from the quadratic polynomials
${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
Since we may be calculating slopes from several cubics
split from the current one, it is desirable to do these calculations
without losing too much precision. ``Scaled up'' values of the
derivatives, which will be less tainted by accumulated errors than
derivatives found from the cubics themselves, are maintained in
local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
$X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
To test whether the slope of the cubic is $\ge s$ or $\le s$, we will test
the sign of the quadratic ${1\over3}2^l\bigl(y'(t)-sx'(t)\bigr)$ if $s\le1$,
or ${1\over3}2^l\bigl(y'(t)/s-x'(t)\bigr)$ if $s>1$.

@<Other local variables for |offset_prep|@>=
@!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer; {representatives of derivatives}
@!t0,@!t1,@!t2:integer; {coefficients of polynomial for slope testing}
@!du,@!dv,@!dx,@!dy:integer; {for slopes of the pen and the curve}
@!max_coef:integer; {used while scaling}
@!x0a,@!x1a,@!x2a,@!y0a,@!y1a,@!y2a:integer; {intermediate values}
@!t:fraction; {where the derivative passes through zero}
@!s:fraction; {slope or reciprocal slope}

@ @<Prepare for derivative computations...@>=
x0:=right_x(p)-x_coord(p); {should be |>=0|}
x2:=x_coord(q)-left_x(q); {likewise}
x1:=left_x(q)-right_x(p); {but this might be negative}
y0:=right_y(p)-y_coord(p); y2:=y_coord(q)-left_y(q);
y1:=left_y(q)-right_y(p);
max_coef:=abs(x0); {we take |abs| just to make sure}
if abs(x1)>max_coef then max_coef:=abs(x1);
if abs(x2)>max_coef then max_coef:=abs(x2);
if abs(y0)>max_coef then max_coef:=abs(y0);
if abs(y1)>max_coef then max_coef:=abs(y1);
if abs(y2)>max_coef then max_coef:=abs(y2);
if max_coef=0 then goto not_found;
while max_coef<fraction_half do
  begin double(max_coef);
  double(x0); double(x1); double(x2);
  double(y0); double(y1); double(y2);
  end

@ Let us first solve a special case of the problem: Suppose we
know an index~$k$ such that either (i)~$s(t)\G s_{k-1}$ for all~$t$
and $s(0)<s_k$, or (ii)~$s(t)\L s_k$ for all~$t$ and $s(0)>s_{k-1}$.
Then, in a sense, we're halfway done, since one of the two inequalities
in $(*)$ is satisfied, and the other couldn't be satisfied for
any other value of~|k|.

The |fin_offset_prep| subroutine solves the stated subproblem.
It has a boolean parameter called |rising| that is |true| in
case~(i), |false| in case~(ii). When |rising=false|, parameters
|x0| through |y2| represent the negative of the derivative of
the cubic following |p|; otherwise they represent the actual derivative.
The |w| parameter should point to offset~$w_k$.

@<Declare subroutines needed by |offset_prep|@>=
procedure fin_offset_prep(@!p:pointer;@!k:halfword;@!w:pointer;
  @!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer;@!rising:boolean;@!n:integer);
label exit;
var @!ww:pointer; {for list manipulation}
@!du,@!dv:scaled; {for slope calculation}
@!t0,@!t1,@!t2:integer; {test coefficients}
@!t:fraction; {place where the derivative passes a critical slope}
@!s:fraction; {slope or reciprocal slope}
@!v:integer; {intermediate value for updating |x0..y2|}
begin loop
  begin right_type(p):=k;
  if rising then
    if k=n then return
    else ww:=link(w) {a pointer to $w\k$}
  else  if k=1 then return
    else ww:=knil(w); {a pointer to $w_{k-1}$}
  @<Compute test coefficients |(t0,t1,t2)|
    for $s(t)$ versus $s_k$ or $s_{k-1}$@>;
  t:=crossing_point(t0,t1,t2);
  if t>=fraction_one then return;
  @<Split the cubic at $t$,
    and split off another cubic if the derivative crosses back@>;
  if rising then incr(k)@+else decr(k);
  w:=ww;
  end;
exit:end;

@ @<Compute test coefficients |(t0,t1,t2)| for $s(t)$ versus...@>=
du:=x_coord(ww)-x_coord(w); dv:=y_coord(ww)-y_coord(w);
if abs(du)>=abs(dv) then {$s_{k\pm1}\le1$}
  begin s:=make_fraction(dv,du);
  t0:=take_fraction(x0,s)-y0;
  t1:=take_fraction(x1,s)-y1;
  t2:=take_fraction(x2,s)-y2;
  end
else  begin s:=make_fraction(du,dv);
  t0:=x0-take_fraction(y0,s);
  t1:=x1-take_fraction(y1,s);
  t2:=x2-take_fraction(y2,s);
  end

@ The curve has crossed $s_k$ or $s_{k-1}$; its initial segment satisfies
$(*)$, and it might cross again and return towards $s_k$, yielding another
solution of $(*)$.

@<Split the cubic at $t$, and split off another...@>=
begin split_for_offset(p,t); right_type(p):=k; p:=link(p);@/
v:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
x0:=t_of_the_way(v)(x1);@/
v:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
y0:=t_of_the_way(v)(y1);@/
t1:=t_of_the_way(t1)(t2);
if t1>0 then t1:=0; {without rounding error, |t1| would be |<=0|}
t:=crossing_point(0,-t1,-t2);
if t<fraction_one then
  begin split_for_offset(p,t); right_type(link(p)):=k;@/
  v:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
  x2:=t_of_the_way(x1)(v);@/
  v:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
  y2:=t_of_the_way(y1)(v);
  end;
end

@ Now we must consider the general problem of |offset_prep|, when
nothing is known about a given cubic. We start by finding its
slope $s(0)$ in the vicinity of |t=0|.

If $z'(t)=0$, the given cubic is numerically unstable, since the
slope direction is probably being influenced primarily by rounding
errors. A user who specifies such cuspy curves should expect to generate
rather wild results. The present code tries its best to believe the
existing data, as if no rounding errors were present.

@ @<Find the initial slope, |dy/dx|@>=
dx:=x0; dy:=y0;
if dx=0 then if dy=0 then
  begin dx:=x1; dy:=y1;
  if dx=0 then if dy=0 then
    begin dx:=x2; dy:=y2;
    end;
  end

@ The next step is to bracket the initial slope between consecutive
slopes of the pen polygon. The most important invariant relation in the
following loop is that |dy/dx>=@t$s_{k-1}$@>|.

@<Find the index |k| such that $s_{k-1}\L\\{dy}/\\{dx}<s_k$@>=
k:=1; w:=link(lh);
loop@+  begin if k=n then goto done;
  ww:=link(w);
  if ab_vs_cd(dy,abs(x_coord(ww)-x_coord(w)),@|
   dx,abs(y_coord(ww)-y_coord(w)))>=0 then
    begin incr(k); w:=ww;
    end
  else goto done;
  end;
done:

@ Finally we want to reduce the general problem to situations that
|fin_offset_prep| can handle. If |k=1|, we already are in the desired
situation. Otherwise we can split the cubic into at most three parts
with respect to $s_{k-1}$, and apply |fin_offset_prep| to each part.

@<Complete the offset splitting process@>=
if k=1 then t:=fraction_one+1
else  begin ww:=knil(w); @<Compute test coeff...@>;
  t:=crossing_point(-t0,-t1,-t2);
  end;
if t>=fraction_one then fin_offset_prep(p,k,w,x0,x1,x2,y0,y1,y2,true,n)
else  begin split_for_offset(p,t); r:=link(p);@/
  x1a:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
  x2a:=t_of_the_way(x1a)(x1);@/
  y1a:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
  y2a:=t_of_the_way(y1a)(y1);@/
  fin_offset_prep(p,k,w,x0,x1a,x2a,y0,y1a,y2a,true,n); x0:=x2a; y0:=y2a;
  t1:=t_of_the_way(t1)(t2);
  if t1<0 then t1:=0;
  t:=crossing_point(0,t1,t2);
  if t<fraction_one then
    @<Split off another |rising| cubic for |fin_offset_prep|@>;
  fin_offset_prep(r,k-1,ww,-x0,-x1,-x2,-y0,-y1,-y2,false,n);
  end

@ @<Split off another |rising| cubic for |fin_offset_prep|@>=
begin split_for_offset(r,t);@/
x1a:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
x0a:=t_of_the_way(x1)(x1a);@/
y1a:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
y0a:=t_of_the_way(y1)(y1a);@/
fin_offset_prep(link(r),k,w,x0a,x1a,x2,y0a,y1a,y2,true,n);
x2:=x0a; y2:=y0a;
end

@ @<Handle the special case of infinite slope@>=
fin_offset_prep(p,n,knil(knil(lh)),-x0,-x1,-x2,-y0,-y1,-y2,false,n)

@ OK, it's time now for the biggie. The |fill_envelope| routine generalizes
|fill_spec| to polygonal envelopes. Its outer structure is essentially the
same as before, except that octants with no cubics do contribute to
the envelope.

@p @t\4@>@<Declare the procedure called |skew_line_edges|@>@;
@t\4@>@<Declare the procedure called |dual_moves|@>@;
procedure fill_envelope(@!spec_head:pointer);
label done, done1;
var @!p,@!q,@!r,@!s:pointer; {for list traversal}
@!h:pointer; {head of pen offset list for current octant}
@!www:pointer; {a pen offset of temporary interest}
@<Other local variables for |fill_envelope|@>@;
begin if internal[tracing_edges]>0 then begin_edge_tracing;
p:=spec_head; {we assume that |left_type(spec_head)=endpoint|}
repeat octant:=left_octant(p); h:=cur_pen+octant;
@<Set variable |q| to the node at the end of the current octant@>;
@<Determine the envelope's starting and ending
    lattice points |(m0,n0)| and |(m1,n1)|@>;
offset_prep(p,h); {this may clobber node~|q|, if it becomes ``dead''}
@<Set variable |q| to the node at the end of the current octant@>;
@<Make the envelope moves for the current octant and insert them
  in the pixel data@>;
p:=link(q);
until p=spec_head;
if internal[tracing_edges]>0 then end_edge_tracing;
toss_knot_list(spec_head);
end;

@ In even-numbered octants we have reflected the coordinates an odd number
of times, hence clockwise and counterclockwise are reversed; this means that
the envelope is being formed in a ``dual'' manner. For the time being, let's
concentrate on odd-numbered octants, since they're easier to understand.
After we have coded the program for odd-numbered octants, the changes needed
to dualize it will not be so mysterious.

It is convenient to assume that we enter an odd-numbered octant with
an |axis| transition (where the skewed slope is zero) and leave at a
|diagonal| one (where the skewed slope is infinite). Then all of the
offset points $z(t)+w(t)$ will lie in a rectangle whose lower left and
upper right corners are the initial and final offset points. If this
assumption doesn't hold we can implicitly change the curve so that it does.
For example, if the entering transition is diagonal, we can draw a
straight line from $z_0+w_{n+1}$ to $z_0+w_0$ and continue as if the
curve were moving rightward. The effect of this on the envelope is simply
to ``doubly color'' the region enveloped by a section of the pen that
goes from $w_0$ to $w_1$ to $\cdots$ to $w_{n+1}$ to~$w_0$. The additional
straight line at the beginning (and a similar one at the end, where it
may be necessary to go from $z_1+w_{n+1}$ to $z_1+w_0$) can be drawn by
the |line_edges| routine; we are thereby saved from the embarrassment that
these lines travel backwards from the current octant direction.

Once we have established the assumption that the curve goes from
$z_0+w_0$ to $z_1+w_{n+1}$, any further retrograde moves that might
occur within the octant can be essentially ignored; we merely need to
keep track of the rightmost edge in each row, in order to compute
the envelope.

Envelope moves consist of offset cubics intermixed with straight line
segments. We record them in a separate |env_move| array, which is
something like |move| but it keeps track of the rightmost position of the
envelope in each row.

@<Glob...@>=
@!env_move:array[0..move_size] of integer;

@ @<Determine the envelope's starting and ending...@>=
w:=link(h);@+if left_transition(p)=diagonal then w:=knil(w);
@!stat if internal[tracing_edges]>unity then
  @<Print a line of diagnostic info to introduce this octant@>;
tats@;@/
ww:=link(h); www:=ww; {starting and ending offsets}
if odd(octant_number[octant]) then www:=knil(www)@+else ww:=knil(ww);
if w<>ww then skew_line_edges(p,w,ww);
end_round(x_coord(p)+x_coord(ww),y_coord(p)+y_coord(ww));
m0:=m1; n0:=n1; d0:=d1;@/
end_round(x_coord(q)+x_coord(www),y_coord(q)+y_coord(www));
if n1-n0>=move_size then overflow("move table size",move_size)
@:METAFONT capacity exceeded move table size}{\quad move table size@>

@ @<Print a line of diagnostic info to introduce this octant@>=
begin print_nl("@@ Octant "); print(octant_dir[octant]);
@:]]]\AT!_Octant}{\.{\AT! Octant...}@>
print(" ("); print_int(info(h)); print(" offset");
if info(h)<>1 then print_char("s");
print("), from ");
print_two_true(x_coord(p)+x_coord(w),y_coord(p)+y_coord(w));
ww:=link(h);@+if right_transition(q)=diagonal then ww:=knil(ww);
print(" to ");
print_two_true(x_coord(q)+x_coord(ww),y_coord(q)+y_coord(ww));
end

@ A slight variation of the |line_edges| procedure comes in handy
when we must draw the retrograde lines for nonstandard entry and exit
conditions.

@<Declare the procedure called |skew_line_edges|@>=
procedure skew_line_edges(@!p,@!w,@!ww:pointer);
var @!x0,@!y0,@!x1,@!y1:scaled; {from and to}
begin if (x_coord(w)<>x_coord(ww))or(y_coord(w)<>y_coord(ww)) then
  begin x0:=x_coord(p)+x_coord(w); y0:=y_coord(p)+y_coord(w);@/
  x1:=x_coord(p)+x_coord(ww); y1:=y_coord(p)+y_coord(ww);@/
  unskew(x0,y0,octant); {unskew and unrotate the coordinates}
  x0:=cur_x; y0:=cur_y;@/
  unskew(x1,y1,octant);@/
  @!stat if internal[tracing_edges]>unity then
    begin print_nl("@@ retrograde line from ");
@:]]]\AT!_retro_}{\.{\AT! retrograde line...}@>
  @.retrograde line...@>
    print_two(x0,y0); print(" to "); print_two(cur_x,cur_y); print_nl("");
    end;@+tats@;@/
  line_edges(x0,y0,cur_x,cur_y); {then draw a straight line}
  end;
end;

@ The envelope calculations require more local variables than we needed
in the simpler case of |fill_spec|. At critical points in the computation,
|w| will point to offset $w_k$; |m| and |n| will record the current
lattice positions.  The values of |move_ptr| after the initial and before
the final offset adjustments are stored in |smooth_bot| and |smooth_top|,
respectively.

@<Other local variables for |fill_envelope|@>=
@!m,@!n:integer; {current lattice position}
@!mm0,@!mm1:integer; {skewed equivalents of |m0| and |m1|}
@!k:integer; {current offset number}
@!w,@!ww:pointer; {pointers to the current offset and its neighbor}
@!smooth_bot,@!smooth_top:0..move_size; {boundaries of smoothing}
@!xx,@!yy,@!xp,@!yp,@!delx,@!dely,@!tx,@!ty:scaled;
  {registers for coordinate calculations}

@ @<Make the envelope moves for the current octant...@>=
if odd(octant_number[octant]) then
  begin @<Initialize for ordinary envelope moves@>;
  r:=p; right_type(q):=info(h)+1;
  loop@+  begin if r=q then smooth_top:=move_ptr;
    while right_type(r)<>k do
      @<Insert a line segment to approach the correct offset@>;
    if r=p then smooth_bot:=move_ptr;
    if r=q then goto done;
    move[move_ptr]:=1; n:=move_ptr; s:=link(r);@/
    make_moves(x_coord(r)+x_coord(w),right_x(r)+x_coord(w),
      left_x(s)+x_coord(w),x_coord(s)+x_coord(w),@|
      y_coord(r)+y_coord(w)+half_unit,right_y(r)+y_coord(w)+half_unit,
      left_y(s)+y_coord(w)+half_unit,y_coord(s)+y_coord(w)+half_unit,@|
      xy_corr[octant],y_corr[octant]);@/
    @<Transfer moves from the |move| array to |env_move|@>;
    r:=s;
    end;
done:  @<Insert the new envelope moves in the pixel data@>;
  end
else dual_moves(h,p,q);
right_type(q):=endpoint

@ @<Initialize for ordinary envelope moves@>=
k:=0; w:=link(h); ww:=knil(w);
mm0:=floor_unscaled(x_coord(p)+x_coord(w)-xy_corr[octant]);
mm1:=floor_unscaled(x_coord(q)+x_coord(ww)-xy_corr[octant]);
for n:=0 to n1-n0 do env_move[n]:=mm0;
env_move[n1-n0]:=mm1; move_ptr:=0; m:=mm0

@ At this point |n| holds the value of |move_ptr| that was current
when |make_moves| began to record its moves.

@<Transfer moves from the |move| array to |env_move|@>=
repeat m:=m+move[n]-1;
if m>env_move[n] then env_move[n]:=m;
incr(n);
until n>move_ptr

@ Retrograde lines (when |k| decreases) do not need to be recorded in
|env_move| because their edges are not the furthest right in any row.

@<Insert a line segment to approach the correct offset@>=
begin xx:=x_coord(r)+x_coord(w); yy:=y_coord(r)+y_coord(w)+half_unit;
@!stat if internal[tracing_edges]>unity then
  begin print_nl("@@ transition line "); print_int(k); print(", from ");
@:]]]\AT!_trans_}{\.{\AT! transition line...}@>
@.transition line...@>
  print_two_true(xx,yy-half_unit);
  end;@+tats@;@/
if right_type(r)>k then
  begin incr(k); w:=link(w);
  xp:=x_coord(r)+x_coord(w); yp:=y_coord(r)+y_coord(w)+half_unit;
  if yp<>yy then
    @<Record a line segment from |(xx,yy)| to |(xp,yp)| in |env_move|@>;
  end
else  begin decr(k); w:=knil(w);
  xp:=x_coord(r)+x_coord(w); yp:=y_coord(r)+y_coord(w)+half_unit;
  end;
stat if internal[tracing_edges]>unity then
  begin print(" to ");
  print_two_true(xp,yp-half_unit);
  print_nl("");
  end;@+tats@;@/
m:=floor_unscaled(xp-xy_corr[octant]);
move_ptr:=floor_unscaled(yp-y_corr[octant])-n0;
if m>env_move[move_ptr] then env_move[move_ptr]:=m;
end

@ In this step we have |xp>=xx| and |yp>=yy|.

@<Record a line segment from |(xx,yy)| to |(xp,yp)| in |env_move|@>=
begin ty:=floor_scaled(yy-y_corr[octant]); dely:=yp-yy; yy:=yy-ty;
ty:=yp-y_corr[octant]-ty;
if ty>=unity then
  begin delx:=xp-xx; yy:=unity-yy;
  loop@+  begin tx:=take_fraction(delx,make_fraction(yy,dely));
    if ab_vs_cd(tx,dely,delx,yy)+xy_corr[octant]>0 then decr(tx);
    m:=floor_unscaled(xx+tx);
    if m>env_move[move_ptr] then env_move[move_ptr]:=m;
    ty:=ty-unity;
    if ty<unity then goto done1;
    yy:=yy+unity; incr(move_ptr);
    end;
  done1:end;
end

@ @<Insert the new envelope moves in the pixel data@>=
debug if (m<>mm1)or(move_ptr<>n1-n0) then confusion("1");@+gubed@;@/
move[0]:=d0+env_move[0]-mm0;
for n:=1 to move_ptr do
  move[n]:=env_move[n]-env_move[n-1]+1;
move[move_ptr]:=move[move_ptr]-d1;
if internal[smoothing]>0 then smooth_moves(smooth_bot,smooth_top);
move_to_edges(m0,n0,m1,n1);
if right_transition(q)=axis then
  begin w:=link(h); skew_line_edges(q,knil(w),w);
  end

@ We've done it all in the odd-octant case; the only thing remaining
is to repeat the same ideas, upside down and/or backwards.

The following code has been split off as a subprocedure of |fill_envelope|,
because some \PASCAL\ compilers cannot handle procedures as large as
|fill_envelope| would otherwise be.

@<Declare the procedure called |dual_moves|@>=
procedure dual_moves(@!h,@!p,@!q:pointer);
label done,done1;
var @!r,@!s:pointer; {for list traversal}
@<Other local variables for |fill_envelope|@>@;
begin @<Initialize for dual envelope moves@>;
r:=p; {recall that |right_type(q)=endpoint=0| now}
loop@+  begin if r=q then smooth_top:=move_ptr;
  while right_type(r)<>k do
    @<Insert a line segment dually to approach the correct offset@>;
  if r=p then smooth_bot:=move_ptr;
  if r=q then goto done;
  move[move_ptr]:=1; n:=move_ptr; s:=link(r);@/
  make_moves(x_coord(r)+x_coord(w),right_x(r)+x_coord(w),
    left_x(s)+x_coord(w),x_coord(s)+x_coord(w),@|
    y_coord(r)+y_coord(w)+half_unit,right_y(r)+y_coord(w)+half_unit,
    left_y(s)+y_coord(w)+half_unit,y_coord(s)+y_coord(w)+half_unit,@|
    xy_corr[octant],y_corr[octant]);
  @<Transfer moves dually from the |move| array to |env_move|@>;
  r:=s;
  end;
done:@<Insert the new envelope moves dually in the pixel data@>;
end;

@ In the dual case the normal situation is to arrive with a |diagonal|
transition and to leave at the |axis|. The leftmost edge in each row
is relevant instead of the rightmost one.

@<Initialize for dual envelope moves@>=
k:=info(h)+1; ww:=link(h); w:=knil(ww);@/
mm0:=floor_unscaled(x_coord(p)+x_coord(w)-xy_corr[octant]);
mm1:=floor_unscaled(x_coord(q)+x_coord(ww)-xy_corr[octant]);
for n:=1 to n1-n0+1 do env_move[n]:=mm1;
env_move[0]:=mm0; move_ptr:=0; m:=mm0

@ @<Transfer moves dually from the |move| array to |env_move|@>=
repeat if m<env_move[n] then env_move[n]:=m;
m:=m+move[n]-1;
incr(n);
until n>move_ptr

@ Dual retrograde lines occur when |k| increases; the edges of such lines
are not the furthest left in any row.

@<Insert a line segment dually to approach the correct offset@>=
begin xx:=x_coord(r)+x_coord(w); yy:=y_coord(r)+y_coord(w)+half_unit;
@!stat if internal[tracing_edges]>unity then
  begin print_nl("@@ transition line "); print_int(k); print(", from ");
@:]]]\AT!_trans_}{\.{\AT! transition line...}@>
@.transition line...@>
  print_two_true(xx,yy-half_unit);
  end;@+tats@;@/
if right_type(r)<k then
  begin decr(k); w:=knil(w);
  xp:=x_coord(r)+x_coord(w); yp:=y_coord(r)+y_coord(w)+half_unit;
  if yp<>yy then
    @<Record a line segment from |(xx,yy)| to |(xp,yp)| dually in |env_move|@>;
  end
else  begin incr(k); w:=link(w);
  xp:=x_coord(r)+x_coord(w); yp:=y_coord(r)+y_coord(w)+half_unit;
  end;
stat if internal[tracing_edges]>unity then
  begin print(" to ");
  print_two_true(xp,yp-half_unit);
  print_nl("");
  end;@+tats@;@/
m:=floor_unscaled(xp-xy_corr[octant]);
move_ptr:=floor_unscaled(yp-y_corr[octant])-n0;
if m<env_move[move_ptr] then env_move[move_ptr]:=m;
end

@ Again, |xp>=xx| and |yp>=yy|; but this time we are interested in the {\sl
smallest\/} |m| that belongs to a given |move_ptr| position, instead of
the largest~|m|.

@<Record a line segment from |(xx,yy)| to |(xp,yp)| dually in |env_move|@>=
begin ty:=floor_scaled(yy-y_corr[octant]); dely:=yp-yy; yy:=yy-ty;
ty:=yp-y_corr[octant]-ty;
if ty>=unity then
  begin delx:=xp-xx; yy:=unity-yy;
  loop@+  begin if m<env_move[move_ptr] then env_move[move_ptr]:=m;
    tx:=take_fraction(delx,make_fraction(yy,dely));
    if ab_vs_cd(tx,dely,delx,yy)+xy_corr[octant]>0 then decr(tx);
    m:=floor_unscaled(xx+tx);
    ty:=ty-unity; incr(move_ptr);
    if ty<unity then goto done1;
    yy:=yy+unity;
    end;
done1:  if m<env_move[move_ptr] then env_move[move_ptr]:=m;
  end;
end

@ Since |env_move| contains minimum values instead of maximum values, the
finishing-up process is slightly different in the dual case.

@<Insert the new envelope moves dually in the pixel data@>=
debug if (m<>mm1)or(move_ptr<>n1-n0) then confusion("2");@+gubed@;@/
move[0]:=d0+env_move[1]-mm0;
for n:=1 to move_ptr do
  move[n]:=env_move[n+1]-env_move[n]+1;
move[move_ptr]:=move[move_ptr]-d1;
if internal[smoothing]>0 then smooth_moves(smooth_bot,smooth_top);
move_to_edges(m0,n0,m1,n1);
if right_transition(q)=diagonal then
  begin w:=link(h); skew_line_edges(q,w,knil(w));
  end

@* \[25] Elliptical pens.
To get the envelope of a cyclic path with respect to an ellipse, \MF\
calculates the envelope with respect to a polygonal approximation to
the ellipse, using an approach due to John Hobby (Ph.D. thesis,
Stanford University, 1985).
@^Hobby, John Douglas@>
This has two important advantages over trying to obtain the ``exact''
envelope:

\yskip\textindent{1)}It gives better results, because the polygon has been
designed to counteract problems that arise from digitization; the
polygon includes sub-pixel corrections to an exact ellipse that make
the results essentially independent of where the path falls on the raster.
For example, the exact envelope with respect to a pen of diameter~1
blackens a pixel if and only if the path intersects a circle of diameter~1
inscribed in that pixel; the resulting pattern has ``blots'' when the path
is travelling diagonally in unfortunate raster positions. A much better
result is obtained when pixels are blackened only when the path intersects
an inscribed {\sl diamond\/} of diameter~1. Such a diamond is precisely
the polygon that \MF\ uses in the special case of a circle whose diameter is~1.

\yskip\textindent{2)}Polygonal envelopes of cubic splines are cubic
splines, hence it isn't necessary to introduce completely different
routines. By contrast, exact envelopes of cubic splines with respect
to circles are complicated curves, more difficult to plot than cubics.

@ Hobby's construction involves some interesting number theory.
If $u$ and~$v$ are relatively prime integers, we divide the
set of integer points $(m,n)$ into equivalence classes by saying
that $(m,n)$ belongs to class $um+vn$. Then any two integer points
that lie on a line of slope $-u/v$ belong to the same class, because
such points have the form $(m+tv,n-tu)$. Neighboring lines of slope $-u/v$
that go through integer points are separated by distance $1/\psqrt{u^2+v^2}$
from each other, and these lines are perpendicular to lines of slope~$v/u$.
If we start at the origin and travel a distance $k/\psqrt{u^2+v^2}$ in
direction $(u,v)$, we reach the line of slope~$-u/v$ whose points
belong to class~$k$.

For example, let $u=2$ and $v=3$. Then the points $(0,0)$, $(3,-2)$,
$\ldots$ belong to class~0; the points $(-1,1)$, $(2,-1)$, $\ldots$ belong
to class~1; and the distance between these two lines is $1/\sqrt{13}$.
The point $(2,3)$ itself belongs to class~13, hence its distance from
the origin is $13/\sqrt{13}=\sqrt{13}$ (which we already knew).

Suppose we wish to plot envelopes with respect to polygons with
integer vertices. Then the best polygon for curves that travel in
direction $(v,-u)$ will contain the points of class~$k$ such that
$k/\psqrt{u^2+v^2}$ is as close as possible to~$d$, where $d$ is the
maximum distance of the given ellipse from the line $ux+vy=0$.

The |fillin| correction assumes that a diagonal line has an
apparent thickness $$2f\cdot\min(\vert u\vert,\vert v\vert)/\psqrt{u^2+v^2}$$
greater than would be obtained with truly square pixels. (If a
white pixel at an exterior corner is assumed to have apparent
darkness $f_1$ and a black pixel at an interior corner is assumed
to have apparent darkness $1-f_2$, then $f=f_1-f_2$ is the |fillin|
parameter.) Under this assumption we want to choose $k$ so that
$\bigl(k+2f\cdot\min(\vert u\vert,\vert v\vert)\bigr)\big/\psqrt{u^2+v^2}$
is as close as possible to $d$.

Integer coordinates for the vertices work nicely because the thickness of
the envelope at any given slope is independent of the position of the
path with respect to the raster. It turns out, in fact, that the same
property holds for polygons whose vertices have coordinates that are
integer multiples of~$1\over2$, because ellipses are symmetric about
the origin. It's convenient to double all dimensions and require the
resulting polygon to have vertices with integer coordinates. For example,
to get a circle of {\sl diameter}~$r$, we shall compute integer
coordinates for a circle of {\sl radius}~$r$. The circle of radius~$r$
will want to be represented by a polygon that contains the boundary
points $(0,\pm r)$ and~$(\pm r,0)$; later we will divide everything
by~2 and get a polygon with $(0,\pm{1\over2}r)$ and $(\pm{1\over2}r,0)$
on its boundary.

@ In practice the important slopes are those having small values of
$u$ and~$v$; these make regular patterns in which our eyes quickly
spot irregularities. For example, horizontal and vertical lines
(when $u=0$ and $\vert v\vert=1$, or $\vert u\vert=1$ and $v=0$)
are the most important; diagonal lines (when $\vert u\vert=\vert v\vert=1$)
are next; and then come lines with slope $\pm2$ or $\pm1/2$.

The nicest way to generate all rational directions having small
numerators and denominators is to generalize the Stern-Brocot tree
[cf.~{\sl Concrete Mathematics}, section 4.5]
@^Brocot, Achille@>
@^Stern, Moriz Abraham@>
to a ``Stern-Brocot wreath'' as follows: Begin with four nodes
arranged in a circle, containing the respective directions
$(u,v)=(1,0)$, $(0,1)$, $(-1,0)$, and~$(0,-1)$. Then between pairs of
consecutive terms $(u,v)$ and $(u',v')$ of the wreath, insert the
direction $(u+u',v+v')$; continue doing this until some stopping
criterion is fulfilled.

It is not difficult to verify that, regardless of the stopping
criterion, consecutive directions $(u,v)$ and $(u',v')$ of this
wreath will always satisfy the relation $uv'-u'v=1$. Such pairs
of directions have a nice property with respect to the equivalence
classes described above. Let $l$ be a line of equivalent integer points
$(m+tv,n-tu)$ with respect to~$(u,v)$, and let $l'$ be a line of
equivalent integer points $(m'+tv',n'-tu')$ with respect to~$(u',v')$.
Then $l$ and~$l'$ intersect in an integer point $(m'',n'')$, because
the determinant of the linear equations for intersection is $uv'-u'v=1$.
Notice that the class number of $(m'',n'')$ with respect to $(u+u',v+v')$
is the sum of its class numbers with respect to $(u,v)$ and~$(u',v')$.
Moreover, consecutive points on~$l$ and~$l'$ belong to classes that
differ by exactly~1 with respect to $(u+u',v+v')$.

This leads to a nice algorithm in which we construct a polygon having
``correct'' class numbers for as many small-integer directions $(u,v)$
as possible: Assuming that lines $l$ and~$l'$ contain points of the
correct class for $(u,v)$ and~$(u',v')$, respectively, we determine
the intersection $(m'',n'')$ and compute its class with respect to
$(u+u',v+v')$. If the class is too large to be the best approximation,
we move back the proper number of steps from $(m'',n'')$ toward smaller
class numbers on both $l$ and~$l'$, unless this requires moving to points
that are no longer in the polygon; in this we arrive at two points that
determine a line~$l''$ having the appropriate class. The process continues
recursively, until it cannot proceed without removing the last remaining
point from the class for $(u,v)$ or the class for $(u',v')$.

@ The |make_ellipse| subroutine produces a pointer to a cyclic path
whose vertices define a polygon suitable for envelopes. The control
points on this path will be ignored; in fact, the fields in knot nodes
that are usually reserved for control points are occupied by other
data that helps |make_ellipse| compute the desired polygon.

Parameters |major_axis| and |minor_axis| define the axes of the ellipse;
and parameter |theta| is an angle by which the ellipse is rotated
counterclockwise. If |theta=0|, the ellipse has the equation
$(x/a)^2+(y/b)^2=1$, where |a=major_axis/2| and |b=minor_axis/2|.
In general, the points of the ellipse are generated in the complex plane
by the formula $e^{i\theta}(a\cos t+ib\sin t)$, as $t$~ranges over all
angles. Notice that if |major_axis=minor_axis=d|, we obtain a circle
of diameter~|d|, regardless of the value of |theta|.

The method sketched above is used to produce the elliptical polygon,
except that the main work is done only in the halfplane obtained from
the three starting directions $(0,-1)$, $(1,0)$,~$(0,1)$. Since the ellipse
has circular symmetry, we use the fact that the last half of the polygon
is simply the negative of the first half. Furthermore, we need to compute only
one quarter of the polygon if the ellipse has axis symmetry.

@p function make_ellipse(@!major_axis,@!minor_axis:scaled;
  @!theta:angle):pointer;
label done,done1,found;
var @!p,@!q,@!r,@!s:pointer; {for list manipulation}
@!h:pointer; {head of the constructed knot list}
@!alpha,@!beta,@!gamma,@!delta:integer; {special points}
@!c,@!d:integer; {class numbers}
@!u,@!v:integer; {directions}
@!symmetric:boolean; {should the result be symmetric about the axes?}
begin @<Initialize the ellipse data structure by beginning with
  directions $(0,-1)$, $(1,0)$, $(0,1)$@>;
@<Interpolate new vertices in the ellipse data structure until
  improvement is impossible@>;
if symmetric then
  @<Complete the half ellipse by reflecting the quarter already computed@>;
@<Complete the ellipse by copying the negative of the half already computed@>;
make_ellipse:=h;
end;

@ A special data structure is used only with |make_ellipse|: The
|right_x|, |left_x|, |right_y|, and |left_y| fields of knot nodes
are renamed |right_u|, |left_v|, |right_class|, and |left_length|,
in order to store information that simplifies the necessary computations.

If |p| and |q| are consecutive knots in this data structure, the
|x_coord| and |y_coord| fields of |p| and~|q| contain current vertices
of the polygon; their values are integer multiples
of |half_unit|. Both of these vertices belong to equivalence class
|right_class(p)| with respect to the direction
$\bigl($|right_u(p),left_v(q)|$\bigr)$. The number of points of this class
on the line from vertex~|p| to vertex~|q| is |1+left_length(q)|.
In particular, |left_length(q)=0| means that |x_coord(p)=x_coord(q)|
and |y_coord(p)=y_coord(q)|; such duplicate vertices will be
discarded during the course of the algorithm.

The contents of |right_u(p)| and |left_v(q)| are integer multiples
of |half_unit|, just like the coordinate fields. Hence, for example,
the point $\bigl($|x_coord(p)-left_v(q),y_coord(p)+right_u(q)|$\bigr)$
also belongs to class number |right_class(p)|. This point is one
step closer to the vertex in node~|q|; it equals that vertex
if and only if |left_length(q)=1|.

The |left_type| and |right_type| fields are not used, but |link|
has its normal meaning.

To start the process, we create four nodes for the three directions
$(0,-1)$, $(1,0)$, and $(0,1)$. The corresponding vertices are
$(-\alpha,-\beta)$, $(\gamma,-\beta)$, $(\gamma,\beta)$, and
$(\alpha,\beta)$, where $(\alpha,\beta)$ is a half-integer approximation
to where the ellipse rises highest above the $x$-axis, and where
$\gamma$ is a half-integer approximation to the maximum $x$~coordinate
of the ellipse. The fourth of these nodes is not actually calculated
if the ellipse has axis symmetry.

@d right_u==right_x {|u| value for a pen edge}
@d left_v==left_x {|v| value for a pen edge}
@d right_class==right_y {equivalence class number of a pen edge}
@d left_length==left_y {length of a pen edge}

@<Initialize the ellipse data structure...@>=
@<Calculate integers $\alpha$, $\beta$, $\gamma$ for the vertex
  coordinates@>;
p:=get_node(knot_node_size); q:=get_node(knot_node_size);
r:=get_node(knot_node_size);
if symmetric then s:=null@+else s:=get_node(knot_node_size);
h:=p; link(p):=q; link(q):=r; link(r):=s; {|s=null| or |link(s)=null|}
@<Revise the values of $\alpha$, $\beta$, $\gamma$, if necessary,
  so that degenerate lines of length zero will not be obtained@>;
x_coord(p):=-alpha*half_unit;
y_coord(p):=-beta*half_unit;
x_coord(q):=gamma*half_unit;@/
y_coord(q):=y_coord(p); x_coord(r):=x_coord(q);@/
right_u(p):=0; left_v(q):=-half_unit;@/
right_u(q):=half_unit; left_v(r):=0;@/
right_u(r):=0;
right_class(p):=beta; right_class(q):=gamma; right_class(r):=beta;@/
left_length(q):=gamma+alpha;
if symmetric then
  begin y_coord(r):=0; left_length(r):=beta;
  end
else  begin y_coord(r):=-y_coord(p); left_length(r):=beta+beta;@/
  x_coord(s):=-x_coord(p); y_coord(s):=y_coord(r);@/
  left_v(s):=half_unit; left_length(s):=gamma-alpha;
  end

@ One of the important invariants of the pen data structure is that
the points are distinct. We may need to correct the pen specification
in order to avoid this. (The result of \&{pencircle} will always be at
least one pixel wide and one pixel tall, although \&{makepen} is
capable of producing smaller pens.)

@<Revise the values of $\alpha$, $\beta$, $\gamma$, if necessary...@>=
if beta=0 then beta:=1;
if gamma=0 then gamma:=1;
if gamma<=abs(alpha) then
  if alpha>0 then alpha:=gamma-1
  else alpha:=1-gamma

@ If $a$ and $b$ are the semi-major and semi-minor axes,
the given ellipse rises highest above the $y$-axis at the point
$\bigl((a^2-b^2)\sin\theta\cos\theta/\rho\bigr)+i\rho$, where
$\rho=\sqrt{(a\sin\theta)^2+(b\cos\theta)^2}$. It reaches
furthest to the right of~the $x$-axis at the point
$\sigma+i(a^2-b^2)\sin\theta\cos\theta/\sigma$, where
$\sigma=\sqrt{(a\cos\theta)^2+(b\sin\theta)^2}$.

@<Calculate integers $\alpha$, $\beta$, $\gamma$...@>=
if (major_axis=minor_axis)or(theta mod ninety_deg=0) then
  begin symmetric:=true; alpha:=0;
  if odd(theta div ninety_deg) then
    begin beta:=major_axis; gamma:=minor_axis;
    n_sin:=fraction_one; n_cos:=0; {|n_sin| and |n_cos| are used later}
    end
  else  begin beta:=minor_axis; gamma:=major_axis;
    end; {|n_sin| and |n_cos| aren't needed in this case}
  end
else  begin symmetric:=false;
  n_sin_cos(theta); {set up $|n_sin|=\sin\theta$ and $|n_cos|=\cos\theta$}
  gamma:=take_fraction(major_axis,n_sin);
  delta:=take_fraction(minor_axis,n_cos);
  beta:=pyth_add(gamma,delta);
  alpha:=take_fraction(take_fraction(major_axis,
      make_fraction(gamma,beta)),n_cos)@|
    -take_fraction(take_fraction(minor_axis,
      make_fraction(delta,beta)),n_sin);
  alpha:=(alpha+half_unit) div unity;
  gamma:=pyth_add(take_fraction(major_axis,n_cos),
    take_fraction(minor_axis,n_sin));
  end;
beta:=(beta+half_unit) div unity;
gamma:=(gamma+half_unit) div unity

@ Now |p|, |q|, and |r| march through the list, always representing
three consecutive vertices and two consecutive slope directions.
When a new slope is interpolated, we back up slightly, until
further refinement is impossible; then we march forward again.
The somewhat magical operations performed in this part of the
algorithm are justified by the theory sketched earlier.
Complications arise only from the need to keep zero-length lines
out of the final data structure.

@<Interpolate new vertices in the ellipse data structure...@>=
loop@+  begin u:=right_u(p)+right_u(q); v:=left_v(q)+left_v(r);
  c:=right_class(p)+right_class(q);@/
  @<Compute the distance |d| from class~0 to the edge of the ellipse
    in direction |(u,v)|, times $\psqrt{u^2+v^2}$,
    rounded to the nearest integer@>;
  delta:=c-d; {we want to move |delta| steps back
      from the intersection vertex~|q|}
  if delta>0 then
    begin if delta>left_length(r) then delta:=left_length(r);
    if delta>=left_length(q) then
      @<Remove the line from |p| to |q|,
        and adjust vertex~|q| to introduce a new line@>
    else @<Insert a new line for direction |(u,v)| between |p| and~|q|@>;
    end
  else p:=q;
  @<Move to the next remaining triple |(p,q,r)|, removing and skipping past
    zero-length lines that might be present; |goto done| if all
    triples have been processed@>;
  end;
done:

@ The appearance of a zero-length line means that we should advance |p|
past it. We must not try to straddle a missing direction, because the
algorithm works only on consecutive pairs of directions.

@<Move to the next remaining triple |(p,q,r)|...@>=
loop@+  begin q:=link(p);
  if q=null then goto done;
  if left_length(q)=0 then
    begin link(p):=link(q); right_class(p):=right_class(q);
    right_u(p):=right_u(q); free_node(q,knot_node_size);
    end
  else  begin r:=link(q);
    if r=null then goto done;
    if left_length(r)=0 then
      begin link(p):=r; free_node(q,knot_node_size); p:=r;
      end
    else goto found;
    end;
  end;
found:

@ The `\&{div} 8' near the end of this step comes from
the fact that |delta| is scaled by~$2^{15}$ and $d$~by~$2^{16}$,
while |take_fraction| removes a scale factor of~$2^{28}$.
We also make sure that $d\G\max(\vert u\vert,\vert v\vert)$, so that
the pen will always include a circular pen of diameter~1 as a subset;
then it won't be possible to get disconnected path envelopes.

@<Compute the distance |d| from class~0 to the edge of the ellipse...@>=
delta:=pyth_add(u,v);
if major_axis=minor_axis then d:=major_axis {circles are easy}
else  begin if theta=0 then
    begin alpha:=u; beta:=v;
    end
  else  begin alpha:=take_fraction(u,n_cos)+take_fraction(v,n_sin);
    beta:=take_fraction(v,n_cos)-take_fraction(u,n_sin);
    end;
  alpha:=make_fraction(alpha,delta);
  beta:=make_fraction(beta,delta);
  d:=pyth_add(take_fraction(major_axis,alpha),
    take_fraction(minor_axis,beta));
  end;
alpha:=abs(u); beta:=abs(v);
if alpha<beta then
  begin alpha:=abs(v); beta:=abs(u);
  end; {now $\alpha=\max(\vert u\vert,\vert v\vert)$,
      $\beta=\min(\vert u\vert,\vert v\vert)$}
if internal[fillin]<>0 then
  d:=d-take_fraction(internal[fillin],make_fraction(beta+beta,delta));
d:=take_fraction((d+4) div 8,delta); alpha:=alpha div half_unit;
if d<alpha then d:=alpha

@ At this point there's a line of length |<=delta| from vertex~|p|
to vertex~|q|, orthogonal to direction $\bigl($|right_u(p),left_v(q)|$\bigr)$;
and there's a line of length |>=delta| from vertex~|q| to
to vertex~|r|, orthogonal to direction $\bigl($|right_u(q),left_v(r)|$\bigr)$.
The best line to direction $(u,v)$ should replace the line from
|p| to~|q|; this new line will have the same length as the old.

@<Remove the line from |p| to |q|...@>=
begin delta:=left_length(q);@/
right_class(p):=c-delta; right_u(p):=u; left_v(q):=v;@/
x_coord(q):=x_coord(q)-delta*left_v(r);
y_coord(q):=y_coord(q)+delta*right_u(q);@/
left_length(r):=left_length(r)-delta;
end

@ Here is the main case, now that we have dealt with the exception:
We insert a new line of length |delta| for direction |(u,v)|, decreasing
each of the adjacent lines by |delta| steps.

@<Insert a new line for direction |(u,v)| between |p| and~|q|@>=
begin s:=get_node(knot_node_size); link(p):=s; link(s):=q;@/
x_coord(s):=x_coord(q)+delta*left_v(q);
y_coord(s):=y_coord(q)-delta*right_u(p);@/
x_coord(q):=x_coord(q)-delta*left_v(r);
y_coord(q):=y_coord(q)+delta*right_u(q);@/
left_v(s):=left_v(q); right_u(s):=u; left_v(q):=v;@/
right_class(s):=c-delta;@/
left_length(s):=left_length(q)-delta; left_length(q):=delta;
left_length(r):=left_length(r)-delta;
end

@ Only the coordinates need to be copied, not the class numbers and other stuff.

@<Complete the half ellipse...@>=
begin s:=null; q:=h;
loop@+  begin r:=get_node(knot_node_size); link(r):=s; s:=r;@/
  x_coord(s):=x_coord(q); y_coord(s):=-y_coord(q);
  if q=p then goto done1;
  q:=link(q);
  if y_coord(q)=0 then goto done1;
  end;
done1: link(p):=s; beta:=-y_coord(h);
while y_coord(p)<>beta do p:=link(p);
q:=link(p);
end

@ Now we use a somewhat tricky fact: The pointer |q| will be null if and
only if the line for the final direction $(0,1)$ has been removed. If
that line still survives, it should be combined with a possibly
surviving line in the initial direction $(0,-1)$.

@<Complete the ellipse by copying...@>=
if q<>null then
  begin if right_u(h)=0 then
    begin p:=h; h:=link(h); free_node(p,knot_node_size);@/
    x_coord(q):=-x_coord(h);
    end;
  p:=q;
  end
else q:=p;
r:=link(h); {now |p=q|, |x_coord(p)=-x_coord(h)|, |y_coord(p)=-y_coord(h)|}
repeat s:=get_node(knot_node_size); link(p):=s; p:=s;@/
x_coord(p):=-x_coord(r); y_coord(p):=-y_coord(r); r:=link(r);
until r=q;
link(p):=h

@* \[26] Direction and intersection times.
A path of length $n$ is defined parametrically by functions $x(t)$ and
$y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
reaches the point $\bigl(x(t),y(t)\bigr)$.  In this section of the program
we shall consider operations that determine special times associated with
given paths: the first time that a path travels in a given direction, and
a pair of times at which two paths cross each other.

@ Let's start with the easier task. The function |find_direction_time| is
given a direction |(x,y)| and a path starting at~|h|. If the path never
travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
it will be nonnegative.

Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
direction is undefined, the direction time will be~0. If $\bigl(x'(t),
y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
assumed to match any given direction at time~|t|.

The routine solves this problem in nondegenerate cases by rotating the path
and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
to find when a given path first travels ``due east.''

@p function find_direction_time(@!x,@!y:scaled;@!h:pointer):scaled;
label exit,found,not_found,done;
var @!max:scaled; {$\max\bigl(\vert x\vert,\vert y\vert\bigr)$}
@!p,@!q:pointer; {for list traversal}
@!n:scaled; {the direction time at knot |p|}
@!tt:scaled; {the direction time within a cubic}
@<Other local variables for |find_direction_time|@>@;
begin @<Normalize the given direction for better accuracy;
  but |return| with zero result if it's zero@>;
n:=0; p:=h;
loop@+  begin if right_type(p)=endpoint then goto not_found;
  q:=link(p);
  @<Rotate the cubic between |p| and |q|; then
    |goto found| if the rotated cubic travels due east at some time |tt|;
    but |goto not_found| if an entire cyclic path has been traversed@>;
  p:=q; n:=n+unity;
  end;
not_found: find_direction_time:=-unity; return;
found: find_direction_time:=n+tt;
exit:end;

@ @<Normalize the given direction for better accuracy...@>=
if abs(x)<abs(y) then
  begin x:=make_fraction(x,abs(y));
  if y>0 then y:=fraction_one@+else y:=-fraction_one;
  end
else if x=0 then
  begin find_direction_time:=0; return;
  end
else  begin y:=make_fraction(y,abs(x));
  if x>0 then x:=fraction_one@+else x:=-fraction_one;
  end

@ Since we're interested in the tangent directions, we work with the
derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
$B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
in order to achieve better accuracy.

The given path may turn abruptly at a knot, and it might pass the critical
tangent direction at such a time. Therefore we remember the direction |phi|
in which the previous rotated cubic was traveling. (The value of |phi| will be
undefined on the first cubic, i.e., when |n=0|.)

@<Rotate the cubic between |p| and |q|; then...@>=
tt:=0;
@<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
  points of the rotated derivatives@>;
if y1=0 then if x1>=0 then goto found;
if n>0 then
  begin @<Exit to |found| if an eastward direction occurs at knot |p|@>;
  if p=h then goto not_found;
  end;
if (x3<>0)or(y3<>0) then phi:=n_arg(x3,y3);
@<Exit to |found| if the curve whose derivatives are specified by
  |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>

@ @<Other local variables for |find_direction_time|@>=
@!x1,@!x2,@!x3,@!y1,@!y2,@!y3:scaled; {multiples of rotated derivatives}
@!theta,@!phi:angle; {angles of exit and entry at a knot}
@!t:fraction; {temp storage}

@ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
x1:=right_x(p)-x_coord(p); x2:=left_x(q)-right_x(p);
x3:=x_coord(q)-left_x(q);@/
y1:=right_y(p)-y_coord(p); y2:=left_y(q)-right_y(p);
y3:=y_coord(q)-left_y(q);@/
max:=abs(x1);
if abs(x2)>max then max:=abs(x2);
if abs(x3)>max then max:=abs(x3);
if abs(y1)>max then max:=abs(y1);
if abs(y2)>max then max:=abs(y2);
if abs(y3)>max then max:=abs(y3);
if max=0 then goto found;
while max<fraction_half do
  begin double(max); double(x1); double(x2); double(x3);
  double(y1); double(y2); double(y3);
  end;
t:=x1; x1:=take_fraction(x1,x)+take_fraction(y1,y);
y1:=take_fraction(y1,x)-take_fraction(t,y);@/
t:=x2; x2:=take_fraction(x2,x)+take_fraction(y2,y);
y2:=take_fraction(y2,x)-take_fraction(t,y);@/
t:=x3; x3:=take_fraction(x3,x)+take_fraction(y3,y);
y3:=take_fraction(y3,x)-take_fraction(t,y)

@ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
theta:=n_arg(x1,y1);
if theta>=0 then if phi<=0 then if phi>=theta-one_eighty_deg then goto found;
if theta<=0 then if phi>=0 then if phi<=theta+one_eighty_deg then goto found

@ In this step we want to use the |crossing_point| routine to find the
roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
Several complications arise: If the quadratic equation has a double root,
the curve never crosses zero, and |crossing_point| will find nothing;
this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
equation has simple roots, or only one root, we may have to negate it
so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
identically zero.

@ @<Exit to |found| if the curve whose derivatives are specified by...@>=
if x1<0 then if x2<0 then if x3<0 then goto done;
if ab_vs_cd(y1,y3,y2,y2)=0 then
  @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
    either |goto found| or |goto done|@>;
if y1<=0 then
  if y1<0 then
    begin y1:=-y1; y2:=-y2; y3:=-y3;
    end
  else if y2>0 then
    begin y2:=-y2; y3:=-y3;
    end;
@<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
  $B(x_1,x_2,x_3;t)\ge0$@>;
done:

@ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
two roots, because we know that it isn't identically zero.

It must be admitted that the |crossing_point| routine is not perfectly accurate;
rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
subject to rounding errors. Yet this code optimistically tries to
do the right thing.

@d we_found_it==begin tt:=(t+@'4000) div @'10000; goto found;
  end

@<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
t:=crossing_point(y1,y2,y3);
if t>fraction_one then goto done;
y2:=t_of_the_way(y2)(y3);
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
x1:=t_of_the_way(x1)(x2);
if x1>=0 then we_found_it;
if y2>0 then y2:=0;
tt:=t; t:=crossing_point(0,-y2,-y3);
if t>fraction_one then goto done;
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
if t_of_the_way(x1)(x2)>=0 then
  begin t:=t_of_the_way(tt)(fraction_one); we_found_it;
  end

@ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
    either |goto found| or |goto done|@>=
begin if ab_vs_cd(y1,y2,0,0)<0 then
  begin t:=make_fraction(y1,y1-y2);
  x1:=t_of_the_way(x1)(x2);
  x2:=t_of_the_way(x2)(x3);
  if t_of_the_way(x1)(x2)>=0 then we_found_it;
  end
else if y3=0 then
  if y1=0 then
    @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>
  else if x3>=0 then
    begin tt:=unity; goto found;
    end;
goto done;
end

@ At this point we know that the derivative of |y(t)| is identically zero,
and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
traveling east.

@<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
begin t:=crossing_point(-x1,-x2,-x3);
if t<=fraction_one then we_found_it;
if ab_vs_cd(x1,x3,x2,x2)<=0 then
  begin t:=make_fraction(x1,x1-x2); we_found_it;
  end;
end

@ The intersection of two cubics can be found by an interesting variant
of the general bisection scheme described in the introduction to |make_moves|.\
Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
if an intersection exists. First we find the smallest rectangle that
encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
the smallest rectangle that encloses
$\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
But if the rectangles do overlap, we bisect the intervals, getting
new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
levels of bisection we will have determined the intersection times $t_1$
and~$t_2$ to $l$~bits of accuracy.

\def\submin{_{\rm min}} \def\submax{_{\rm max}}
As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
to determine when the enclosing rectangles overlap. Here's why:
The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
\min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
overlap if and only if $u\submin\L x\submax$ and
$x\submin\L u\submax$. Letting
$$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
  U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
reduces to
$$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
because of the overlap condition; i.e., we know that $X\submin$,
$X\submax$, and their relatives are bounded, hence $X\submax-
U\submin$ and $X\submin-U\submax$ are bounded.

@ Incidentally, if the given cubics intersect more than once, the process
just sketched will not necessarily find the lexicographically smallest pair
$(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
$t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
$a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
$a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
Shuffled order agrees with lexicographic order if all pairs of solutions
$(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
$t_2<t_2'$; but in general, lexicographic order can be quite different,
and the bisection algorithm would be substantially less efficient if it were
constrained by lexicographic order.

For example, suppose that an overlap has been found for $l=3$ and
$(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
Then there is probably an intersection in one of the subintervals
$(.1011,.011x)$; but lexicographic order would require us to explore
$(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
want to store all of the subdivision data for the second path, so the
subdivisions would have to be regenerated many times. Such inefficiencies
would be associated with every `1' in the binary representation of~$t_1$.

@ The subdivision process introduces rounding errors, hence we need to
make a more liberal test for overlap. It is not hard to show that the
computed values of $U_i$ differ from the truth by at most~$l$, on
level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
If $\beta$ is an upper bound on the absolute error in the computed
components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
the test `$X\submin-U\submax\L|delx|$' by the more liberal test
`$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.

More accuracy is obtained if we try the algorithm first with |tol=0|;
the more liberal tolerance is used only if an exact approach fails.
It is convenient to do this double-take by letting `3' in the preceding
paragraph be a parameter, which is first 0, then 3.

@<Glob...@>=
@!tol_step:0..6; {either 0 or 3, usually}

@ We shall use an explicit stack to implement the recursive bisection
method described above. In fact, the |bisect_stack| array is available for
this purpose. It will contain numerous 5-word packets like
$(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets comprising
the 5-word packets for $U$, $V$, $X$, and~$Y$.

The following macros define the allocation of stack positions to
the quantities needed for bisection-intersection.

@d stack_1(#)==bisect_stack[#] {$U_1$, $V_1$, $X_1$, or $Y_1$}
@d stack_2(#)==bisect_stack[#+1] {$U_2$, $V_2$, $X_2$, or $Y_2$}
@d stack_3(#)==bisect_stack[#+2] {$U_3$, $V_3$, $X_3$, or $Y_3$}
@d stack_min(#)==bisect_stack[#+3]
  {$U\submin$, $V\submin$, $X\submin$, or $Y\submin$}
@d stack_max(#)==bisect_stack[#+4]
  {$U\submax$, $V\submax$, $X\submax$, or $Y\submax$}
@d int_packets=20 {number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$}
@#
@d u_packet(#)==#-5
@d v_packet(#)==#-10
@d x_packet(#)==#-15
@d y_packet(#)==#-20
@d l_packets==bisect_ptr-int_packets
@d r_packets==bisect_ptr
@d ul_packet==u_packet(l_packets) {base of $U'_k$ variables}
@d vl_packet==v_packet(l_packets) {base of $V'_k$ variables}
@d xl_packet==x_packet(l_packets) {base of $X'_k$ variables}
@d yl_packet==y_packet(l_packets) {base of $Y'_k$ variables}
@d ur_packet==u_packet(r_packets) {base of $U''_k$ variables}
@d vr_packet==v_packet(r_packets) {base of $V''_k$ variables}
@d xr_packet==x_packet(r_packets) {base of $X''_k$ variables}
@d yr_packet==y_packet(r_packets) {base of $Y''_k$ variables}
@#
@d u1l==stack_1(ul_packet) {$U'_1$}
@d u2l==stack_2(ul_packet) {$U'_2$}
@d u3l==stack_3(ul_packet) {$U'_3$}
@d v1l==stack_1(vl_packet) {$V'_1$}
@d v2l==stack_2(vl_packet) {$V'_2$}
@d v3l==stack_3(vl_packet) {$V'_3$}
@d x1l==stack_1(xl_packet) {$X'_1$}
@d x2l==stack_2(xl_packet) {$X'_2$}
@d x3l==stack_3(xl_packet) {$X'_3$}
@d y1l==stack_1(yl_packet) {$Y'_1$}
@d y2l==stack_2(yl_packet) {$Y'_2$}
@d y3l==stack_3(yl_packet) {$Y'_3$}
@d u1r==stack_1(ur_packet) {$U''_1$}
@d u2r==stack_2(ur_packet) {$U''_2$}
@d u3r==stack_3(ur_packet) {$U''_3$}
@d v1r==stack_1(vr_packet) {$V''_1$}
@d v2r==stack_2(vr_packet) {$V''_2$}
@d v3r==stack_3(vr_packet) {$V''_3$}
@d x1r==stack_1(xr_packet) {$X''_1$}
@d x2r==stack_2(xr_packet) {$X''_2$}
@d x3r==stack_3(xr_packet) {$X''_3$}
@d y1r==stack_1(yr_packet) {$Y''_1$}
@d y2r==stack_2(yr_packet) {$Y''_2$}
@d y3r==stack_3(yr_packet) {$Y''_3$}
@#
@d stack_dx==bisect_stack[bisect_ptr] {stacked value of |delx|}
@d stack_dy==bisect_stack[bisect_ptr+1] {stacked value of |dely|}
@d stack_tol==bisect_stack[bisect_ptr+2] {stacked value of |tol|}
@d stack_uv==bisect_stack[bisect_ptr+3] {stacked value of |uv|}
@d stack_xy==bisect_stack[bisect_ptr+4] {stacked value of |xy|}
@d int_increment=int_packets+int_packets+5 {number of stack words per level}

@<Check the ``constant''...@>=
if int_packets+17*int_increment>bistack_size then bad:=32;

@ Computation of the min and max is a tedious but fairly fast sequence of
instructions; exactly four comparisons are made in each branch.

@d set_min_max(#)==
  if stack_1(#)<0 then
    if stack_3(#)>=0 then
      begin if stack_2(#)<0 then stack_min(#):=stack_1(#)+stack_2(#)
        else stack_min(#):=stack_1(#);
      stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
      if stack_max(#)<0 then stack_max(#):=0;
      end
    else  begin stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
      if stack_min(#)>stack_1(#) then stack_min(#):=stack_1(#);
      stack_max(#):=stack_1(#)+stack_2(#);
      if stack_max(#)<0 then stack_max(#):=0;
      end
  else if stack_3(#)<=0 then
    begin if stack_2(#)>0 then stack_max(#):=stack_1(#)+stack_2(#)
      else stack_max(#):=stack_1(#);
    stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
    if stack_min(#)>0 then stack_min(#):=0;
    end
  else  begin stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
    if stack_max(#)<stack_1(#) then stack_max(#):=stack_1(#);
    stack_min(#):=stack_1(#)+stack_2(#);
    if stack_min(#)>0 then stack_min(#):=0;
    end

@ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
routine uses global variables |cur_t| and |cur_tt| for this purpose;
after successful completion, |cur_t| and |cur_tt| will contain |unity|
plus the |scaled| values of $t_1$ and~$t_2$.

The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
finds no intersection. The routine gives up and gives an approximate answer
if it has backtracked
more than 5000 times (otherwise there are cases where several minutes
of fruitless computation would be possible).

@d max_patience=5000

@<Glob...@>=
@!cur_t,@!cur_tt:integer; {controls and results of |cubic_intersection|}
@!time_to_go:integer; {this many backtracks before giving up}
@!max_t:integer; {maximum of $2^{l+1}$ so far achieved}

@ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
$B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
and |(pp,link(pp))|, respectively.

@p procedure cubic_intersection(@!p,@!pp:pointer);
label continue, not_found, exit;
var @!q,@!qq:pointer; {|link(p)|, |link(pp)|}
begin time_to_go:=max_patience; max_t:=2;
@<Initialize for intersections at level zero@>;
loop@+  begin continue:
  if delx-tol<=stack_max(x_packet(xy))-stack_min(u_packet(uv)) then
   if delx+tol>=stack_min(x_packet(xy))-stack_max(u_packet(uv)) then
   if dely-tol<=stack_max(y_packet(xy))-stack_min(v_packet(uv)) then
   if dely+tol>=stack_min(y_packet(xy))-stack_max(v_packet(uv)) then
    begin if cur_t>=max_t then
      begin if max_t=two then {we've done 17 bisections}
        begin cur_t:=half(cur_t+1); cur_tt:=half(cur_tt+1); return;
        end;
      double(max_t); appr_t:=cur_t; appr_tt:=cur_tt;
      end;
    @<Subdivide for a new level of intersection@>;
    goto continue;
    end;
  if time_to_go>0 then decr(time_to_go)
  else  begin while appr_t<unity do
      begin double(appr_t); double(appr_tt);
      end;
    cur_t:=appr_t; cur_tt:=appr_tt; return;
    end;
  @<Advance to the next pair |(cur_t,cur_tt)|@>;
  end;
exit:end;

@ The following variables are global, although they are used only by
|cubic_intersection|, because it is necessary on some machines to
split |cubic_intersection| up into two procedures.

@<Glob...@>=
@!delx,@!dely:integer; {the components of $\Delta=2^l(w_0-z_0)$}
@!tol:integer; {bound on the uncertainly in the overlap test}
@!uv,@!xy:0..bistack_size; {pointers to the current packets of interest}
@!three_l:integer; {|tol_step| times the bisection level}
@!appr_t,@!appr_tt:integer; {best approximations known to the answers}

@ We shall assume that the coordinates are sufficiently non-extreme that
integer overflow will not occur.

@<Initialize for intersections at level zero@>=
q:=link(p); qq:=link(pp); bisect_ptr:=int_packets;@/
u1r:=right_x(p)-x_coord(p); u2r:=left_x(q)-right_x(p);
u3r:=x_coord(q)-left_x(q); set_min_max(ur_packet);@/
v1r:=right_y(p)-y_coord(p); v2r:=left_y(q)-right_y(p);
v3r:=y_coord(q)-left_y(q); set_min_max(vr_packet);@/
x1r:=right_x(pp)-x_coord(pp); x2r:=left_x(qq)-right_x(pp);
x3r:=x_coord(qq)-left_x(qq); set_min_max(xr_packet);@/
y1r:=right_y(pp)-y_coord(pp); y2r:=left_y(qq)-right_y(pp);
y3r:=y_coord(qq)-left_y(qq); set_min_max(yr_packet);@/
delx:=x_coord(p)-x_coord(pp); dely:=y_coord(p)-y_coord(pp);@/
tol:=0; uv:=r_packets; xy:=r_packets; three_l:=0; cur_t:=1; cur_tt:=1

@ @<Subdivide for a new level of intersection@>=
stack_dx:=delx; stack_dy:=dely; stack_tol:=tol; stack_uv:=uv; stack_xy:=xy;
bisect_ptr:=bisect_ptr+int_increment;@/
double(cur_t); double(cur_tt);@/
u1l:=stack_1(u_packet(uv)); u3r:=stack_3(u_packet(uv));
u2l:=half(u1l+stack_2(u_packet(uv)));
u2r:=half(u3r+stack_2(u_packet(uv)));
u3l:=half(u2l+u2r); u1r:=u3l;
set_min_max(ul_packet); set_min_max(ur_packet);@/
v1l:=stack_1(v_packet(uv)); v3r:=stack_3(v_packet(uv));
v2l:=half(v1l+stack_2(v_packet(uv)));
v2r:=half(v3r+stack_2(v_packet(uv)));
v3l:=half(v2l+v2r); v1r:=v3l;
set_min_max(vl_packet); set_min_max(vr_packet);@/
x1l:=stack_1(x_packet(xy)); x3r:=stack_3(x_packet(xy));
x2l:=half(x1l+stack_2(x_packet(xy)));
x2r:=half(x3r+stack_2(x_packet(xy)));
x3l:=half(x2l+x2r); x1r:=x3l;
set_min_max(xl_packet); set_min_max(xr_packet);@/
y1l:=stack_1(y_packet(xy)); y3r:=stack_3(y_packet(xy));
y2l:=half(y1l+stack_2(y_packet(xy)));
y2r:=half(y3r+stack_2(y_packet(xy)));
y3l:=half(y2l+y2r); y1r:=y3l;
set_min_max(yl_packet); set_min_max(yr_packet);@/
uv:=l_packets; xy:=l_packets;
double(delx); double(dely);@/
tol:=tol-three_l+tol_step; double(tol); three_l:=three_l+tol_step

@ @<Advance to the next pair |(cur_t,cur_tt)|@>=
not_found: if odd(cur_tt) then
  if odd(cur_t) then @<Descend to the previous level and |goto not_found|@>
  else  begin incr(cur_t);
    delx:=delx+stack_1(u_packet(uv))+stack_2(u_packet(uv))
      +stack_3(u_packet(uv));
    dely:=dely+stack_1(v_packet(uv))+stack_2(v_packet(uv))
      +stack_3(v_packet(uv));
    uv:=uv+int_packets; {switch from |l_packet| to |r_packet|}
    decr(cur_tt); xy:=xy-int_packets; {switch from |r_packet| to |l_packet|}
    delx:=delx+stack_1(x_packet(xy))+stack_2(x_packet(xy))
      +stack_3(x_packet(xy));
    dely:=dely+stack_1(y_packet(xy))+stack_2(y_packet(xy))
      +stack_3(y_packet(xy));
    end
else  begin incr(cur_tt); tol:=tol+three_l;
  delx:=delx-stack_1(x_packet(xy))-stack_2(x_packet(xy))
    -stack_3(x_packet(xy));
  dely:=dely-stack_1(y_packet(xy))-stack_2(y_packet(xy))
    -stack_3(y_packet(xy));
  xy:=xy+int_packets; {switch from |l_packet| to |r_packet|}
  end

@ @<Descend to the previous level...@>=
begin cur_t:=half(cur_t); cur_tt:=half(cur_tt);
if cur_t=0 then return;
bisect_ptr:=bisect_ptr-int_increment; three_l:=three_l-tol_step;
delx:=stack_dx; dely:=stack_dy; tol:=stack_tol; uv:=stack_uv; xy:=stack_xy;@/
goto not_found;
end

@ The |path_intersection| procedure is much simpler.
It invokes |cubic_intersection| in lexicographic order until finding a
pair of cubics that intersect. The final intersection times are placed in
|cur_t| and~|cur_tt|.

@p procedure path_intersection(@!h,@!hh:pointer);
label exit;
var @!p,@!pp:pointer; {link registers that traverse the given paths}
@!n,@!nn:integer; {integer parts of intersection times, minus |unity|}
begin @<Change one-point paths into dead cycles@>;
tol_step:=0;
repeat n:=-unity; p:=h;
  repeat if right_type(p)<>endpoint then
    begin nn:=-unity; pp:=hh;
    repeat if right_type(pp)<>endpoint then
      begin cubic_intersection(p,pp);
      if cur_t>0 then
        begin cur_t:=cur_t+n; cur_tt:=cur_tt+nn; return;
        end;
      end;
    nn:=nn+unity; pp:=link(pp);
    until pp=hh;
    end;
  n:=n+unity; p:=link(p);
  until p=h;
tol_step:=tol_step+3;
until tol_step>3;
cur_t:=-unity; cur_tt:=-unity;
exit:end;

@ @<Change one-point paths...@>=
if right_type(h)=endpoint then
  begin right_x(h):=x_coord(h); left_x(h):=x_coord(h);
  right_y(h):=y_coord(h); left_y(h):=y_coord(h); right_type(h):=explicit;
  end;
if right_type(hh)=endpoint then
  begin right_x(hh):=x_coord(hh); left_x(hh):=x_coord(hh);
  right_y(hh):=y_coord(hh); left_y(hh):=y_coord(hh); right_type(hh):=explicit;
  end;

@* \[27] Online graphic output.
\MF\ displays images on the user's screen by means of a few primitive
operations that are defined below. These operations have deliberately been
kept simple so that they can be implemented without great difficulty on a
wide variety of machines. Since \PASCAL\ has no traditional standards for
graphic output, some system-dependent code needs to be written in order to
support this aspect of \MF; but the necessary routines are usually quite
easy to write.
@^system dependencies@>

In fact, there are exactly four such routines:

\yskip\hang
|init_screen| does whatever initialization is necessary to
support the other operations; it is a boolean function that returns
|false| if graphic output cannot be supported (e.g., if the other three
routines have not been written, or if the user doesn't have the
right kind of terminal).

\yskip\hang
|blank_rectangle| updates a buffer area in memory so that
all pixels in a specified rectangle will be set to the background color.

\yskip\hang
|paint_row| assigns values to specified pixels in a row of
the buffer just mentioned, based on ``transition'' indices explained below.

\yskip\hang
|update_screen| displays the current screen buffer; the
effects of |blank_rectangle| and |paint_row| commands may or may not
become visible until the next |update_screen| operation is performed.
(Thus, |update_screen| is analogous to |update_terminal|.)

\yskip\noindent
The \PASCAL\ code here is a minimum version of |init_screen| and
|update_screen|, usable on \MF\ installations that don't
support screen output. If |init_screen| is changed to return |true|
instead of |false|, the other routines will simply log the fact
that they have been called; they won't really display anything.
The standard test routines for \MF\ use this log information to check
that \MF\ is working properly, but the |wlog| instructions should be
removed from production versions of \MF.

@p function init_screen:boolean;
begin init_screen:=false;
end;
@#
procedure update_screen; {will be called only if |init_screen| returns |true|}
begin @!init wlog_ln('Calling UPDATESCREEN');@+tini {for testing only}
end;

@ The user's screen is assumed to be a rectangular area, |screen_width|
pixels wide and |screen_depth| pixels deep. The pixel in the upper left
corner is said to be in column~0 of row~0; the pixel in the lower right
corner is said to be in column |screen_width-1| of row |screen_depth-1|.
Notice that row numbers increase from top to bottom, contrary to \MF's
other coordinates.

Each pixel is assumed to have two states, referred to in this documentation
as |black| and |white|. The background color is called |white| and the
other color is called |black|; but any two distinct pixel values
can actually be used. For example, the author developed \MF\ on a
system for which |white| was black and |black| was bright green.

@d white=0 {background pixels}
@d black=1 {visible pixels}

@<Types...@>=
@!screen_row=0..screen_depth; {a row number on the screen}
@!screen_col=0..screen_width; {a column number on the screen}
@!trans_spec=array[screen_col] of screen_col; {a transition spec, see below}
@!pixel_color=white..black; {specifies one of the two pixel values}

@ We'll illustrate the |blank_rectangle| and |paint_row| operations by
pretending to declare a screen buffer called |screen_pixel|. This code
is actually commented out, but it does specify the intended effects.

@<Glob...@>=
@{@!screen_pixel:array[screen_row,screen_col] of pixel_color;@+@}

@ The |blank_rectangle| routine simply whitens all pixels that lie in
columns |left_col| through |right_col-1|, inclusive, of rows
|top_row| through |bot_row-1|, inclusive, given four parameters that satisfy
the relations
$$\hbox{|0<=left_col<=right_col<=screen_width|,\quad
  |0<=top_row<=bot_row<=screen_depth|.}$$
If |left_col=right_col| or |top_row=bot_row|, nothing happens.

The commented-out code in the following procedure is for illustrative
purposes only.
@^system dependencies@>

@p procedure blank_rectangle(@!left_col,@!right_col:screen_col;
  @!top_row,@!bot_row:screen_row);
var @!r:screen_row;
@!c:screen_col;
begin @{@+for r:=top_row to bot_row-1 do
  for c:=left_col to right_col-1 do
    screen_pixel[r,c]:=white;@+@}@/
@!init wlog_cr; {this will be done only after |init_screen=true|}
wlog_ln('Calling BLANKRECTANGLE(',left_col:1,',',
  right_col:1,',',top_row:1,',',bot_row:1,')');@+tini
end;

@ The real work of screen display is done by |paint_row|. But it's not
hard work, because the operation affects only
one of the screen rows, and it affects only a contiguous set of columns
in that row. There are four parameters: |r|~(the row),
|b|~(the initial color),
|a|~(the array of transition specifications),
and |n|~(the number of transitions). The elements of~|a| will satisfy
$$0\L a[0]<a[1]<\cdots<a[n]\L |screen_width|;$$
the value of |r| will satisfy |0<=r<screen_depth|; and |n| will be positive.

The general idea is to paint blocks of pixels in alternate colors;
the precise details are best conveyed by means of a \PASCAL\
program (see the commented-out code below).
@^system dependencies@>

@p procedure paint_row(@!r:screen_row;@!b:pixel_color;var @!a:trans_spec;
  @!n:screen_col);
var @!k:screen_col; {an index into |a|}
@!c:screen_col; {an index into |screen_pixel|}
begin @{ k:=0; c:=a[0];
repeat incr(k);
  repeat screen_pixel[r,c]:=b; incr(c);
  until c=a[k];
  b:=black-b; {$|black|\swap|white|$}
  until k=n;@+@}@/
@!init wlog('Calling PAINTROW(',r:1,',',b:1,';');
  {this is done only after |init_screen=true|}
for k:=0 to n do
  begin wlog(a[k]:1); if k<>n then wlog(',');
  end;
wlog_ln(')');@+tini
end;

@ The remainder of \MF's screen routines are system-independent calls
on the four primitives just defined.

First we have a global boolean variable that tells if |init_screen|
has been called, and another one that tells if |init_screen| has
given a |true| response.

@<Glob...@>=
@!screen_started:boolean; {have the screen primitives been initialized?}
@!screen_OK:boolean; {is it legitimate to call |blank_rectangle|,
  |paint_row|, and |update_screen|?}

@ @d start_screen==begin if not screen_started then
    begin screen_OK:=init_screen; screen_started:=true;
    end;
  end

@<Set init...@>=
screen_started:=false; screen_OK:=false;

@ \MF\ provides the user with 16 ``window'' areas on the screen, in each
of which it is possible to produce independent displays.

It should be noted that \MF's windows aren't really independent
``clickable'' entities in the sense of multi-window graphic workstations;
\MF\ simply maps them into subsets of a single screen image that is
controlled by |init_screen|, |blank_rectangle|, |paint_row|, and
|update_screen| as described above. Implementations of \MF\ on a
multi-window workstation probably therefore make use of only two
windows in the other sense: one for the terminal output and another
for the screen with \MF's 16 areas. Henceforth we shall
use the term window only in \MF's sense.

@<Types...@>=
@!window_number=0..15;

@ A user doesn't have to use any of the 16 windows. But when a window is
``opened,'' it is allocated to a specific rectangular portion of the screen
and to a specific rectangle with respect to \MF's coordinates. The relevant
data is stored in global arrays |window_open|, |left_col|, |right_col|,
|top_row|, |bot_row|, |m_window|, and |n_window|.

The |window_open| array is boolean, and its significance is obvious. The
|left_col|, \dots, |bot_row| arrays contain screen coordinates that
can be used to blank the entire window with |blank_rectangle|. And the
other two arrays just mentioned handle the conversion between
actual coordinates and screen coordinates: \MF's pixel in column~$m$
of row~$n$ will appear in screen column |m_window+m| and in screen row
|n_window-n|, provided that these lie inside the boundaries of the window.

Another array |window_time| holds the number of times this window has
been updated.

@<Glob...@>=
@!window_open:array[window_number] of boolean;
  {has this window been opened?}
@!left_col:array[window_number] of screen_col;
  {leftmost column position on screen}
@!right_col:array[window_number] of screen_col;
  {rightmost column position, plus~1}
@!top_row:array[window_number] of screen_row;
  {topmost row position on screen}
@!bot_row:array[window_number] of screen_row;
  {bottommost row position, plus~1}
@!m_window:array[window_number] of integer;
  {offset between user and screen columns}
@!n_window:array[window_number] of integer;
  {offset between user and screen rows}
@!window_time:array[window_number] of integer;
  {it has been updated this often}

@ @<Set init...@>=
for k:=0 to 15 do
  begin window_open[k]:=false; window_time[k]:=0;
  end;

@ Opening a window isn't like opening a file, because you can open it
as often as you like, and you never have to close it again. The idea is
simply to define special points on the current screen display.

Overlapping window specifications may cause complex effects that can
be understood only by scrutinizing \MF's display algorithms; thus it
has been left undefined in the \MF\ user manual, although the behavior
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
is in fact predictable.

Here is a subroutine that implements the command `\&{openwindow}~|k|
\&{from}~$(\\{r0},\\{c0})$ \&{to}~$(\\{r1},\\{c1})$ \&{at}~$(x,y)$'.

@p procedure open_a_window(@!k:window_number;@!r0,@!c0,@!r1,@!c1:scaled;
    @!x,@!y:scaled);
var @!m,@!n:integer; {pixel coordinates}
begin @<Adjust the coordinates |(r0,c0)| and |(r1,c1)| so that
  they lie in the proper range@>;
window_open[k]:=true; incr(window_time[k]);@/
left_col[k]:=c0; right_col[k]:=c1; top_row[k]:=r0; bot_row[k]:=r1;@/
@<Compute the offsets between screen coordinates and actual coordinates@>;
start_screen;
if screen_OK then
  begin blank_rectangle(c0,c1,r0,r1); update_screen;
  end;
end;

@ A window whose coordinates don't fit the existing screen size will be
truncated until they do.

@<Adjust the coordinates |(r0,c0)| and |(r1,c1)|...@>=
if r0<0 then r0:=0@+else r0:=round_unscaled(r0);
r1:=round_unscaled(r1);
if r1>screen_depth then r1:=screen_depth;
if r1<r0 then
  if r0>screen_depth then r0:=r1@+else r1:=r0;
if c0<0 then c0:=0@+else c0:=round_unscaled(c0);
c1:=round_unscaled(c1);
if c1>screen_width then c1:=screen_width;
if c1<c0 then
  if c0>screen_width then c0:=c1@+else c1:=c0

@ Three sets of coordinates are rampant, and they must be kept straight!
(i)~\MF's main coordinates refer to the edges between pixels. (ii)~\MF's
pixel coordinates (within edge structures) say that the pixel bounded by
$(m,n)$, $(m,n+1)$, $(m+1,n)$, and~$(m+1,n+1)$ is in pixel row number~$n$
and pixel column number~$m$. (iii)~Screen coordinates, on the other hand,
have rows numbered in increasing order from top to bottom, as mentioned
above.
@^coordinates, explained@>

The program here first computes integers $m$ and $n$ such that
pixel column~$m$ of pixel row~$n$ will be at the upper left corner
of the window. Hence pixel column |m-c0| of pixel row |n+r0|
will be at the upper left corner of the screen.

@<Compute the offsets between screen coordinates and actual coordinates@>=
m:=round_unscaled(x); n:=round_unscaled(y)-1;@/
m_window[k]:=c0-m; n_window[k]:=r0+n

@ Now here comes \MF's most complicated operation related to window
display: Given the number~|k| of an open window, the pixels of positive
weight in |cur_edges| will be shown as |black| in the window; all other
pixels will be shown as |white|.

@p procedure disp_edges(@!k:window_number);
label done,found;
var @!p,@!q:pointer; {for list manipulation}
@!already_there:boolean; {is a previous incarnation in the window?}
@!r:integer; {row number}
@<Other local variables for |disp_edges|@>@;
begin if screen_OK then
 if left_col[k]<right_col[k] then if top_row[k]<bot_row[k] then
  begin already_there:=false;
  if last_window(cur_edges)=k then
   if last_window_time(cur_edges)=window_time[k] then
    already_there:=true;
  if not already_there then
    blank_rectangle(left_col[k],right_col[k],top_row[k],bot_row[k]);
  @<Initialize for the display computations@>;
  p:=link(cur_edges); r:=n_window[k]-(n_min(cur_edges)-zero_field);
  while (p<>cur_edges)and(r>=top_row[k]) do
    begin if r<bot_row[k] then
      @<Display the pixels of edge row |p| in screen row |r|@>;
    p:=link(p); decr(r);
    end;
  update_screen;
  incr(window_time[k]);
  last_window(cur_edges):=k; last_window_time(cur_edges):=window_time[k];
  end;
end;

@ Since it takes some work to display a row, we try to avoid recomputation
whenever we can.

@<Display the pixels of edge row |p| in screen row |r|@>=
begin if unsorted(p)>void then sort_edges(p)
else if unsorted(p)=void then if already_there then goto done;
unsorted(p):=void; {this time we'll paint, but maybe not next time}
@<Set up the parameters needed for |paint_row|;
  but |goto done| if no painting is needed after all@>;
paint_row(r,b,row_transition,n);
done: end

@ The transition-specification parameter to |paint_row| is always the same
array.

@<Glob...@>=
@!row_transition:trans_spec; {an array of |black|/|white| transitions}

@ The job remaining is to go through the list |sorted(p)|, unpacking the
|info| fields into |m| and weight, then making |black| the pixels whose
accumulated weight~|w| is positive.

@<Other local variables for |disp_edges|@>=
@!n:screen_col; {the highest active index in |row_transition|}
@!w,@!ww:integer; {old and new accumulated weights}
@!b:pixel_color; {status of first pixel in the row transitions}
@!m,@!mm:integer; {old and new screen column positions}
@!d:integer; {edge-and-weight without |min_halfword| compensation}
@!m_adjustment:integer; {conversion between edge and screen coordinates}
@!right_edge:integer; {largest edge-and-weight that could affect the window}
@!min_col:screen_col; {the smallest screen column number in the window}

@ Some precomputed constants make the display calculations faster.

@<Initialize for the display computations@>=
m_adjustment:=m_window[k]-m_offset(cur_edges);@/
right_edge:=8*(right_col[k]-m_adjustment);@/
min_col:=left_col[k]

@ @<Set up the parameters needed for |paint_row|...@>=
n:=0; ww:=0; m:=-1; w:=0;
q:=sorted(p); row_transition[0]:=min_col;
loop@+  begin if q=sentinel then d:=right_edge
  else d:=ho(info(q));
  mm:=(d div 8)+m_adjustment;
  if mm<>m then
    begin @<Record a possible transition in column |m|@>;
    m:=mm; w:=ww;
    end;
  if d>=right_edge then goto found;
  ww:=ww+(d mod 8)-zero_w;
  q:=link(q);
  end;
found:@<Wind up the |paint_row| parameter calculation by inserting the
  final transition; |goto done| if no painting is needed@>;

@ Now |m| is a screen column |<right_col[k]|.

@<Record a possible transition in column |m|@>=
if w<=0 then
  begin if ww>0 then if m>min_col then
    begin if n=0 then
      if already_there then
        begin b:=white; incr(n);
        end
      else b:=black
    else incr(n);
    row_transition[n]:=m;
    end;
  end
else if ww<=0 then if m>min_col then
  begin if n=0 then b:=black;
  incr(n); row_transition[n]:=m;
  end

@ If the entire row is |white| in the window area, we can omit painting it
when |already_there| is false, since it has already been blanked out in
that case.

When the following code is invoked, |row_transition[n]| will be
strictly less than |right_col[k]|.

@<Wind up the |paint_row|...@>=
if already_there or(ww>0) then
  begin if n=0 then
    if ww>0 then b:=black
    else b:=white;
  incr(n); row_transition[n]:=right_col[k];
  end
else if n=0 then goto done

@* \[28] Dynamic linear equations.
\MF\ users define variables implicitly by stating equations that should be
satisfied; the computer is supposed to be smart enough to solve those equations.
And indeed, the computer tries valiantly to do so, by distinguishing five
different types of numeric values:

\smallskip\hang
|type(p)=known| is the nice case, when |value(p)| is the |scaled| value
of the variable whose address is~|p|.

\smallskip\hang
|type(p)=dependent| means that |value(p)| is not present, but |dep_list(p)|
points to a {\sl dependency list\/} that expresses the value of variable~|p|
as a |scaled| number plus a sum of independent variables with |fraction|
coefficients.

\smallskip\hang
|type(p)=independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
number'' reflecting the time this variable was first used in an equation;
also |0<=m<64|, and each dependent variable
that refers to this one is actually referring to the future value of
this variable times~$2^m$. (Usually |m=0|, but higher degrees of
scaling are sometimes needed to keep the coefficients in dependency lists
from getting too large. The value of~|m| will always be even.)

\smallskip\hang
|type(p)=numeric_type| means that variable |p| hasn't appeared in an
equation before, but it has been explicitly declared to be numeric.

\smallskip\hang
|type(p)=undefined| means that variable |p| hasn't appeared before.

\smallskip\noindent
We have actually discussed these five types in the reverse order of their
history during a computation: Once |known|, a variable never again
becomes |dependent|; once |dependent|, it almost never again becomes
|independent|; once |independent|, it never again becomes |numeric_type|;
and once |numeric_type|, it never again becomes |undefined| (except
of course when the user specifically decides to scrap the old value
and start again). A backward step may, however, take place: Sometimes
a |dependent| variable becomes |independent| again, when one of the
independent variables it depends on is reverting to |undefined|.

@d s_scale=64 {the serial numbers are multiplied by this factor}
@d new_indep(#)== {create a new independent variable}
  begin type(#):=independent; serial_no:=serial_no+s_scale;
  value(#):=serial_no;
  end

@<Glob...@>=
@!serial_no:integer; {the most recent serial number, times |s_scale|}

@ @<Make variable |q+s| newly independent@>=new_indep(q+s)

@ But how are dependency lists represented? It's simple: The linear combination
$\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
|q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
@t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
of $v_1$; and |link(p)| points to the dependency list
$\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
they appear in decreasing order of their |value| fields (i.e., of
their serial numbers). \ (It is convenient to use decreasing order,
since |value(null)=0|. If the independent variables were not sorted by
serial number but by some other criterion, such as their location in |mem|,
the equation-solving mechanism would be too system-dependent, because
the ordering can affect the computed results.)

The |link| field in the node that contains the constant term $\beta$ is
called the {\sl final link\/} of the dependency list. \MF\ maintains
a doubly-linked master list of all dependency lists, in terms of a permanently
allocated node
in |mem| called |dep_head|. If there are no dependencies, we have
|link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
and |prev_dep(p)=dep_head|. We have |type(p)=dependent|, and |dep_list(p)|
points to its dependency list. If the final link of that dependency list
occurs in location~|q|, then |link(q)| points to the next dependent
variable (say~|r|); and we have |prev_dep(r)=q|, etc.

@d dep_list(#)==link(value_loc(#))
  {half of the |value| field in a |dependent| variable}
@d prev_dep(#)==info(value_loc(#))
  {the other half; makes a doubly linked list}
@d dep_node_size=2 {the number of words per dependency node}

@<Initialize table entries...@>= serial_no:=0;
link(dep_head):=dep_head; prev_dep(dep_head):=dep_head;
info(dep_head):=null; dep_list(dep_head):=null;

@ Actually the description above contains a little white lie. There's
another kind of variable called |proto_dependent|, which is
just like a |dependent| one except that the $\alpha$ coefficients
in its dependency list are |scaled| instead of being fractions.
Proto-dependency lists are mixed with dependency lists in the
nodes reachable from |dep_head|.

@ Here is a procedure that prints a dependency list in symbolic form.
The second parameter should be either |dependent| or |proto_dependent|,
to indicate the scaling of the coefficients.

@<Declare subroutines for printing expressions@>=
procedure print_dependency(@!p:pointer;@!t:small_number);
label exit;
var @!v:integer; {a coefficient}
@!pp,@!q:pointer; {for list manipulation}
begin pp:=p;
loop@+  begin v:=abs(value(p)); q:=info(p);
  if q=null then {the constant term}
    begin if (v<>0)or(p=pp) then
      begin if value(p)>0 then if p<>pp then print_char("+");
      print_scaled(value(p));
      end;
    return;
    end;
  @<Print the coefficient, unless it's $\pm1.0$@>;
  if type(q)<>independent then confusion("dep");
@:this can't happen dep}{\quad dep@>
  print_variable_name(q); v:=value(q) mod s_scale;
  while v>0 do
    begin print("*4"); v:=v-2;
    end;
  p:=link(p);
  end;
exit:end;

@ @<Print the coefficient, unless it's $\pm1.0$@>=
if value(p)<0 then print_char("-")
else if p<>pp then print_char("+");
if t=dependent then v:=round_fraction(v);
if v<>unity then print_scaled(v)

@ The maximum absolute value of a coefficient in a given dependency list
is returned by the following simple function.

@p function max_coef(@!p:pointer):fraction;
var @!x:fraction; {the maximum so far}
begin x:=0;
while info(p)<>null do
  begin if abs(value(p))>x then x:=abs(value(p));
  p:=link(p);
  end;
max_coef:=x;
end;

@ One of the main operations needed on dependency lists is to add a multiple
of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
to dependency lists and |f| is a fraction.

If the coefficient of any independent variable becomes |coef_bound| or
more, in absolute value, this procedure changes the type of that variable
to `|independent_needing_fix|', and sets the global variable |fix_needed|
to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
$\mu^2+\mu<8$; this means that the numbers we deal with won't
get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
2.3723$, the safer value 7/3 is taken as the threshold.)

The changes mentioned in the preceding paragraph are actually done only if
the global variable |watch_coefs| is |true|. But it usually is; in fact,
it is |false| only when \MF\ is making a dependency list that will soon
be equated to zero.

Several procedures that act on dependency lists, including |p_plus_fq|,
set the global variable |dep_final| to the final (constant term) node of
the dependency list that they produce.

@d coef_bound==@'4525252525 {|fraction| approximation to 7/3}
@d independent_needing_fix=0

@<Glob...@>=
@!fix_needed:boolean; {does at least one |independent| variable need scaling?}
@!watch_coefs:boolean; {should we scale coefficients that exceed |coef_bound|?}
@!dep_final:pointer; {location of the constant term and final link}

@ @<Set init...@>=
fix_needed:=false; watch_coefs:=true;

@ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
set to |proto_dependent| if |p| is a proto-dependency list. In this
case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
should be |proto_dependent| if |q| is a proto-dependency list.

List |q| is unchanged by the operation; but list |p| is totally destroyed.

The final link of the dependency list or proto-dependency list returned
by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
constant term of the result will be located in the same |mem| location
as the original constant term of~|p|.

Coefficients of the result are assumed to be zero if they are less than
a certain threshold. This compensates for inevitable rounding errors,
and tends to make more variables `|known|'. The threshold is approximately
$10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
proto-dependencies.

@d fraction_threshold=2685 {a |fraction| coefficient less than this is zeroed}
@d half_fraction_threshold=1342 {half of |fraction_threshold|}
@d scaled_threshold=8 {a |scaled| coefficient less than this is zeroed}
@d half_scaled_threshold=4 {half of |scaled_threshold|}

@<Declare basic dependency-list subroutines@>=
function p_plus_fq(@!p:pointer;@!f:integer;@!q:pointer;
  @!t,@!tt:small_number):pointer;
label done;
var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
@!r,@!s:pointer; {for list manipulation}
@!threshold:integer; {defines a neighborhood of zero}
@!v:integer; {temporary register}
begin if t=dependent then threshold:=fraction_threshold
else threshold:=scaled_threshold;
r:=temp_head; pp:=info(p); qq:=info(q);
loop@+  if pp=qq then
    if pp=null then goto done
    else @<Contribute a term from |p|, plus |f| times the
      corresponding term from |q|@>
  else if value(pp)<value(qq) then
    @<Contribute a term from |q|, multiplied by~|f|@>
  else  begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
    end;
done: if t=dependent then
  value(p):=slow_add(value(p),take_fraction(value(q),f))
else  value(p):=slow_add(value(p),take_scaled(value(q),f));
link(r):=p; dep_final:=p; p_plus_fq:=link(temp_head);
end;

@ @<Contribute a term from |p|, plus |f|...@>=
begin if tt=dependent then v:=value(p)+take_fraction(f,value(q))
else v:=value(p)+take_scaled(f,value(q));
value(p):=v; s:=p; p:=link(p);
if abs(v)<threshold then free_node(s,dep_node_size)
else  begin if abs(v)>=coef_bound then if watch_coefs then
    begin type(qq):=independent_needing_fix; fix_needed:=true;
    end;
  link(r):=s; r:=s;
  end;
pp:=info(p); q:=link(q); qq:=info(q);
end

@ @<Contribute a term from |q|, multiplied by~|f|@>=
begin if tt=dependent then v:=take_fraction(f,value(q))
else v:=take_scaled(f,value(q));
if abs(v)>half(threshold) then
  begin s:=get_node(dep_node_size); info(s):=qq; value(s):=v;
  if abs(v)>=coef_bound then if watch_coefs then
    begin type(qq):=independent_needing_fix; fix_needed:=true;
    end;
  link(r):=s; r:=s;
  end;
q:=link(q); qq:=info(q);
end

@ It is convenient to have another subroutine for the special case
of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
both of the same type~|t| (either |dependent| or |proto_dependent|).

@p function p_plus_q(@!p:pointer;@!q:pointer;@!t:small_number):pointer;
label done;
var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
@!r,@!s:pointer; {for list manipulation}
@!threshold:integer; {defines a neighborhood of zero}
@!v:integer; {temporary register}
begin if t=dependent then threshold:=fraction_threshold
else threshold:=scaled_threshold;
r:=temp_head; pp:=info(p); qq:=info(q);
loop@+  if pp=qq then
    if pp=null then goto done
    else @<Contribute a term from |p|, plus the
      corresponding term from |q|@>
  else if value(pp)<value(qq) then
    begin s:=get_node(dep_node_size); info(s):=qq; value(s):=value(q);
    q:=link(q); qq:=info(q); link(r):=s; r:=s;
    end
  else  begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
    end;
done: value(p):=slow_add(value(p),value(q));
link(r):=p; dep_final:=p; p_plus_q:=link(temp_head);
end;

@ @<Contribute a term from |p|, plus the...@>=
begin v:=value(p)+value(q);
value(p):=v; s:=p; p:=link(p); pp:=info(p);
if abs(v)<threshold then free_node(s,dep_node_size)
else  begin if abs(v)>=coef_bound then if watch_coefs then
    begin type(qq):=independent_needing_fix; fix_needed:=true;
    end;
  link(r):=s; r:=s;
  end;
q:=link(q); qq:=info(q);
end

@ A somewhat simpler routine will multiply a dependency list
by a given constant~|v|. The constant is either a |fraction| less than
|fraction_one|, or it is |scaled|. In the latter case we might be forced to
convert a dependency list to a proto-dependency list.
Parameters |t0| and |t1| are the list types before and after;
they should agree unless |t0=dependent| and |t1=proto_dependent|
and |v_is_scaled=true|.

@p function p_times_v(@!p:pointer;@!v:integer;
  @!t0,@!t1:small_number;@!v_is_scaled:boolean):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!w:integer; {tentative coefficient}
@!threshold:integer;
@!scaling_down:boolean;
begin if t0<>t1 then scaling_down:=true@+else scaling_down:=not v_is_scaled;
if t1=dependent then threshold:=half_fraction_threshold
else threshold:=half_scaled_threshold;
r:=temp_head;
while info(p)<>null do
  begin if scaling_down then w:=take_fraction(v,value(p))
  else w:=take_scaled(v,value(p));
  if abs(w)<=threshold then
    begin s:=link(p); free_node(p,dep_node_size); p:=s;
    end
  else  begin if abs(w)>=coef_bound then
      begin fix_needed:=true; type(info(p)):=independent_needing_fix;
      end;
    link(r):=p; r:=p; value(p):=w; p:=link(p);
    end;
  end;
link(r):=p;
if v_is_scaled then value(p):=take_scaled(value(p),v)
else value(p):=take_fraction(value(p),v);
p_times_v:=link(temp_head);
end;

@ Similarly, we sometimes need to divide a dependency list
by a given |scaled| constant.

@<Declare basic dependency-list subroutines@>=
function p_over_v(@!p:pointer;@!v:scaled;
  @!t0,@!t1:small_number):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!w:integer; {tentative coefficient}
@!threshold:integer;
@!scaling_down:boolean;
begin if t0<>t1 then scaling_down:=true@+else scaling_down:=false;
if t1=dependent then threshold:=half_fraction_threshold
else threshold:=half_scaled_threshold;
r:=temp_head;
while info(p)<>null do
  begin if scaling_down then
    if abs(v)<@'2000000 then w:=make_scaled(value(p),v*@'10000)
    else w:=make_scaled(round_fraction(value(p)),v)
  else w:=make_scaled(value(p),v);
  if abs(w)<=threshold then
    begin s:=link(p); free_node(p,dep_node_size); p:=s;
    end
  else  begin if abs(w)>=coef_bound then
      begin fix_needed:=true; type(info(p)):=independent_needing_fix;
      end;
    link(r):=p; r:=p; value(p):=w; p:=link(p);
    end;
  end;
link(r):=p; value(p):=make_scaled(value(p),v);
p_over_v:=link(temp_head);
end;

@ Here's another utility routine for dependency lists. When an independent
variable becomes dependent, we want to remove it from all existing
dependencies. The |p_with_x_becoming_q| function computes the
dependency list of~|p| after variable~|x| has been replaced by~|q|.

This procedure has basically the same calling conventions as |p_plus_fq|:
List~|q| is unchanged; list~|p| is destroyed; the constant node and the
final link are inherited from~|p|; and the fourth parameter tells whether
or not |p| is |proto_dependent|. However, the global variable |dep_final|
is not altered if |x| does not occur in list~|p|.

@p function p_with_x_becoming_q(@!p,@!x,@!q:pointer;@!t:small_number):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!v:integer; {coefficient of |x|}
@!sx:integer; {serial number of |x|}
begin s:=p; r:=temp_head; sx:=value(x);
while value(info(s))>sx do
  begin r:=s; s:=link(s);
  end;
if info(s)<>x then p_with_x_becoming_q:=p
else  begin link(temp_head):=p; link(r):=link(s); v:=value(s);
  free_node(s,dep_node_size);
  p_with_x_becoming_q:=p_plus_fq(link(temp_head),v,q,t,dependent);
  end;
end;

@ Here's a simple procedure that reports an error when a variable
has just received a known value that's out of the required range.

@<Declare basic dependency-list subroutines@>=
procedure val_too_big(@!x:scaled);
begin if internal[warning_check]>0 then
  begin print_err("Value is too large ("); print_scaled(x); print_char(")");
@.Value is too large@>
  help4("The equation I just processed has given some variable")@/
    ("a value of 4096 or more. Continue and I'll try to cope")@/
    ("with that big value; but it might be dangerous.")@/
    ("(Set warningcheck:=0 to suppress this message.)");
  error;
  end;
end;

@ When a dependent variable becomes known, the following routine
removes its dependency list. Here |p| points to the variable, and
|q| points to the dependency list (which is one node long).

@<Declare basic dependency-list subroutines@>=
procedure make_known(@!p,@!q:pointer);
var @!t:dependent..proto_dependent; {the previous type}
begin prev_dep(link(q)):=prev_dep(p);
link(prev_dep(p)):=link(q); t:=type(p);
type(p):=known; value(p):=value(q); free_node(q,dep_node_size);
if abs(value(p))>=fraction_one then val_too_big(value(p));
if internal[tracing_equations]>0 then if interesting(p) then
  begin begin_diagnostic; print_nl("#### ");
@:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
  print_variable_name(p); print_char("="); print_scaled(value(p));
  end_diagnostic(false);
  end;
if cur_exp=p then if cur_type=t then
  begin cur_type:=known; cur_exp:=value(p);
  free_node(p,value_node_size);
  end;
end;

@ The |fix_dependencies| routine is called into action when |fix_needed|
has been triggered. The program keeps a list~|s| of independent variables
whose coefficients must be divided by~4.

In unusual cases, this fixup process might reduce one or more coefficients
to zero, so that a variable will become known more or less by default.

@<Declare basic dependency-list subroutines@>=
procedure fix_dependencies;
label done;
var @!p,@!q,@!r,@!s,@!t:pointer; {list manipulation registers}
@!x:pointer; {an independent variable}
begin r:=link(dep_head); s:=null;
while r<>dep_head do
  begin t:=r;
  @<Run through the dependency list for variable |t|, fixing
    all nodes, and ending with final link~|q|@>;
  r:=link(q);
  if q=dep_list(t) then make_known(t,q);
  end;
while s<>null do
  begin p:=link(s); x:=info(s); free_avail(s); s:=p;
  type(x):=independent; value(x):=value(x)+2;
  end;
fix_needed:=false;
end;

@ @d independent_being_fixed=1 {this variable already appears in |s|}

@<Run through the dependency list for variable |t|...@>=
r:=value_loc(t); {|link(r)=dep_list(t)|}
loop@+  begin q:=link(r); x:=info(q);
  if x=null then goto done;
  if type(x)<=independent_being_fixed then
    begin if type(x)<independent_being_fixed then
      begin p:=get_avail; link(p):=s; s:=p;
      info(s):=x; type(x):=independent_being_fixed;
      end;
    value(q):=value(q) div 4;
    if value(q)=0 then
      begin link(r):=link(q); free_node(q,dep_node_size); q:=r;
      end;
    end;
  r:=q;
  end;
done:

@ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
linking it into the list of all known dependencies. We assume that
|dep_final| points to the final node of list~|p|.

@p procedure new_dep(@!q,@!p:pointer);
var @!r:pointer; {what used to be the first dependency}
begin dep_list(q):=p; prev_dep(q):=dep_head;
r:=link(dep_head); link(dep_final):=r; prev_dep(r):=dep_final;
link(dep_head):=q;
end;

@ Here is one of the ways a dependency list gets started.
The |const_dependency| routine produces a list that has nothing but
a constant term.

@p function const_dependency(@!v:scaled):pointer;
begin dep_final:=get_node(dep_node_size);
value(dep_final):=v; info(dep_final):=null;
const_dependency:=dep_final;
end;

@ And here's a more interesting way to start a dependency list from scratch:
The parameter to |single_dependency| is the location of an
independent variable~|x|, and the result is the simple dependency list
`|x+0|'.

In the unlikely event that the given independent variable has been doubled so
often that we can't refer to it with a nonzero coefficient,
|single_dependency| returns the simple list `0'.  This case can be
recognized by testing that the returned list pointer is equal to
|dep_final|.

@p function single_dependency(@!p:pointer):pointer;
var @!q:pointer; {the new dependency list}
@!m:integer; {the number of doublings}
begin m:=value(p) mod s_scale;
if m>28 then single_dependency:=const_dependency(0)
else  begin q:=get_node(dep_node_size);
  value(q):=two_to_the[28-m]; info(q):=p;@/
  link(q):=const_dependency(0); single_dependency:=q;
  end;
end;

@ We sometimes need to make an exact copy of a dependency list.

@p function copy_dep_list(@!p:pointer):pointer;
label done;
var @!q:pointer; {the new dependency list}
begin q:=get_node(dep_node_size); dep_final:=q;
loop@+  begin info(dep_final):=info(p); value(dep_final):=value(p);
  if info(dep_final)=null then goto done;
  link(dep_final):=get_node(dep_node_size);
  dep_final:=link(dep_final); p:=link(p);
  end;
done:copy_dep_list:=q;
end;

@ But how do variables normally become known? Ah, now we get to the heart of the
equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
or |proto_dependent| list,~|p|, in which at least one independent variable
appears. It equates this list to zero, by choosing an independent variable
with the largest coefficient and making it dependent on the others. The
newly dependent variable is eliminated from all current dependencies,
thereby possibly making other dependent variables known.

The given list |p| is, of course, totally destroyed by all this processing.

@p procedure linear_eq(@!p:pointer;@!t:small_number);
var @!q,@!r,@!s:pointer; {for link manipulation}
@!x:pointer; {the variable that loses its independence}
@!n:integer; {the number of times |x| had been halved}
@!v:integer; {the coefficient of |x| in list |p|}
@!prev_r:pointer; {lags one step behind |r|}
@!final_node:pointer; {the constant term of the new dependency list}
@!w:integer; {a tentative coefficient}
begin @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
x:=info(q); n:=value(x) mod s_scale;@/
@<Divide list |p| by |-v|, removing node |q|@>;
if internal[tracing_equations]>0 then @<Display the new dependency@>;
@<Simplify all existing dependencies by substituting for |x|@>;
@<Change variable |x| from |independent| to |dependent| or |known|@>;
if fix_needed then fix_dependencies;
end;

@ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
q:=p; r:=link(p); v:=value(q);
while info(r)<>null do
  begin if abs(value(r))>abs(v) then
    begin q:=r; v:=value(r);
    end;
  r:=link(r);
  end

@ Here we want to change the coefficients from |scaled| to |fraction|,
except in the constant term. In the common case of a trivial equation
like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=dependent|.

@<Divide list |p| by |-v|, removing node |q|@>=
s:=temp_head; link(s):=p; r:=p;
repeat if r=q then
  begin link(s):=link(r); free_node(r,dep_node_size);
  end
else  begin w:=make_fraction(value(r),v);
  if abs(w)<=half_fraction_threshold then
    begin link(s):=link(r); free_node(r,dep_node_size);
    end
  else  begin value(r):=-w; s:=r;
    end;
  end;
r:=link(s);
until info(r)=null;
if t=proto_dependent then value(r):=-make_scaled(value(r),v)
else if v<>-fraction_one then value(r):=-make_fraction(value(r),v);
final_node:=r; p:=link(temp_head)

@ @<Display the new dependency@>=
if interesting(x) then
  begin begin_diagnostic; print_nl("## "); print_variable_name(x);
@:]]]\#\#_}{\.{\#\#}@>
  w:=n;
  while w>0 do
    begin print("*4"); w:=w-2;
    end;
  print_char("="); print_dependency(p,dependent); end_diagnostic(false);
  end

@ @<Simplify all existing dependencies by substituting for |x|@>=
prev_r:=dep_head; r:=link(dep_head);
while r<>dep_head do
  begin s:=dep_list(r); q:=p_with_x_becoming_q(s,x,p,type(r));
  if info(q)=null then make_known(r,q)
  else  begin dep_list(r):=q;
    repeat q:=link(q);
    until info(q)=null;
    prev_r:=q;
    end;
  r:=link(prev_r);
  end

@ @<Change variable |x| from |independent| to |dependent| or |known|@>=
if n>0 then @<Divide list |p| by $2^n$@>;
if info(p)=null then
  begin type(x):=known;
  value(x):=value(p);
  if abs(value(x))>=fraction_one then val_too_big(value(x));
  free_node(p,dep_node_size);
  if cur_exp=x then if cur_type=independent then
    begin cur_exp:=value(x); cur_type:=known;
    free_node(x,value_node_size);
    end;
  end
else  begin type(x):=dependent; dep_final:=final_node; new_dep(x,p);
  if cur_exp=x then if cur_type=independent then cur_type:=dependent;
  end

@ @<Divide list |p| by $2^n$@>=
begin s:=temp_head; link(temp_head):=p; r:=p;
repeat if n>30 then w:=0
else w:=value(r) div two_to_the[n];
if (abs(w)<=half_fraction_threshold)and(info(r)<>null) then
  begin link(s):=link(r);
  free_node(r,dep_node_size);
  end
else  begin value(r):=w; s:=r;
  end;
r:=link(s);
until info(s)=null;
p:=link(temp_head);
end

@ The |check_mem| procedure, which is used only when \MF\ is being
debugged, makes sure that the current dependency lists are well formed.

@<Check the list of linear dependencies@>=
q:=dep_head; p:=link(q);
while p<>dep_head do
  begin if prev_dep(p)<>q then
    begin print_nl("Bad PREVDEP at "); print_int(p);
@.Bad PREVDEP...@>
    end;
  p:=dep_list(p); r:=inf_val;
  repeat if value(info(p))>=value(r) then
    begin print_nl("Out of order at "); print_int(p);
@.Out of order...@>
    end;
  r:=info(p); q:=p; p:=link(q);
  until r=null;
  end

@* \[29] Dynamic nonlinear equations.
Variables of numeric type are maintained by the general scheme of
independent, dependent, and known values that we have just studied;
and the components of pair and transform variables are handled in the
same way. But \MF\ also has five other types of values: \&{boolean},
\&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?

Equations are allowed between nonlinear quantities, but only in a
simple form. Two variables that haven't yet been assigned values are
either equal to each other, or they're not.

Before a boolean variable has received a value, its type is |unknown_boolean|;
similarly, there are variables whose type is |unknown_string|, |unknown_pen|,
|unknown_path|, and |unknown_picture|. In such cases the value is either
|null| (which means that no other variables are equivalent to this one), or
it points to another variable of the same undefined type. The pointers in the
latter case form a cycle of nodes, which we shall call a ``ring.''
Rings of undefined variables may include capsules, which arise as
intermediate results within expressions or as \&{expr} parameters to macros.

When one member of a ring receives a value, the same value is given to
all the other members. In the case of paths and pictures, this implies
making separate copies of a potentially large data structure; users should
restrain their enthusiasm for such generality, unless they have lots and
lots of memory space.

@ The following procedure is called when a capsule node is being
added to a ring (e.g., when an unknown variable is mentioned in an expression).

@p function new_ring_entry(@!p:pointer):pointer;
var q:pointer; {the new capsule node}
begin q:=get_node(value_node_size); name_type(q):=capsule;
type(q):=type(p);
if value(p)=null then value(q):=p@+else value(q):=value(p);
value(p):=q;
new_ring_entry:=q;
end;

@ Conversely, we might delete a capsule or a variable before it becomes known.
The following procedure simply detaches a quantity from its ring,
without recycling the storage.

@<Declare the recycling subroutines@>=
procedure ring_delete(@!p:pointer);
var @!q:pointer;
begin q:=value(p);
if q<>null then if q<>p then
  begin while value(q)<>p do q:=value(q);
  value(q):=value(p);
  end;
end;

@ Eventually there might be an equation that assigns values to all of the
variables in a ring. The |nonlinear_eq| subroutine does the necessary
propagation of values.

If the parameter |flush_p| is |true|, node |p| itself needn't receive a
value; it will soon be recycled.

@p procedure nonlinear_eq(@!v:integer;@!p:pointer;@!flush_p:boolean);
var @!t:small_number; {the type of ring |p|}
@!q,@!r:pointer; {link manipulation registers}
begin t:=type(p)-unknown_tag; q:=value(p);
if flush_p then type(p):=vacuous@+else p:=q;
repeat r:=value(q); type(q):=t;
case t of
boolean_type: value(q):=v;
string_type: begin value(q):=v; add_str_ref(v);
  end;
pen_type: begin value(q):=v; add_pen_ref(v);
  end;
path_type: value(q):=copy_path(v);
picture_type: value(q):=copy_edges(v);
end; {there ain't no more cases}
q:=r;
until q=p;
end;

@ If two members of rings are equated, and if they have the same type,
the |ring_merge| procedure is called on to make them equivalent.

@p procedure ring_merge(@!p,@!q:pointer);
label exit;
var @!r:pointer; {traverses one list}
begin r:=value(p);
while r<>p do
  begin if r=q then
    begin @<Exclaim about a redundant equation@>;
    return;
    end;
  r:=value(r);
  end;
r:=value(p); value(p):=value(q); value(q):=r;
exit:end;

@ @<Exclaim about a redundant equation@>=
begin print_err("Redundant equation");@/
@.Redundant equation@>
help2("I already knew that this equation was true.")@/
  ("But perhaps no harm has been done; let's continue.");@/
put_get_error;
end

@* \[30] Introduction to the syntactic routines.
Let's pause a moment now and try to look at the Big Picture.
The \MF\ program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
while parsing expressions and locating operators and operands. The
semantic routines act as an interpreter responding to these operators,
which may be regarded as commands. And the output routines are
periodically called on to produce compact font descriptions that can be
used for typesetting or for making interim proof drawings. We have
discussed the basic data structures and many of the details of semantic
operations, so we are good and ready to plunge into the part of \MF\ that
actually controls the activities.

Our current goal is to come to grips with the |get_next| procedure,
which is the keystone of \MF's input mechanism. Each call of |get_next|
sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
representing the next input token.
$$\vbox{\halign{#\hfil\cr
  \hbox{|cur_cmd| denotes a command code from the long list of codes
   given earlier;}\cr
  \hbox{|cur_mod| denotes a modifier of the command code;}\cr
  \hbox{|cur_sym| is the hash address of the symbolic token that was
   just scanned,}\cr
  \hbox{\qquad or zero in the case of a numeric or string
   or capsule token.}\cr}}$$
Underlying this external behavior of |get_next| is all the machinery
necessary to convert from character files to tokens. At a given time we
may be only partially finished with the reading of several files (for
which \&{input} was specified), and partially finished with the expansion
of some user-defined macros and/or some macro parameters, and partially
finished reading some text that the user has inserted online,
and so on. When reading a character file, the characters must be
converted to tokens; comments and blank spaces must
be removed, numeric and string tokens must be evaluated.

To handle these situations, which might all be present simultaneously,
\MF\ uses various stacks that hold information about the incomplete
activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly
recursive process, but the |get_next| procedure is not recursive.

@<Glob...@>=
@!cur_cmd: eight_bits; {current command set by |get_next|}
@!cur_mod: integer; {operand of current command}
@!cur_sym: halfword; {hash address of current symbol}

@ The |print_cmd_mod| routine prints a symbolic interpretation of a
command code and its modifier.
It consists of a rather tedious sequence of print
commands, and most of it is essentially an inverse to the |primitive|
routine that enters a \MF\ primitive into |hash| and |eqtb|. Therefore almost
all of this procedure appears elsewhere in the program, together with the
corresponding |primitive| calls.

@<Declare the procedure called |print_cmd_mod|@>=
procedure print_cmd_mod(@!c,@!m:integer);
begin case c of
@t\4@>@<Cases of |print_cmd_mod| for symbolic printing of primitives@>@/
othercases print("[unknown command code!]")
endcases;
end;

@ Here is a procedure that displays a given command in braces, in the
user's transcript file.

@d show_cur_cmd_mod==show_cmd_mod(cur_cmd,cur_mod)

@p procedure show_cmd_mod(@!c,@!m:integer);
begin begin_diagnostic; print_nl("{");
print_cmd_mod(c,m); print_char("}");
end_diagnostic(false);
end;

@* \[31] Input stacks and states.
The state of \MF's input mechanism appears in the input stack, whose
entries are records with five fields, called |index|, |start|, |loc|,
|limit|, and |name|. The top element of this stack is maintained in a
global variable for which no subscripting needs to be done; the other
elements of the stack appear in an array. Hence the stack is declared thus:

@<Types...@>=
@!in_state_record = record
  @!index_field: quarterword;
  @!start_field,@!loc_field, @!limit_field, @!name_field: halfword;
  end;

@ @<Glob...@>=
@!input_stack : array[0..stack_size] of in_state_record;
@!input_ptr : 0..stack_size; {first unused location of |input_stack|}
@!max_in_stack: 0..stack_size; {largest value of |input_ptr| when pushing}
@!cur_input : in_state_record; {the ``top'' input state}

@ We've already defined the special variable |@!loc==cur_input.loc_field|
in our discussion of basic input-output routines. The other components of
|cur_input| are defined in the same way:

@d index==cur_input.index_field {reference for buffer information}
@d start==cur_input.start_field {starting position in |buffer|}
@d limit==cur_input.limit_field {end of current line in |buffer|}
@d name==cur_input.name_field {name of the current file}

@ Let's look more closely now at the five control variables
(|index|,~|start|,~|loc|,~|limit|,~|name|),
assuming that \MF\ is reading a line of characters that have been input
from some file or from the user's terminal. There is an array called
|buffer| that acts as a stack of all lines of characters that are
currently being read from files, including all lines on subsidiary
levels of the input stack that are not yet completed. \MF\ will return to
the other lines when it is finished with the present input file.

(Incidentally, on a machine with byte-oriented addressing, it would be
appropriate to combine |buffer| with the |str_pool| array,
letting the buffer entries grow downward from the top of the string pool
and checking that these two tables don't bump into each other.)

The line we are currently working on begins in position |start| of the
buffer; the next character we are about to read is |buffer[loc]|; and
|limit| is the location of the last character present. We always have
|loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
that the end of a line is easily sensed.

The |name| variable is a string number that designates the name of
the current file, if we are reading a text file. It is 0 if we
are reading from the terminal for normal input, or 1 if we are executing a
\&{readstring} command, or 2 if we are reading a string that was
moved into the buffer by \&{scantokens}.

@ Additional information about the current line is available via the
|index| variable, which counts how many lines of characters are present
in the buffer below the current level. We have |index=0| when reading
from the terminal and prompting the user for each line; then if the user types,
e.g., `\.{input font}', we will have |index=1| while reading
the file \.{font.mf}. However, it does not follow that |index| is the
same as the input stack pointer, since many of the levels on the input
stack may come from token lists.

The global variable |in_open| is equal to the |index|
value of the highest non-token-list level. Thus, the number of partially read
lines in the buffer is |in_open+1|, and we have |in_open=index|
when we are not reading a token list.

If we are not currently reading from the terminal,
we are reading from the file variable |input_file[index]|. We use
the notation |terminal_input| as a convenient abbreviation for |name=0|,
and |cur_file| as an abbreviation for |input_file[index]|.

The global variable |line| contains the line number in the topmost
open file, for use in error messages. If we are not reading from
the terminal, |line_stack[index]| holds the line number for the
enclosing level, so that |line| can be restored when the current
file has been read.

If more information about the input state is needed, it can be
included in small arrays like those shown here. For example,
the current page or segment number in the input file might be
put into a variable |@!page|, maintained for enclosing levels in
`\ignorespaces|@!page_stack:array[1..max_in_open] of integer|\unskip'
by analogy with |line_stack|.
@^system dependencies@>

@d terminal_input==(name=0) {are we reading from the terminal?}
@d cur_file==input_file[index] {the current |alpha_file| variable}

@<Glob...@>=
@!in_open : 0..max_in_open; {the number of lines in the buffer, less one}
@!open_parens : 0..max_in_open; {the number of open text files}
@!input_file : array[1..max_in_open] of alpha_file;
@!line : integer; {current line number in the current source file}
@!line_stack : array[1..max_in_open] of integer;

@ However, all this discussion about input state really applies only to the
case that we are inputting from a file. There is another important case,
namely when we are currently getting input from a token list. In this case
|index>max_in_open|, and the conventions about the other state variables
are different:

\yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
the node that will be read next. If |loc=null|, the token list has been
fully read.

\yskip\hang|start| points to the first node of the token list; this node
may or may not contain a reference count, depending on the type of token
list involved.

\yskip\hang|token_type|, which takes the place of |index| in the
discussion above, is a code number that explains what kind of token list
is being scanned.

\yskip\hang|name| points to the |eqtb| address of the control sequence
being expanded, if the current token list is a macro not defined by
\&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
can be deduced by looking at their first two parameters.

\yskip\hang|param_start|, which takes the place of |limit|, tells where
the parameters of the current macro or loop text begin in the |param_stack|.

\yskip\noindent The |token_type| can take several values, depending on
where the current token list came from:

\yskip
\indent|forever_text|, if the token list being scanned is the body of
a \&{forever} loop;

\indent|loop_text|, if the token list being scanned is the body of
a \&{for} or \&{forsuffixes} loop;

\indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;

\indent|backed_up|, if the token list being scanned has been inserted as
`to be read again'.

\indent|inserted|, if the token list being scanned has been inserted as
part of error recovery;

\indent|macro|, if the expansion of a user-defined symbolic token is being
scanned.

\yskip\noindent
The token list begins with a reference count if and only if |token_type=
macro|.
@^reference counts@>

@d token_type==index {type of current token list}
@d token_state==(index>max_in_open) {are we scanning a token list?}
@d file_state==(index<=max_in_open) {are we scanning a file line?}
@d param_start==limit {base of macro parameters in |param_stack|}
@d forever_text=max_in_open+1 {|token_type| code for loop texts}
@d loop_text=max_in_open+2 {|token_type| code for loop texts}
@d parameter=max_in_open+3 {|token_type| code for parameter texts}
@d backed_up=max_in_open+4 {|token_type| code for texts to be reread}
@d inserted=max_in_open+5 {|token_type| code for inserted texts}
@d macro=max_in_open+6 {|token_type| code for macro replacement texts}

@ The |param_stack| is an auxiliary array used to hold pointers to the token
lists for parameters at the current level and subsidiary levels of input.
This stack grows at a different rate from the others.

@<Glob...@>=
@!param_stack:array [0..param_size] of pointer;
  {token list pointers for parameters}
@!param_ptr:0..param_size; {first unused entry in |param_stack|}
@!max_param_stack:integer;
  {largest value of |param_ptr|}

@ Thus, the ``current input state'' can be very complicated indeed; there
can be many levels and each level can arise in a variety of ways. The
|show_context| procedure, which is used by \MF's error-reporting routine to
print out the current input state on all levels down to the most recent
line of characters from an input file, illustrates most of these conventions.
The global variable |file_ptr| contains the lowest level that was
displayed by this procedure.

@<Glob...@>=
@!file_ptr:0..stack_size; {shallowest level shown by |show_context|}

@ The status at each level is indicated by printing two lines, where the first
line indicates what was read so far and the second line shows what remains
to be read. The context is cropped, if necessary, so that the first line
contains at most |half_error_line| characters, and the second contains
at most |error_line|. Non-current input levels whose |token_type| is
`|backed_up|' are shown only if they have not been fully read.

@p procedure show_context; {prints where the scanner is}
label done;
var @!old_setting:0..max_selector; {saved |selector| setting}
@<Local variables for formatting calculations@>@/
begin file_ptr:=input_ptr; input_stack[file_ptr]:=cur_input;
  {store current state}
loop@+begin cur_input:=input_stack[file_ptr]; {enter into the context}
  @<Display the current context@>;
  if file_state then
    if (name>2) or (file_ptr=0) then goto done;
  decr(file_ptr);
  end;
done: cur_input:=input_stack[input_ptr]; {restore original state}
end;

@ @<Display the current context@>=
if (file_ptr=input_ptr) or file_state or
   (token_type<>backed_up) or (loc<>null) then
    {we omit backed-up token lists that have already been read}
  begin tally:=0; {get ready to count characters}
  old_setting:=selector;
  if file_state then
    begin @<Print location of current line@>;
    @<Pseudoprint the line@>;
    end
  else  begin @<Print type of token list@>;
    @<Pseudoprint the token list@>;
    end;
  selector:=old_setting; {stop pseudoprinting}
  @<Print two lines using the tricky pseudoprinted information@>;
  end

@ This routine should be changed, if necessary, to give the best possible
indication of where the current line resides in the input file.
For example, on some systems it is best to print both a page and line number.
@^system dependencies@>

@<Print location of current line@>=
if name<=1 then
  if terminal_input and(file_ptr=0) then print_nl("<*>")
  else print_nl("<insert>")
else if name=2 then print_nl("<scantokens>")
else  begin print_nl("l."); print_int(line);
  end;
print_char(" ")

@ @<Print type of token list@>=
case token_type of
forever_text: print_nl("<forever> ");
loop_text: @<Print the current loop value@>;
parameter: print_nl("<argument> ");
backed_up: if loc=null then print_nl("<recently read> ")
  else print_nl("<to be read again> ");
inserted: print_nl("<inserted text> ");
macro: begin print_ln;
  if name<>null then slow_print(text(name))
  else @<Print the name of a \&{vardef}'d macro@>;
  print("->");
  end;
othercases print_nl("?") {this should never happen}
@.?\relax@>
endcases

@ The parameter that corresponds to a loop text is either a token list
(in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
We'll discuss capsules later; for now, all we need to know is that
the |link| field in a capsule parameter is |void| and that
|print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.

@<Print the current loop value@>=
begin print_nl("<for("); p:=param_stack[param_start];
if p<>null then
  if link(p)=void then print_exp(p,0) {we're in a \&{for} loop}
  else show_token_list(p,null,20,tally);
print(")> ");
end

@ The first two parameters of a macro defined by \&{vardef} will be token
lists representing the macro's prefix and ``at point.'' By putting these
together, we get the macro's full name.

@<Print the name of a \&{vardef}'d macro@>=
begin p:=param_stack[param_start];
if p=null then show_token_list(param_stack[param_start+1],null,20,tally)
else  begin q:=p;
  while link(q)<>null do q:=link(q);
  link(q):=param_stack[param_start+1];
  show_token_list(p,null,20,tally);
  link(q):=null;
  end;
end

@ Now it is necessary to explain a little trick. We don't want to store a long
string that corresponds to a token list, because that string might take up
lots of memory; and we are printing during a time when an error message is
being given, so we dare not do anything that might overflow one of \MF's
tables. So `pseudoprinting' is the answer: We enter a mode of printing
that stores characters into a buffer of length |error_line|, where character
$k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
|k<trick_count|, otherwise character |k| is dropped. Initially we set
|tally:=0| and |trick_count:=1000000|; then when we reach the
point where transition from line 1 to line 2 should occur, we
set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
tally+1+error_line-half_error_line)|. At the end of the
pseudoprinting, the values of |first_count|, |tally|, and
|trick_count| give us all the information we need to print the two lines,
and all of the necessary text is in |trick_buf|.

Namely, let |l| be the length of the descriptive information that appears
on the first line. The length of the context information gathered for that
line is |k=first_count|, and the length of the context information
gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
descriptive information on line~1, and set |n:=l+k|; here |n| is the
length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
and print `\.{...}' followed by
$$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
where subscripts of |trick_buf| are circular modulo |error_line|. The
second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
unless |n+m>error_line|; in the latter case, further cropping is done.
This is easier to program than to explain.

@<Local variables for formatting...@>=
@!i:0..buf_size; {index into |buffer|}
@!l:integer; {length of descriptive information on line 1}
@!m:integer; {context information gathered for line 2}
@!n:0..error_line; {length of line 1}
@!p: integer; {starting or ending place in |trick_buf|}
@!q: integer; {temporary index}

@ The following code tells the print routines to gather
the desired information.

@d begin_pseudoprint==
  begin l:=tally; tally:=0; selector:=pseudo;
  trick_count:=1000000;
  end
@d set_trick_count==
  begin first_count:=tally;
  trick_count:=tally+1+error_line-half_error_line;
  if trick_count<error_line then trick_count:=error_line;
  end

@ And the following code uses the information after it has been gathered.

@<Print two lines using the tricky pseudoprinted information@>=
if trick_count=1000000 then set_trick_count;
  {|set_trick_count| must be performed}
if tally<trick_count then m:=tally-first_count
else m:=trick_count-first_count; {context on line 2}
if l+first_count<=half_error_line then
  begin p:=0; n:=l+first_count;
  end
else  begin print("..."); p:=l+first_count-half_error_line+3;
  n:=half_error_line;
  end;
for q:=p to first_count-1 do print_char(trick_buf[q mod error_line]);
print_ln;
for q:=1 to n do print_char(" "); {print |n| spaces to begin line~2}
if m+n<=error_line then p:=first_count+m else p:=first_count+(error_line-n-3);
for q:=first_count to p-1 do print_char(trick_buf[q mod error_line]);
if m+n>error_line then print("...")

@ But the trick is distracting us from our current goal, which is to
understand the input state. So let's concentrate on the data structures that
are being pseudoprinted as we finish up the |show_context| procedure.

@<Pseudoprint the line@>=
begin_pseudoprint;
if limit>0 then for i:=start to limit-1 do
  begin if i=loc then set_trick_count;
  print(buffer[i]);
  end

@ @<Pseudoprint the token list@>=
begin_pseudoprint;
if token_type<>macro then show_token_list(start,loc,100000,0)
else show_macro(start,loc,100000)

@ Here is the missing piece of |show_token_list| that is activated when the
token beginning line~2 is about to be shown:

@<Do magic computation@>=set_trick_count

@* \[32] Maintaining the input stacks.
The following subroutines change the input status in commonly needed ways.

First comes |push_input|, which stores the current state and creates a
new level (having, initially, the same properties as the old).

@d push_input==@t@> {enter a new input level, save the old}
  begin if input_ptr>max_in_stack then
    begin max_in_stack:=input_ptr;
    if input_ptr=stack_size then overflow("input stack size",stack_size);
@:METAFONT capacity exceeded input stack size}{\quad input stack size@>
    end;
  input_stack[input_ptr]:=cur_input; {stack the record}
  incr(input_ptr);
  end

@ And of course what goes up must come down.

@d pop_input==@t@> {leave an input level, re-enter the old}
  begin decr(input_ptr); cur_input:=input_stack[input_ptr];
  end

@ Here is a procedure that starts a new level of token-list input, given
a token list |p| and its type |t|. If |t=macro|, the calling routine should
set |name|, reset~|loc|, and increase the macro's reference count.

@d back_list(#)==begin_token_list(#,backed_up) {backs up a simple token list}

@p procedure begin_token_list(@!p:pointer;@!t:quarterword);
begin push_input; start:=p; token_type:=t;
param_start:=param_ptr; loc:=p;
end;

@ When a token list has been fully scanned, the following computations
should be done as we leave that level of input.
@^inner loop@>

@p procedure end_token_list; {leave a token-list input level}
label done;
var @!p:pointer; {temporary register}
begin if token_type>=backed_up then {token list to be deleted}
  if token_type<=inserted then
    begin flush_token_list(start); goto done;
    end
  else delete_mac_ref(start); {update reference count}
while param_ptr>param_start do {parameters must be flushed}
  begin decr(param_ptr);
  p:=param_stack[param_ptr];
  if p<>null then
    if link(p)=void then {it's an \&{expr} parameter}
      begin recycle_value(p); free_node(p,value_node_size);
      end
    else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
  end;
done: pop_input; check_interrupt;
end;

@ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
token by the |cur_tok| routine.
@^inner loop@>

@p @t\4@>@<Declare the procedure called |make_exp_copy|@>@;@/
function cur_tok:pointer;
var @!p:pointer; {a new token node}
@!save_type:small_number; {|cur_type| to be restored}
@!save_exp:integer; {|cur_exp| to be restored}
begin if cur_sym=0 then
  if cur_cmd=capsule_token then
    begin save_type:=cur_type; save_exp:=cur_exp;
    make_exp_copy(cur_mod); p:=stash_cur_exp; link(p):=null;
    cur_type:=save_type; cur_exp:=save_exp;
    end
  else  begin p:=get_node(token_node_size);
    value(p):=cur_mod; name_type(p):=token;
    if cur_cmd=numeric_token then type(p):=known
    else type(p):=string_type;
    end
else  begin fast_get_avail(p); info(p):=cur_sym;
  end;
cur_tok:=p;
end;

@ Sometimes \MF\ has read too far and wants to ``unscan'' what it has
seen. The |back_input| procedure takes care of this by putting the token
just scanned back into the input stream, ready to be read again.
If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.

@p procedure back_input; {undoes one token of input}
var @!p:pointer; {a token list of length one}
begin p:=cur_tok;
while token_state and(loc=null) do end_token_list; {conserve stack space}
back_list(p);
end;

@ The |back_error| routine is used when we want to restore or replace an
offending token just before issuing an error message.  We disable interrupts
during the call of |back_input| so that the help message won't be lost.

@p procedure back_error; {back up one token and call |error|}
begin OK_to_interrupt:=false; back_input; OK_to_interrupt:=true; error;
end;
@#
procedure ins_error; {back up one inserted token and call |error|}
begin OK_to_interrupt:=false; back_input; token_type:=inserted;
OK_to_interrupt:=true; error;
end;

@ The |begin_file_reading| procedure starts a new level of input for lines
of characters to be read from a file, or as an insertion from the
terminal. It does not take care of opening the file, nor does it set |loc|
or |limit| or |line|.
@^system dependencies@>

@p procedure begin_file_reading;
begin if in_open=max_in_open then overflow("text input levels",max_in_open);
@:METAFONT capacity exceeded text input levels}{\quad text input levels@>
if first=buf_size then overflow("buffer size",buf_size);
@:METAFONT capacity exceeded buffer size}{\quad buffer size@>
incr(in_open); push_input; index:=in_open;
line_stack[index]:=line; start:=first;
name:=0; {|terminal_input| is now |true|}
end;

@ Conversely, the variables must be downdated when such a level of input
is finished:

@p procedure end_file_reading;
begin first:=start; line:=line_stack[index];
if index<>in_open then confusion("endinput");
@:this can't happen endinput}{\quad endinput@>
if name>2 then a_close(cur_file); {forget it}
pop_input; decr(in_open);
end;

@ In order to keep the stack from overflowing during a long sequence of
inserted `\.{show}' commands, the following routine removes completed
error-inserted lines from memory.

@p procedure clear_for_error_prompt;
begin while file_state and terminal_input and@|
  (input_ptr>0)and(loc=limit) do end_file_reading;
print_ln; clear_terminal;
end;

@ To get \MF's whole input mechanism going, we perform the following
actions.

@<Initialize the input routines@>=
begin input_ptr:=0; max_in_stack:=0;
in_open:=0; open_parens:=0; max_buf_stack:=0;
param_ptr:=0; max_param_stack:=0;
first:=1;
start:=1; index:=0; line:=0; name:=0;
force_eof:=false;
if not init_terminal then goto final_end;
limit:=last; first:=last+1; {|init_terminal| has set |loc| and |last|}
end;

@* \[33] Getting the next token.
The heart of \MF's input mechanism is the |get_next| procedure, which
we shall develop in the next few sections of the program. Perhaps we
shouldn't actually call it the ``heart,'' however; it really acts as \MF's
eyes and mouth, reading the source files and gobbling them up. And it also
helps \MF\ to regurgitate stored token lists that are to be processed again.

The main duty of |get_next| is to input one token and to set |cur_cmd|
and |cur_mod| to that token's command code and modifier. Furthermore, if
the input token is a symbolic token, that token's |hash| address
is stored in |cur_sym|; otherwise |cur_sym| is set to zero.

Underlying this simple description is a certain amount of complexity
because of all the cases that need to be handled.
However, the inner loop of |get_next| is reasonably short and fast.

@ Before getting into |get_next|, we need to consider a mechanism by which
\MF\ helps keep errors from propagating too far. Whenever the program goes
into a mode where it keeps calling |get_next| repeatedly until a certain
condition is met, it sets |scanner_status| to some value other than |normal|.
Then if an input file ends, or if an `\&{outer}' symbol appears,
an appropriate error recovery will be possible.

The global variable |warning_info| helps in this error recovery by providing
additional information. For example, |warning_info| might indicate the
name of a macro whose replacement text is being scanned.

@d normal=0 {|scanner_status| at ``quiet times''}
@d skipping=1 {|scanner_status| when false conditional text is being skipped}
@d flushing=2 {|scanner_status| when junk after a statement is being ignored}
@d absorbing=3 {|scanner_status| when a \&{text} parameter is being scanned}
@d var_defining=4 {|scanner_status| when a \&{vardef} is being scanned}
@d op_defining=5 {|scanner_status| when a macro \&{def} is being scanned}
@d loop_defining=6 {|scanner_status| when a \&{for} loop is being scanned}

@<Glob...@>=
@!scanner_status:normal..loop_defining; {are we scanning at high speed?}
@!warning_info:integer; {if so, what else do we need to know,
    in case an error occurs?}

@ @<Initialize the input routines@>=
scanner_status:=normal;

@ The following subroutine
is called when an `\&{outer}' symbolic token has been scanned or
when the end of a file has been reached. These two cases are distinguished
by |cur_sym|, which is zero at the end of a file.

@p function check_outer_validity:boolean;
var @!p:pointer; {points to inserted token list}
begin if scanner_status=normal then check_outer_validity:=true
else  begin deletions_allowed:=false;
  @<Back up an outer symbolic token so that it can be reread@>;
  if scanner_status>skipping then
    @<Tell the user what has run away and try to recover@>
  else  begin print_err("Incomplete if; all text was ignored after line ");
@.Incomplete if...@>
    print_int(warning_info);@/
    help3("A forbidden `outer' token occurred in skipped text.")@/
    ("This kind of error happens when you say `if...' and forget")@/
    ("the matching `fi'. I've inserted a `fi'; this might work.");
    if cur_sym=0 then help_line[2]:=@|
      "The file ended while I was skipping conditional text.";
    cur_sym:=frozen_fi; ins_error;
    end;
  deletions_allowed:=true; check_outer_validity:=false;
  end;
end;

@ @<Back up an outer symbolic token so that it can be reread@>=
if cur_sym<>0 then
  begin p:=get_avail; info(p):=cur_sym;
  back_list(p); {prepare to read the symbolic token again}
  end

@ @<Tell the user what has run away...@>=
begin runaway; {print the definition-so-far}
if cur_sym=0 then print_err("File ended")
@.File ended while scanning...@>
else  begin print_err("Forbidden token found");
@.Forbidden token found...@>
  end;
print(" while scanning ");
help4("I suspect you have forgotten an `enddef',")@/
("causing me to read past where you wanted me to stop.")@/
("I'll try to recover; but if the error is serious,")@/
("you'd better type `E' or `X' now and fix your file.");@/
case scanner_status of
@t\4@>@<Complete the error message,
  and set |cur_sym| to a token that might help recover from the error@>@;
end; {there are no other cases}
ins_error;
end

@ As we consider various kinds of errors, it is also appropriate to
change the first line of the help message just given; |help_line[3]|
points to the string that might be changed.

@<Complete the error message,...@>=
flushing: begin print("to the end of the statement");
  help_line[3]:="A previous error seems to have propagated,";
  cur_sym:=frozen_semicolon;
  end;
absorbing: begin print("a text argument");
  help_line[3]:="It seems that a right delimiter was left out,";
  if warning_info=0 then cur_sym:=frozen_end_group
  else  begin cur_sym:=frozen_right_delimiter;
    equiv(frozen_right_delimiter):=warning_info;
    end;
  end;
var_defining, op_defining: begin print("the definition of ");
  if scanner_status=op_defining then slow_print(text(warning_info))
  else print_variable_name(warning_info);
  cur_sym:=frozen_end_def;
  end;
loop_defining: begin print("the text of a "); slow_print(text(warning_info));
  print(" loop");
  help_line[3]:="I suspect you have forgotten an `endfor',";
  cur_sym:=frozen_end_for;
  end;

@ The |runaway| procedure displays the first part of the text that occurred
when \MF\ began its special |scanner_status|, if that text has been saved.

@<Declare the procedure called |runaway|@>=
procedure runaway;
begin if scanner_status>flushing then
  begin print_nl("Runaway ");
  case scanner_status of
  absorbing: print("text?");
  var_defining,op_defining: print("definition?");
  loop_defining: print("loop?");
  end; {there are no other cases}
  print_ln; show_token_list(link(hold_head),null,error_line-10,0);
  end;
end;

@ We need to mention a procedure that may be called by |get_next|.

@p procedure@?firm_up_the_line; forward;

@ And now we're ready to take the plunge into |get_next| itself.

@d switch=25 {a label in |get_next|}
@d start_numeric_token=85 {another}
@d start_decimal_token=86 {and another}
@d fin_numeric_token=87
  {and still another, although |goto| is considered harmful}

@p procedure get_next; {sets |cur_cmd|, |cur_mod|, |cur_sym| to next token}
@^inner loop@>
label restart, {go here to get the next input token}
  exit, {go here when the next input token has been got}
  found, {go here when the end of a symbolic token has been found}
  switch, {go here to branch on the class of an input character}
  start_numeric_token,start_decimal_token,fin_numeric_token,done;
    {go here at crucial stages when scanning a number}
var @!k:0..buf_size; {an index into |buffer|}
@!c:ASCII_code; {the current character in the buffer}
@!class:ASCII_code; {its class number}
@!n,@!f:integer; {registers for decimal-to-binary conversion}
begin restart: cur_sym:=0;
if file_state then
@<Input from external file; |goto restart| if no input found,
  or |return| if a non-symbolic token is found@>
else @<Input from token list; |goto restart| if end of list or
  if a parameter needs to be expanded,
  or |return| if a non-symbolic token is found@>;
@<Finish getting the symbolic token in |cur_sym|;
  |goto restart| if it is illegal@>;
exit:end;

@ When a symbolic token is declared to be `\&{outer}', its command code
is increased by |outer_tag|.
@^inner loop@>

@<Finish getting the symbolic token in |cur_sym|...@>=
cur_cmd:=eq_type(cur_sym); cur_mod:=equiv(cur_sym);
if cur_cmd>=outer_tag then
  if check_outer_validity then cur_cmd:=cur_cmd-outer_tag
  else goto restart

@ A percent sign appears in |buffer[limit]|; this makes it unnecessary
to have a special test for end-of-line.
@^inner loop@>

@<Input from external file;...@>=
begin switch: c:=buffer[loc]; incr(loc); class:=char_class[c];
case class of
digit_class: goto start_numeric_token;
period_class: begin class:=char_class[buffer[loc]];
  if class>period_class then goto switch
  else if class<period_class then {|class=digit_class|}
    begin n:=0; goto start_decimal_token;
    end;
@:. }{\..\ token@>
  end;
space_class: goto switch;
percent_class: begin @<Move to next line of file,
    or |goto restart| if there is no next line@>;
  check_interrupt;
  goto switch;
  end;
string_class: @<Get a string token and |return|@>;
isolated_classes: begin k:=loc-1; goto found;
  end;
invalid_class: @<Decry the invalid character and |goto restart|@>;
othercases do_nothing {letters, etc.}
endcases;@/
k:=loc-1;
while char_class[buffer[loc]]=class do incr(loc);
goto found;
start_numeric_token:@<Get the integer part |n| of a numeric token;
  set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
start_decimal_token:@<Get the fraction part |f| of a numeric token@>;
fin_numeric_token:@<Pack the numeric and fraction parts of a numeric token
  and |return|@>;
found: cur_sym:=id_lookup(k,loc-k);
end

@ We go to |restart| instead of to |switch|, because |state| might equal
|token_list| after the error has been dealt with
(cf.\ |clear_for_error_prompt|).

@<Decry the invalid...@>=
begin print_err("Text line contains an invalid character");
@.Text line contains...@>
help2("A funny symbol that I can't read has just been input.")@/
("Continue, and I'll forget that it ever happened.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
goto restart;
end

@ @<Get a string token and |return|@>=
begin if buffer[loc]="""" then cur_mod:=""
else  begin k:=loc; buffer[limit+1]:="""";
  repeat incr(loc);
  until buffer[loc]="""";
  if loc>limit then @<Decry the missing string delimiter and |goto restart|@>;
  if loc=k+1 then cur_mod:=buffer[k]
  else  begin str_room(loc-k);
    repeat append_char(buffer[k]); incr(k);
    until k=loc;
    cur_mod:=make_string;
    end;
  end;
incr(loc); cur_cmd:=string_token; return;
end

@ We go to |restart| after this error message, not to |switch|,
because the |clear_for_error_prompt| routine might have reinstated
|token_state| after |error| has finished.

@<Decry the missing string delimiter and |goto restart|@>=
begin loc:=limit; {the next character to be read on this line will be |"%"|}
print_err("Incomplete string token has been flushed");
@.Incomplete string token...@>
help3("Strings should finish on the same line as they began.")@/
  ("I've deleted the partial string; you might want to")@/
  ("insert another by typing, e.g., `I""new string""'.");@/
deletions_allowed:=false; error; deletions_allowed:=true; goto restart;
end

@ @<Get the integer part |n| of a numeric token...@>=
n:=c-"0";
while char_class[buffer[loc]]=digit_class do
  begin if n<4096 then n:=10*n+buffer[loc]-"0";
  incr(loc);
  end;
if buffer[loc]="." then if char_class[buffer[loc+1]]=digit_class then goto done;
f:=0; goto fin_numeric_token;
done: incr(loc)

@ @<Get the fraction part |f| of a numeric token@>=
k:=0;
repeat if k<17 then {digits for |k>=17| cannot affect the result}
  begin dig[k]:=buffer[loc]-"0"; incr(k);
  end;
incr(loc);
until char_class[buffer[loc]]<>digit_class;
f:=round_decimals(k);
if f=unity then
  begin incr(n); f:=0;
  end

@ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
if n<4096 then cur_mod:=n*unity+f
else  begin print_err("Enormous number has been reduced");
@.Enormous number...@>
  help2("I can't handle numbers bigger than about 4095.99998;")@/
  ("so I've changed your constant to that maximum amount.");@/
  deletions_allowed:=false; error; deletions_allowed:=true;
  cur_mod:=@'1777777777;
  end;
cur_cmd:=numeric_token; return

@ Let's consider now what happens when |get_next| is looking at a token list.
@^inner loop@>

@<Input from token list;...@>=
if loc>=hi_mem_min then {one-word token}
  begin cur_sym:=info(loc); loc:=link(loc); {move to next}
  if cur_sym>=expr_base then
    if cur_sym>=suffix_base then
      @<Insert a suffix or text parameter and |goto restart|@>
    else  begin cur_cmd:=capsule_token;
      cur_mod:=param_stack[param_start+cur_sym-(expr_base)];
      cur_sym:=0; return;
      end;
  end
else if loc>null then
  @<Get a stored numeric or string or capsule token and |return|@>
else  begin {we are done with this token list}
  end_token_list; goto restart; {resume previous level}
  end

@ @<Insert a suffix or text parameter...@>=
begin if cur_sym>=text_base then cur_sym:=cur_sym-param_size;
  {|param_size=text_base-suffix_base|}
begin_token_list(param_stack[param_start+cur_sym-(suffix_base)],parameter);
goto restart;
end

@ @<Get a stored numeric or string or capsule token...@>=
begin if name_type(loc)=token then
  begin cur_mod:=value(loc);
  if type(loc)=known then cur_cmd:=numeric_token
  else  begin cur_cmd:=string_token; add_str_ref(cur_mod);
    end;
  end
else  begin cur_mod:=loc; cur_cmd:=capsule_token;
  end;
loc:=link(loc); return;
end

@ All of the easy branches of |get_next| have now been taken care of.
There is one more branch.

@<Move to next line of file, or |goto restart|...@>=
if name>2 then @<Read next line of file into |buffer|, or
  |goto restart| if the file has ended@>
else  begin if input_ptr>0 then
     {text was inserted during error recovery or by \&{scantokens}}
    begin end_file_reading; goto restart; {resume previous level}
    end;
  if selector<log_only then open_log_file;
  if interaction>nonstop_mode then
    begin if limit=start then {previous line was empty}
      print_nl("(Please type a command or say `end')");
@.Please type...@>
    print_ln; first:=start;
    prompt_input("*"); {input on-line into |buffer|}
@.*\relax@>
    limit:=last; buffer[limit]:="%";
    first:=limit+1; loc:=start;
    end
  else fatal_error("*** (job aborted, no legal end found)");
@.job aborted@>
    {nonstop mode, which is intended for overnight batch processing,
    never waits for on-line input}
  end

@ The global variable |force_eof| is normally |false|; it is set |true|
by an \&{endinput} command.

@<Glob...@>=
@!force_eof:boolean; {should the next \&{input} be aborted early?}

@ @<Read next line of file into |buffer|, or
  |goto restart| if the file has ended@>=
begin incr(line); first:=start;
if not force_eof then
  begin if input_ln(cur_file,true) then {not end of file}
    firm_up_the_line {this sets |limit|}
  else force_eof:=true;
  end;
if force_eof then
  begin print_char(")"); decr(open_parens);
  update_terminal; {show user that file has been read}
  force_eof:=false;
  end_file_reading; {resume previous level}
  if check_outer_validity then goto restart@+else goto restart;
  end;
buffer[limit]:="%"; first:=limit+1; loc:=start; {ready to read}
end

@ If the user has set the |pausing| parameter to some positive value,
and if nonstop mode has not been selected, each line of input is displayed
on the terminal and the transcript file, followed by `\.{=>}'.
\MF\ waits for a response. If the response is null (i.e., if nothing is
typed except perhaps a few blank spaces), the original
line is accepted as it stands; otherwise the line typed is
used instead of the line in the file.

@p procedure firm_up_the_line;
var @!k:0..buf_size; {an index into |buffer|}
begin limit:=last;
if internal[pausing]>0 then if interaction>nonstop_mode then
  begin wake_up_terminal; print_ln;
  if start<limit then for k:=start to limit-1 do print(buffer[k]);
  first:=limit; prompt_input("=>"); {wait for user response}
@.=>@>
  if last>first then
    begin for k:=first to last-1 do {move line down in buffer}
      buffer[k+start-first]:=buffer[k];
    limit:=start+last-first;
    end;
  end;
end;

@* \[34] Scanning macro definitions.
\MF\ has a variety of ways to tuck tokens away into token lists for later
use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
All such operations are handled by the routines in this part of the program.

The modifier part of each command code is zero for the ``ending delimiters''
like \&{enddef} and \&{endfor}.

@d start_def=1 {command modifier for \&{def}}
@d var_def=2 {command modifier for \&{vardef}}
@d end_def=0 {command modifier for \&{enddef}}
@d start_forever=1 {command modifier for \&{forever}}
@d end_for=0 {command modifier for \&{endfor}}

@<Put each...@>=
primitive("def",macro_def,start_def);@/
@!@:def_}{\&{def} primitive@>
primitive("vardef",macro_def,var_def);@/
@!@:var_def_}{\&{vardef} primitive@>
primitive("primarydef",macro_def,secondary_primary_macro);@/
@!@:primary_def_}{\&{primarydef} primitive@>
primitive("secondarydef",macro_def,tertiary_secondary_macro);@/
@!@:secondary_def_}{\&{secondarydef} primitive@>
primitive("tertiarydef",macro_def,expression_tertiary_macro);@/
@!@:tertiary_def_}{\&{tertiarydef} primitive@>
primitive("enddef",macro_def,end_def); eqtb[frozen_end_def]:=eqtb[cur_sym];@/
@!@:end_def_}{\&{enddef} primitive@>
@#
primitive("for",iteration,expr_base);@/
@!@:for_}{\&{for} primitive@>
primitive("forsuffixes",iteration,suffix_base);@/
@!@:for_suffixes_}{\&{forsuffixes} primitive@>
primitive("forever",iteration,start_forever);@/
@!@:forever_}{\&{forever} primitive@>
primitive("endfor",iteration,end_for); eqtb[frozen_end_for]:=eqtb[cur_sym];@/
@!@:end_for_}{\&{endfor} primitive@>

@ @<Cases of |print_cmd...@>=
macro_def:if m<=var_def then
    if m=start_def then print("def")
    else if m<start_def then print("enddef")
    else print("vardef")
  else if m=secondary_primary_macro then print("primarydef")
  else if m=tertiary_secondary_macro then print("secondarydef")
  else print("tertiarydef");
iteration: if m<=start_forever then
    if m=start_forever then print("forever")@+else print("endfor")
  else if m=expr_base then print("for")@+else print("forsuffixes");

@ Different macro-absorbing operations have different syntaxes, but they
also have a lot in common. There is a list of special symbols that are to
be replaced by parameter tokens; there is a special command code that
ends the definition; the quotation conventions are identical.  Therefore
it makes sense to have most of the work done by a single subroutine. That
subroutine is called |scan_toks|.

The first parameter to |scan_toks| is the command code that will
terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).

The second parameter, |subst_list|, points to a (possibly empty) list
of two-word nodes whose |info| and |value| fields specify symbol tokens
before and after replacement. The list will be returned to free storage
by |scan_toks|.

The third parameter is simply appended to the token list that is built.
And the final parameter tells how many of the special operations
\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
When such parameters are present, they are called \.{(SUFFIX0)},
\.{(SUFFIX1)}, and \.{(SUFFIX2)}.

@p function scan_toks(@!terminator:command_code;
  @!subst_list,@!tail_end:pointer;@!suffix_count:small_number):pointer;
label done,found;
var @!p:pointer; {tail of the token list being built}
@!q:pointer; {temporary for link management}
@!balance:integer; {left delimiters minus right delimiters}
begin p:=hold_head; balance:=1; link(hold_head):=null;
loop@+  begin get_next;
  if cur_sym>0 then
    begin @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
    if cur_cmd=terminator then
      @<Adjust the balance; |goto done| if it's zero@>
    else if cur_cmd=macro_special then
      @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
    end;
  link(p):=cur_tok; p:=link(p);
  end;
done: link(p):=tail_end; flush_node_list(subst_list);
scan_toks:=link(hold_head);
end;

@ @<Substitute for |cur_sym|...@>=
begin q:=subst_list;
while q<>null do
  begin if info(q)=cur_sym then
    begin cur_sym:=value(q); cur_cmd:=relax; goto found;
    end;
  q:=link(q);
  end;
found:end

@ @<Adjust the balance; |goto done| if it's zero@>=
if cur_mod>0 then incr(balance)
else  begin decr(balance);
  if balance=0 then goto done;
  end

@ Four commands are intended to be used only within macro texts: \&{quote},
\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
code called |macro_special|.

@d quote=0 {|macro_special| modifier for \&{quote}}
@d macro_prefix=1 {|macro_special| modifier for \.{\#\AT!}}
@d macro_at=2 {|macro_special| modifier for \.{\AT!}}
@d macro_suffix=3 {|macro_special| modifier for \.{\AT!\#}}

@<Put each...@>=
primitive("quote",macro_special,quote);@/
@!@:quote_}{\&{quote} primitive@>
primitive("#@@",macro_special,macro_prefix);@/
@!@:]]]\#\AT!_}{\.{\#\AT!} primitive@>
primitive("@@",macro_special,macro_at);@/
@!@:]]]\AT!_}{\.{\AT!} primitive@>
primitive("@@#",macro_special,macro_suffix);@/
@!@:]]]\AT!\#_}{\.{\AT!\#} primitive@>

@ @<Cases of |print_cmd...@>=
macro_special: case m of
  macro_prefix: print("#@@");
  macro_at: print_char("@@");
  macro_suffix: print("@@#");
  othercases print("quote")
  endcases;

@ @<Handle quoted...@>=
begin if cur_mod=quote then get_next
else if cur_mod<=suffix_count then cur_sym:=suffix_base-1+cur_mod;
end

@ Here is a routine that's used whenever a token will be redefined. If
the user's token is unredefinable, the `|frozen_inaccessible|' token is
substituted; the latter is redefinable but essentially impossible to use,
hence \MF's tables won't get fouled up.

@p procedure get_symbol; {sets |cur_sym| to a safe symbol}
label restart;
begin restart: get_next;
if (cur_sym=0)or(cur_sym>frozen_inaccessible) then
  begin print_err("Missing symbolic token inserted");
@.Missing symbolic token...@>
  help3("Sorry: You can't redefine a number, string, or expr.")@/
    ("I've inserted an inaccessible symbol so that your")@/
    ("definition will be completed without mixing me up too badly.");
  if cur_sym>0 then
    help_line[2]:="Sorry: You can't redefine my error-recovery tokens."
  else if cur_cmd=string_token then delete_str_ref(cur_mod);
  cur_sym:=frozen_inaccessible; ins_error; goto restart;
  end;
end;

@ Before we actually redefine a symbolic token, we need to clear away its
former value, if it was a variable. The following stronger version of
|get_symbol| does that.

@p procedure get_clear_symbol;
begin get_symbol; clear_symbol(cur_sym,false);
end;

@ Here's another little subroutine; it checks that an equals sign
or assignment sign comes along at the proper place in a macro definition.

@p procedure check_equals;
begin if cur_cmd<>equals then if cur_cmd<>assignment then
  begin missing_err("=");@/
@.Missing `='@>
  help5("The next thing in this `def' should have been `=',")@/
    ("because I've already looked at the definition heading.")@/
    ("But don't worry; I'll pretend that an equals sign")@/
    ("was present. Everything from here to `enddef'")@/
    ("will be the replacement text of this macro.");
  back_error;
  end;
end;

@ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
handled now that we have |scan_toks|.  In this case there are
two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
|expr_base| and |expr_base+1|).

@p procedure make_op_def;
var @!m:command_code; {the type of definition}
@!p,@!q,@!r:pointer; {for list manipulation}
begin m:=cur_mod;@/
get_symbol; q:=get_node(token_node_size);
info(q):=cur_sym; value(q):=expr_base;@/
get_clear_symbol; warning_info:=cur_sym;@/
get_symbol; p:=get_node(token_node_size);
info(p):=cur_sym; value(p):=expr_base+1; link(p):=q;@/
get_next; check_equals;@/
scanner_status:=op_defining; q:=get_avail; ref_count(q):=null;
r:=get_avail; link(q):=r; info(r):=general_macro;
link(r):=scan_toks(macro_def,p,null,0);
scanner_status:=normal; eq_type(warning_info):=m;
equiv(warning_info):=q; get_x_next;
end;

@ Parameters to macros are introduced by the keywords \&{expr},
\&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.

@<Put each...@>=
primitive("expr",param_type,expr_base);@/
@!@:expr_}{\&{expr} primitive@>
primitive("suffix",param_type,suffix_base);@/
@!@:suffix_}{\&{suffix} primitive@>
primitive("text",param_type,text_base);@/
@!@:text_}{\&{text} primitive@>
primitive("primary",param_type,primary_macro);@/
@!@:primary_}{\&{primary} primitive@>
primitive("secondary",param_type,secondary_macro);@/
@!@:secondary_}{\&{secondary} primitive@>
primitive("tertiary",param_type,tertiary_macro);@/
@!@:tertiary_}{\&{tertiary} primitive@>

@ @<Cases of |print_cmd...@>=
param_type:if m>=expr_base then
    if m=expr_base then print("expr")
    else if m=suffix_base then print("suffix")
    else print("text")
  else if m<secondary_macro then print("primary")
  else if m=secondary_macro then print("secondary")
  else print("tertiary");

@ Let's turn next to the more complex processing associated with \&{def}
and \&{vardef}. When the following procedure is called, |cur_mod|
should be either |start_def| or |var_def|.

@p @t\4@>@<Declare the procedure called |check_delimiter|@>@;
@t\4@>@<Declare the function called |scan_declared_variable|@>@;
procedure scan_def;
var @!m:start_def..var_def; {the type of definition}
@!n:0..3; {the number of special suffix parameters}
@!k:0..param_size; {the total number of parameters}
@!c:general_macro..text_macro; {the kind of macro we're defining}
@!r:pointer; {parameter-substitution list}
@!q:pointer; {tail of the macro token list}
@!p:pointer; {temporary storage}
@!base:halfword; {|expr_base|, |suffix_base|, or |text_base|}
@!l_delim,@!r_delim:pointer; {matching delimiters}
begin m:=cur_mod; c:=general_macro; link(hold_head):=null;@/
q:=get_avail; ref_count(q):=null; r:=null;@/
@<Scan the token or variable to be defined;
  set |n|, |scanner_status|, and |warning_info|@>;
k:=n;
if cur_cmd=left_delimiter then
  @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
if cur_cmd=param_type then
  @<Absorb undelimited parameters, putting them into list |r|@>;
check_equals;
p:=get_avail; info(p):=c; link(q):=p;
@<Attach the replacement text to the tail of node |p|@>;
scanner_status:=normal; get_x_next;
end;

@ We don't put `|frozen_end_group|' into the replacement text of
a \&{vardef}, because the user may want to redefine `\.{endgroup}'.

@<Attach the replacement text to the tail of node |p|@>=
if m=start_def then link(p):=scan_toks(macro_def,r,null,n)
else  begin q:=get_avail; info(q):=bg_loc; link(p):=q;
  p:=get_avail; info(p):=eg_loc;
  link(q):=scan_toks(macro_def,r,p,n);
  end;
if warning_info=bad_vardef then flush_token_list(value(bad_vardef))

@ @<Glob...@>=
@!bg_loc,@!eg_loc:1..hash_end;
  {hash addresses of `\.{begingroup}' and `\.{endgroup}'}

@ @<Scan the token or variable to be defined;...@>=
if m=start_def then
  begin get_clear_symbol; warning_info:=cur_sym; get_next;
  scanner_status:=op_defining; n:=0;
  eq_type(warning_info):=defined_macro; equiv(warning_info):=q;
  end
else  begin p:=scan_declared_variable;
  flush_variable(equiv(info(p)),link(p),true);
  warning_info:=find_variable(p); flush_list(p);
  if warning_info=null then @<Change to `\.{a bad variable}'@>;
  scanner_status:=var_defining; n:=2;
  if cur_cmd=macro_special then if cur_mod=macro_suffix then {\.{\AT!\#}}
    begin n:=3; get_next;
    end;
  type(warning_info):=unsuffixed_macro-2+n; value(warning_info):=q;
  end {|suffixed_macro=unsuffixed_macro+1|}

@ @<Change to `\.{a bad variable}'@>=
begin print_err("This variable already starts with a macro");
@.This variable already...@>
help2("After `vardef a' you can't say `vardef a.b'.")@/
  ("So I'll have to discard this definition.");
error; warning_info:=bad_vardef;
end

@ @<Initialize table entries...@>=
name_type(bad_vardef):=root; link(bad_vardef):=frozen_bad_vardef;
equiv(frozen_bad_vardef):=bad_vardef; eq_type(frozen_bad_vardef):=tag_token;

@ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
repeat l_delim:=cur_sym; r_delim:=cur_mod; get_next;
if (cur_cmd=param_type)and(cur_mod>=expr_base) then base:=cur_mod
else  begin print_err("Missing parameter type; `expr' will be assumed");
@.Missing parameter type@>
  help1("You should've had `expr' or `suffix' or `text' here.");
  back_error; base:=expr_base;
  end;
@<Absorb parameter tokens for type |base|@>;
check_delimiter(l_delim,r_delim);
get_next;
until cur_cmd<>left_delimiter

@ @<Absorb parameter tokens for type |base|@>=
repeat link(q):=get_avail; q:=link(q); info(q):=base+k;@/
get_symbol; p:=get_node(token_node_size); value(p):=base+k; info(p):=cur_sym;
if k=param_size then overflow("parameter stack size",param_size);
@:METAFONT capacity exceeded parameter stack size}{\quad parameter stack size@>
incr(k); link(p):=r; r:=p; get_next;
until cur_cmd<>comma

@ @<Absorb undelimited parameters, putting them into list |r|@>=
begin p:=get_node(token_node_size);
if cur_mod<expr_base then
  begin c:=cur_mod; value(p):=expr_base+k;
  end
else  begin value(p):=cur_mod+k;
  if cur_mod=expr_base then c:=expr_macro
  else if cur_mod=suffix_base then c:=suffix_macro
  else c:=text_macro;
  end;
if k=param_size then overflow("parameter stack size",param_size);
incr(k); get_symbol; info(p):=cur_sym; link(p):=r; r:=p; get_next;
if c=expr_macro then if cur_cmd=of_token then
  begin c:=of_macro; p:=get_node(token_node_size);
  if k=param_size then overflow("parameter stack size",param_size);
  value(p):=expr_base+k; get_symbol; info(p):=cur_sym;
  link(p):=r; r:=p; get_next;
  end;
end

@* \[35] Expanding the next token.
Only a few command codes |<min_command| can possibly be returned by
|get_next|; in increasing order, they are
|if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
|exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.

\MF\ usually gets the next token of input by saying |get_x_next|. This is
like |get_next| except that it keeps getting more tokens until
finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
macros and removes conditionals or iterations or input instructions that
might be present.

It follows that |get_x_next| might invoke itself recursively. In fact,
there is massive recursion, since macro expansion can involve the
scanning of arbitrarily complex expressions, which in turn involve
macro expansion and conditionals, etc.
@^recursion@>

Therefore it's necessary to declare a whole bunch of |forward|
procedures at this point, and to insert some other procedures
that will be invoked by |get_x_next|.

@p procedure@?scan_primary; forward;@t\2@>
procedure@?scan_secondary; forward;@t\2@>
procedure@?scan_tertiary; forward;@t\2@>
procedure@?scan_expression; forward;@t\2@>
procedure@?scan_suffix; forward;@t\2@>@/
@t\4@>@<Declare the procedure called |macro_call|@>@;@/
procedure@?get_boolean; forward;@t\2@>
procedure@?pass_text; forward;@t\2@>
procedure@?conditional; forward;@t\2@>
procedure@?start_input; forward;@t\2@>
procedure@?begin_iteration; forward;@t\2@>
procedure@?resume_iteration; forward;@t\2@>
procedure@?stop_iteration; forward;@t\2@>

@ An auxiliary subroutine called |expand| is used by |get_x_next|
when it has to do exotic expansion commands.

@p procedure expand;
var @!p:pointer; {for list manipulation}
@!k:integer; {something that we hope is |<=buf_size|}
@!j:pool_pointer; {index into |str_pool|}
begin if internal[tracing_commands]>unity then if cur_cmd<>defined_macro then
  show_cur_cmd_mod;
case cur_cmd of
if_test:conditional; {this procedure is discussed in Part 36 below}
fi_or_else:@<Terminate the current conditional and skip to \&{fi}@>;
input:@<Initiate or terminate input from a file@>;
iteration:if cur_mod=end_for then
    @<Scold the user for having an extra \&{endfor}@>
  else begin_iteration; {this procedure is discussed in Part 37 below}
repeat_loop: @<Repeat a loop@>;
exit_test: @<Exit a loop if the proper time has come@>;
relax: do_nothing;
expand_after: @<Expand the token after the next token@>;
scan_tokens: @<Put a string into the input buffer@>;
defined_macro:macro_call(cur_mod,null,cur_sym);
end; {there are no other cases}
end;

@ @<Scold the user...@>=
begin print_err("Extra `endfor'");
@.Extra `endfor'@>
help2("I'm not currently working on a for loop,")@/
  ("so I had better not try to end anything.");@/
error;
end

@ The processing of \&{input} involves the |start_input| subroutine,
which will be declared later; the processing of \&{endinput} is trivial.

@<Put each...@>=
primitive("input",input,0);@/
@!@:input_}{\&{input} primitive@>
primitive("endinput",input,1);@/
@!@:end_input_}{\&{endinput} primitive@>

@ @<Cases of |print_cmd_mod|...@>=
input: if m=0 then print("input")@+else print("endinput");

@ @<Initiate or terminate input...@>=
if cur_mod>0 then force_eof:=true
else start_input

@ We'll discuss the complicated parts of loop operations later. For now
it suffices to know that there's a global variable called |loop_ptr|
that will be |null| if no loop is in progress.

@<Repeat a loop@>=
begin while token_state and(loc=null) do end_token_list; {conserve stack space}
if loop_ptr=null then
  begin print_err("Lost loop");
@.Lost loop@>
  help2("I'm confused; after exiting from a loop, I still seem")@/
    ("to want to repeat it. I'll try to forget the problem.");@/
  error;
  end
else resume_iteration; {this procedure is in Part 37 below}
end

@ @<Exit a loop if the proper time has come@>=
begin get_boolean;
if internal[tracing_commands]>unity then show_cmd_mod(nullary,cur_exp);
if cur_exp=true_code then
  if loop_ptr=null then
    begin print_err("No loop is in progress");
@.No loop is in progress@>
    help1("Why say `exitif' when there's nothing to exit from?");
    if cur_cmd=semicolon then error@+else back_error;
    end
  else @<Exit prematurely from an iteration@>
else if cur_cmd<>semicolon then
  begin missing_err(";");@/
@.Missing `;'@>
  help2("After `exitif <boolean exp>' I expect to see a semicolon.")@/
  ("I shall pretend that one was there."); back_error;
  end;
end

@ Here we use the fact that |forever_text| is the only |token_type| that
is less than |loop_text|.

@<Exit prematurely...@>=
begin p:=null;
repeat if file_state then end_file_reading
else  begin if token_type<=loop_text then p:=start;
  end_token_list;
  end;
until p<>null;
if p<>info(loop_ptr) then fatal_error("*** (loop confusion)");
@.loop confusion@>
stop_iteration; {this procedure is in Part 37 below}
end

@ @<Expand the token after the next token@>=
begin get_next;
p:=cur_tok; get_next;
if cur_cmd<min_command then expand else back_input;
back_list(p);
end

@ @<Put a string into the input buffer@>=
begin get_x_next; scan_primary;
if cur_type<>string_type then
  begin disp_err(null,"Not a string");
@.Not a string@>
  help2("I'm going to flush this expression, since")@/
    ("scantokens should be followed by a known string.");
  put_get_flush_error(0);
  end
else  begin back_input;
  if length(cur_exp)>0 then @<Pretend we're reading a new one-line file@>;
  end;
end

@ @<Pretend we're reading a new one-line file@>=
begin begin_file_reading; name:=2;
k:=first+length(cur_exp);
if k>=max_buf_stack then
  begin if k>=buf_size then
    begin max_buf_stack:=buf_size;
    overflow("buffer size",buf_size);
@:METAFONT capacity exceeded buffer size}{\quad buffer size@>
    end;
  max_buf_stack:=k+1;
  end;
j:=str_start[cur_exp]; limit:=k;
while first<limit do
  begin buffer[first]:=so(str_pool[j]); incr(j); incr(first);
  end;
buffer[limit]:="%"; first:=limit+1; loc:=start; flush_cur_exp(0);
end

@ Here finally is |get_x_next|.

The expression scanning routines to be considered later
communicate via the global quantities |cur_type| and |cur_exp|;
we must be very careful to save and restore these quantities while
macros are being expanded.
@^inner loop@>

@p procedure get_x_next;
var @!save_exp:pointer; {a capsule to save |cur_type| and |cur_exp|}
begin get_next;
if cur_cmd<min_command then
  begin save_exp:=stash_cur_exp;
  repeat if cur_cmd=defined_macro then macro_call(cur_mod,null,cur_sym)
  else expand;
  get_next;
  until cur_cmd>=min_command;
  unstash_cur_exp(save_exp); {that restores |cur_type| and |cur_exp|}
  end;
end;

@ Now let's consider the |macro_call| procedure, which is used to start up
all user-defined macros. Since the arguments to a macro might be expressions,
|macro_call| is recursive.
@^recursion@>

The first parameter to |macro_call| points to the reference count of the
token list that defines the macro. The second parameter contains any
arguments that have already been parsed (see below).  The third parameter
points to the symbolic token that names the macro. If the third parameter
is |null|, the macro was defined by \&{vardef}, so its name can be
reconstructed from the prefix and ``at'' arguments found within the
second parameter.

What is this second parameter? It's simply a linked list of one-word items,
whose |info| fields point to the arguments. In other words, if |arg_list=null|,
no arguments have been scanned yet; otherwise |info(arg_list)| points to
the first scanned argument, and |link(arg_list)| points to the list of
further arguments (if any).

Arguments of type \&{expr} are so-called capsules, which we will
discuss later when we concentrate on expressions; they can be
recognized easily because their |link| field is |void|. Arguments of type
\&{suffix} and \&{text} are token lists without reference counts.

@ After argument scanning is complete, the arguments are moved to the
|param_stack|. (They can't be put on that stack any sooner, because
the stack is growing and shrinking in unpredictable ways as more arguments
are being acquired.)  Then the macro body is fed to the scanner; i.e.,
the replacement text of the macro is placed at the top of the \MF's
input stack, so that |get_next| will proceed to read it next.

@<Declare the procedure called |macro_call|@>=
@t\4@>@<Declare the procedure called |print_macro_name|@>@;
@t\4@>@<Declare the procedure called |print_arg|@>@;
@t\4@>@<Declare the procedure called |scan_text_arg|@>@;
procedure macro_call(@!def_ref,@!arg_list,@!macro_name:pointer);
  {invokes a user-defined control sequence}
label found;
var @!r:pointer; {current node in the macro's token list}
@!p,@!q:pointer; {for list manipulation}
@!n:integer; {the number of arguments}
@!l_delim,@!r_delim:pointer; {a delimiter pair}
@!tail:pointer; {tail of the argument list}
begin r:=link(def_ref); add_mac_ref(def_ref);
if arg_list=null then n:=0
else @<Determine the number |n| of arguments already supplied,
  and set |tail| to the tail of |arg_list|@>;
if internal[tracing_macros]>0 then
  @<Show the text of the macro being expanded, and the existing arguments@>;
@<Scan the remaining arguments, if any; set |r| to the first token
  of the replacement text@>;
@<Feed the arguments and replacement text to the scanner@>;
end;

@ @<Show the text of the macro...@>=
begin begin_diagnostic; print_ln; print_macro_name(arg_list,macro_name);
if n=3 then print("@@#"); {indicate a suffixed macro}
show_macro(def_ref,null,100000);
if arg_list<>null then
  begin n:=0; p:=arg_list;
  repeat q:=info(p);
  print_arg(q,n,0);
  incr(n); p:=link(p);
  until p=null;
  end;
end_diagnostic(false);
end

@ @<Declare the procedure called |print_macro_name|@>=
procedure print_macro_name(@!a,@!n:pointer);
var @!p,@!q:pointer; {they traverse the first part of |a|}
begin if n<>null then slow_print(text(n))
else  begin p:=info(a);
  if p=null then slow_print(text(info(info(link(a)))))
  else  begin q:=p;
    while link(q)<>null do q:=link(q);
    link(q):=info(link(a));
    show_token_list(p,null,1000,0);
    link(q):=null;
    end;
  end;
end;

@ @<Declare the procedure called |print_arg|@>=
procedure print_arg(@!q:pointer;@!n:integer;@!b:pointer);
begin if link(q)=void then print_nl("(EXPR")
else if (b<text_base)and(b<>text_macro) then print_nl("(SUFFIX")
else print_nl("(TEXT");
print_int(n); print(")<-");
if link(q)=void then print_exp(q,1)
else show_token_list(q,null,1000,0);
end;

@ @<Determine the number |n| of arguments already supplied...@>=
begin n:=1; tail:=arg_list;
while link(tail)<>null do
  begin incr(n); tail:=link(tail);
  end;
end

@ @<Scan the remaining arguments, if any; set |r|...@>=
cur_cmd:=comma+1; {anything |<>comma| will do}
while info(r)>=expr_base do
  begin @<Scan the delimited argument represented by |info(r)|@>;
  r:=link(r);
  end;
if cur_cmd=comma then
  begin print_err("Too many arguments to ");
@.Too many arguments...@>
  print_macro_name(arg_list,macro_name); print_char(";");
  print_nl("  Missing `"); slow_print(text(r_delim));
@.Missing `)'...@>
  print("' has been inserted");
  help3("I'm going to assume that the comma I just read was a")@/
   ("right delimiter, and then I'll begin expanding the macro.")@/
   ("You might want to delete some tokens before continuing.");
  error;
  end;
if info(r)<>general_macro then @<Scan undelimited argument(s)@>;
r:=link(r)

@ At this point, the reader will find it advisable to review the explanation
of token list format that was presented earlier, paying special attention to
the conventions that apply only at the beginning of a macro's token list.

On the other hand, the reader will have to take the expression-parsing
aspects of the following program on faith; we will explain |cur_type|
and |cur_exp| later. (Several things in this program depend on each other,
and it's necessary to jump into the circle somewhere.)

@<Scan the delimited argument represented by |info(r)|@>=
if cur_cmd<>comma then
  begin get_x_next;
  if cur_cmd<>left_delimiter then
    begin print_err("Missing argument to ");
@.Missing argument...@>
    print_macro_name(arg_list,macro_name);
    help3("That macro has more parameters than you thought.")@/
     ("I'll continue by pretending that each missing argument")@/
     ("is either zero or null.");
    if info(r)>=suffix_base then
      begin cur_exp:=null; cur_type:=token_list;
      end
    else  begin cur_exp:=0; cur_type:=known;
      end;
    back_error; cur_cmd:=right_delimiter; goto found;
    end;
  l_delim:=cur_sym; r_delim:=cur_mod;
  end;
@<Scan the argument represented by |info(r)|@>;
if cur_cmd<>comma then @<Check that the proper right delimiter was present@>;
found:  @<Append the current expression to |arg_list|@>

@ @<Check that the proper right delim...@>=
if (cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
  if info(link(r))>=expr_base then
    begin missing_err(",");
@.Missing `,'@>
    help3("I've finished reading a macro argument and am about to")@/
      ("read another; the arguments weren't delimited correctly.")@/
       ("You might want to delete some tokens before continuing.");
    back_error; cur_cmd:=comma;
    end
  else  begin missing_err(text(r_delim));
@.Missing `)'@>
    help2("I've gotten to the end of the macro parameter list.")@/
       ("You might want to delete some tokens before continuing.");
    back_error;
    end

@ A \&{suffix} or \&{text} parameter will be have been scanned as
a token list pointed to by |cur_exp|, in which case we will have
|cur_type=token_list|.

@<Append the current expression to |arg_list|@>=
begin p:=get_avail;
if cur_type=token_list then info(p):=cur_exp
else info(p):=stash_cur_exp;
if internal[tracing_macros]>0 then
  begin begin_diagnostic; print_arg(info(p),n,info(r)); end_diagnostic(false);
  end;
if arg_list=null then arg_list:=p
else link(tail):=p;
tail:=p; incr(n);
end

@ @<Scan the argument represented by |info(r)|@>=
if info(r)>=text_base then scan_text_arg(l_delim,r_delim)
else  begin get_x_next;
  if info(r)>=suffix_base then scan_suffix
  else scan_expression;
  end

@ The parameters to |scan_text_arg| are either a pair of delimiters
or zero; the latter case is for undelimited text arguments, which
end with the first semicolon or \&{endgroup} or \&{end} that is not
contained in a group.

@<Declare the procedure called |scan_text_arg|@>=
procedure scan_text_arg(@!l_delim,@!r_delim:pointer);
label done;
var @!balance:integer; {excess of |l_delim| over |r_delim|}
@!p:pointer; {list tail}
begin warning_info:=l_delim; scanner_status:=absorbing;
p:=hold_head; balance:=1; link(hold_head):=null;
loop@+  begin get_next;
  if l_delim=0 then @<Adjust the balance for an undelimited argument;
    |goto done| if done@>
  else @<Adjust the balance for a delimited argument;
    |goto done| if done@>;
  link(p):=cur_tok; p:=link(p);
  end;
done: cur_exp:=link(hold_head); cur_type:=token_list;
scanner_status:=normal;
end;

@ @<Adjust the balance for a delimited argument...@>=
begin if cur_cmd=right_delimiter then
  begin if cur_mod=l_delim then
    begin decr(balance);
    if balance=0 then goto done;
    end;
  end
else if cur_cmd=left_delimiter then if cur_mod=r_delim then incr(balance);
end

@ @<Adjust the balance for an undelimited...@>=
begin if end_of_statement then {|cur_cmd=semicolon|, |end_group|, or |stop|}
  begin if balance=1 then goto done
  else if cur_cmd=end_group then decr(balance);
  end
else if cur_cmd=begin_group then incr(balance);
end

@ @<Scan undelimited argument(s)@>=
begin if info(r)<text_macro then
  begin get_x_next;
  if info(r)<>suffix_macro then
    if (cur_cmd=equals)or(cur_cmd=assignment) then get_x_next;
  end;
case info(r) of
primary_macro:scan_primary;
secondary_macro:scan_secondary;
tertiary_macro:scan_tertiary;
expr_macro:scan_expression;
of_macro:@<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
suffix_macro:@<Scan a suffix with optional delimiters@>;
text_macro:scan_text_arg(0,0);
end; {there are no other cases}
back_input; @<Append the current expression to |arg_list|@>;
end

@ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
begin scan_expression; p:=get_avail; info(p):=stash_cur_exp;
if internal[tracing_macros]>0 then
  begin begin_diagnostic; print_arg(info(p),n,0); end_diagnostic(false);
  end;
if arg_list=null then arg_list:=p@+else link(tail):=p;
tail:=p;incr(n);
if cur_cmd<>of_token then
  begin missing_err("of"); print(" for ");
@.Missing `of'@>
  print_macro_name(arg_list,macro_name);
  help1("I've got the first argument; will look now for the other.");
  back_error;
  end;
get_x_next; scan_primary;
end

@ @<Scan a suffix with optional delimiters@>=
begin if cur_cmd<>left_delimiter then l_delim:=null
else  begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next;
  end;
scan_suffix;
if l_delim<>null then
  begin if(cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
    begin missing_err(text(r_delim));
@.Missing `)'@>
    help2("I've gotten to the end of the macro parameter list.")@/
       ("You might want to delete some tokens before continuing.");
    back_error;
    end;
  get_x_next;
  end;
end

@ Before we put a new token list on the input stack, it is wise to clean off
all token lists that have recently been depleted. Then a user macro that ends
with a call to itself will not require unbounded stack space.

@<Feed the arguments and replacement text to the scanner@>=
while token_state and(loc=null) do end_token_list; {conserve stack space}
if param_ptr+n>max_param_stack then
  begin max_param_stack:=param_ptr+n;
  if max_param_stack>param_size then
    overflow("parameter stack size",param_size);
@:METAFONT capacity exceeded parameter stack size}{\quad parameter stack size@>
  end;
begin_token_list(def_ref,macro); name:=macro_name; loc:=r;
if n>0 then
  begin p:=arg_list;
  repeat param_stack[param_ptr]:=info(p); incr(param_ptr); p:=link(p);
  until p=null;
  flush_list(arg_list);
  end

@ It's sometimes necessary to put a single argument onto |param_stack|.
The |stack_argument| subroutine does this.

@p procedure stack_argument(@!p:pointer);
begin if param_ptr=max_param_stack then
  begin incr(max_param_stack);
  if max_param_stack>param_size then
    overflow("parameter stack size",param_size);
@:METAFONT capacity exceeded parameter stack size}{\quad parameter stack size@>
  end;
param_stack[param_ptr]:=p; incr(param_ptr);
end;

@* \[36] Conditional processing.
Let's consider now the way \&{if} commands are handled.

Conditions can be inside conditions, and this nesting has a stack
that is independent of other stacks.
Four global variables represent the top of the condition stack:
|cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
we are processing \&{if} or \&{elseif}; |if_limit| specifies
the largest code of a |fi_or_else| command that is syntactically legal;
and |if_line| is the line number at which the current conditional began.

If no conditions are currently in progress, the condition stack has the
special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
|link| fields of the first word contain |if_limit|, |cur_if|, and
|cond_ptr| at the next level, and the second word contains the
corresponding |if_line|.

@d if_node_size=2 {number of words in stack entry for conditionals}
@d if_line_field(#)==mem[#+1].int
@d if_code=1 {code for \&{if} being evaluated}
@d fi_code=2 {code for \&{fi}}
@d else_code=3 {code for \&{else}}
@d else_if_code=4 {code for \&{elseif}}

@<Glob...@>=
@!cond_ptr:pointer; {top of the condition stack}
@!if_limit:normal..else_if_code; {upper bound on |fi_or_else| codes}
@!cur_if:small_number; {type of conditional being worked on}
@!if_line:integer; {line where that conditional began}

@ @<Set init...@>=
cond_ptr:=null; if_limit:=normal; cur_if:=0; if_line:=0;

@ @<Put each...@>=
primitive("if",if_test,if_code);@/
@!@:if_}{\&{if} primitive@>
primitive("fi",fi_or_else,fi_code); eqtb[frozen_fi]:=eqtb[cur_sym];@/
@!@:fi_}{\&{fi} primitive@>
primitive("else",fi_or_else,else_code);@/
@!@:else_}{\&{else} primitive@>
primitive("elseif",fi_or_else,else_if_code);@/
@!@:else_if_}{\&{elseif} primitive@>

@ @<Cases of |print_cmd_mod|...@>=
if_test,fi_or_else: case m of
  if_code:print("if");
  fi_code:print("fi");
  else_code:print("else");
  othercases print("elseif")
  endcases;

@ Here is a procedure that ignores text until coming to an \&{elseif},
\&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
nesting. After it has acted, |cur_mod| will indicate the token that
was found.

\MF's smallest two command codes are |if_test| and |fi_or_else|; this
makes the skipping process a bit simpler.

@p procedure pass_text;
label done;
var l:integer;
begin scanner_status:=skipping; l:=0; warning_info:=line;
loop@+  begin get_next;
  if cur_cmd<=fi_or_else then
    if cur_cmd<fi_or_else then incr(l)
    else  begin if l=0 then goto done;
      if cur_mod=fi_code then decr(l);
      end
  else @<Decrease the string reference count,
    if the current token is a string@>;
  end;
done: scanner_status:=normal;
end;

@ @<Decrease the string reference count...@>=
if cur_cmd=string_token then delete_str_ref(cur_mod)

@ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
condition has been evaluated, a colon will be inserted.
A construction like `\.{if fi}' would otherwise get \MF\ confused.

@<Push the condition stack@>=
begin p:=get_node(if_node_size); link(p):=cond_ptr; type(p):=if_limit;
name_type(p):=cur_if; if_line_field(p):=if_line;
cond_ptr:=p; if_limit:=if_code; if_line:=line; cur_if:=if_code;
end

@ @<Pop the condition stack@>=
begin p:=cond_ptr; if_line:=if_line_field(p);
cur_if:=name_type(p); if_limit:=type(p); cond_ptr:=link(p);
free_node(p,if_node_size);
end

@ Here's a procedure that changes the |if_limit| code corresponding to
a given value of |cond_ptr|.

@p procedure change_if_limit(@!l:small_number;@!p:pointer);
label exit;
var q:pointer;
begin if p=cond_ptr then if_limit:=l {that's the easy case}
else  begin q:=cond_ptr;
  loop@+  begin if q=null then confusion("if");
@:this can't happen if}{\quad if@>
    if link(q)=p then
      begin type(q):=l; return;
      end;
    q:=link(q);
    end;
  end;
exit:end;

@ The user is supposed to put colons into the proper parts of conditional
statements. Therefore, \MF\ has to check for their presence.

@p procedure check_colon;
begin if cur_cmd<>colon then
  begin missing_err(":");@/
@.Missing `:'@>
  help2("There should've been a colon after the condition.")@/
    ("I shall pretend that one was there.");@;
  back_error;
  end;
end;

@ A condition is started when the |get_x_next| procedure encounters
an |if_test| command; in that case |get_x_next| calls |conditional|,
which is a recursive procedure.
@^recursion@>

@p procedure conditional;
label exit,done,reswitch,found;
var @!save_cond_ptr:pointer; {|cond_ptr| corresponding to this conditional}
@!new_if_limit:fi_code..else_if_code; {future value of |if_limit|}
@!p:pointer; {temporary register}
begin @<Push the condition stack@>;@+save_cond_ptr:=cond_ptr;
reswitch: get_boolean; new_if_limit:=else_if_code;
if internal[tracing_commands]>unity then
  @<Display the boolean value of |cur_exp|@>;
found: check_colon;
if cur_exp=true_code then
  begin change_if_limit(new_if_limit,save_cond_ptr);
  return; {wait for \&{elseif}, \&{else}, or \&{fi}}
  end;
@<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
done: cur_if:=cur_mod; if_line:=line;
if cur_mod=fi_code then @<Pop the condition stack@>
else if cur_mod=else_if_code then goto reswitch
else  begin cur_exp:=true_code; new_if_limit:=fi_code; get_x_next; goto found;
  end;
exit:end;

@ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
\&{else}: \\{bar} \&{fi}', the first \&{else}
that we come to after learning that the \&{if} is false is not the
\&{else} we're looking for. Hence the following curious logic is needed.

@<Skip to \&{elseif}...@>=
loop@+  begin pass_text;
  if cond_ptr=save_cond_ptr then goto done
  else if cur_mod=fi_code then @<Pop the condition stack@>;
  end


@ @<Display the boolean value...@>=
begin begin_diagnostic;
if cur_exp=true_code then print("{true}")@+else print("{false}");
end_diagnostic(false);
end

@ The processing of conditionals is complete except for the following
code, which is actually part of |get_x_next|. It comes into play when
\&{elseif}, \&{else}, or \&{fi} is scanned.

@<Terminate the current conditional and skip to \&{fi}@>=
if cur_mod>if_limit then
  if if_limit=if_code then {condition not yet evaluated}
    begin missing_err(":");
@.Missing `:'@>
    back_input; cur_sym:=frozen_colon; ins_error;
    end
  else  begin print_err("Extra "); print_cmd_mod(fi_or_else,cur_mod);
@.Extra else@>
@.Extra elseif@>
@.Extra fi@>
    help1("I'm ignoring this; it doesn't match any if.");
    error;
    end
else  begin while cur_mod<>fi_code do pass_text; {skip to \&{fi}}
  @<Pop the condition stack@>;
  end

@* \[37] Iterations.
To bring our treatment of |get_x_next| to a close, we need to consider what
\MF\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.

There's a global variable |loop_ptr| that keeps track of the \&{for} loops
that are currently active. If |loop_ptr=null|, no loops are in progress;
otherwise |info(loop_ptr)| points to the iterative text of the current
(innermost) loop, and |link(loop_ptr)| points to the data for any other
loops that enclose the current one.

A loop-control node also has two other fields, called |loop_type| and
|loop_list|, whose contents depend on the type of loop:

\yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
points to a list of one-word nodes whose |info| fields point to the
remaining argument values of a suffix list and expression list.

\yskip\indent|loop_type(loop_ptr)=void| means that the current loop is
`\&{forever}'.

\yskip\indent|loop_type(loop_ptr)=p>void| means that |value(p)|,
|step_size(p)|, and |final_value(p)| contain the data for an arithmetic
progression.

\yskip\noindent In the latter case, |p| points to a ``progression node''
whose first word is not used. (No value could be stored there because the
link field of words in the dynamic memory area cannot be arbitrary.)

@d loop_list_loc(#)==#+1 {where the |loop_list| field resides}
@d loop_type(#)==info(loop_list_loc(#)) {the type of \&{for} loop}
@d loop_list(#)==link(loop_list_loc(#)) {the remaining list elements}
@d loop_node_size=2 {the number of words in a loop control node}
@d progression_node_size=4 {the number of words in a progression node}
@d step_size(#)==mem[#+2].sc {the step size in an arithmetic progression}
@d final_value(#)==mem[#+3].sc {the final value in an arithmetic progression}

@<Glob...@>=
@!loop_ptr:pointer; {top of the loop-control-node stack}

@ @<Set init...@>=
loop_ptr:=null;

@ If the expressions that define an arithmetic progression in
a \&{for} loop don't have known numeric values, the |bad_for|
subroutine screams at the user.

@p procedure bad_for(@!s:str_number);
begin disp_err(null,"Improper "); {show the bad expression above the message}
@.Improper...replaced by 0@>
print(s); print(" has been replaced by 0");
help4("When you say `for x=a step b until c',")@/
  ("the initial value `a' and the step size `b'")@/
  ("and the final value `c' must have known numeric values.")@/
  ("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;

@ Here's what \MF\ does when \&{for}, \&{forsuffixes}, or \&{forever}
has just been scanned. (This code requires slight familiarity with
expression-parsing routines that we have not yet discussed; but it seems
to belong in the present part of the program, even though the author
didn't write it until later. The reader may wish to come back to it.)

@p procedure begin_iteration;
label continue,done,found;
var @!m:halfword; {|expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes})}
@!n:halfword; {hash address of the current symbol}
@!p,@!q,@!s,@!pp:pointer; {link manipulation registers}
begin m:=cur_mod; n:=cur_sym; s:=get_node(loop_node_size);
if m=start_forever then
  begin loop_type(s):=void; p:=null; get_x_next; goto found;
  end;
get_symbol; p:=get_node(token_node_size); info(p):=cur_sym; value(p):=m;@/
get_x_next;
if (cur_cmd<>equals)and(cur_cmd<>assignment) then
  begin missing_err("=");@/
@.Missing `='@>
  help3("The next thing in this loop should have been `=' or `:='.")@/
    ("But don't worry; I'll pretend that an equals sign")@/
    ("was present, and I'll look for the values next.");@/
  back_error;
  end;
@<Scan the values to be used in the loop@>;
found:@<Check for the presence of a colon@>;
@<Scan the loop text and put it on the loop control stack@>;
resume_iteration;
end;

@ @<Check for the presence of a colon@>=
if cur_cmd<>colon then
  begin missing_err(":");@/
@.Missing `:'@>
  help3("The next thing in this loop should have been a `:'.")@/
    ("So I'll pretend that a colon was present;")@/
    ("everything from here to `endfor' will be iterated.");
  back_error;
  end

@ We append a special |frozen_repeat_loop| token in place of the
`\&{endfor}' at the end of the loop. This will come through \MF's scanner
at the proper time to cause the loop to be repeated.

(If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
he will be foiled by the |get_symbol| routine, which keeps frozen
tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
token, so it won't be lost accidentally.)

@ @<Scan the loop text...@>=
q:=get_avail; info(q):=frozen_repeat_loop;
scanner_status:=loop_defining; warning_info:=n;
info(s):=scan_toks(iteration,p,q,0); scanner_status:=normal;@/
link(s):=loop_ptr; loop_ptr:=s

@ @<Initialize table...@>=
eq_type(frozen_repeat_loop):=repeat_loop+outer_tag;
text(frozen_repeat_loop):=" ENDFOR";

@ The loop text is inserted into \MF's scanning apparatus by the
|resume_iteration| routine.

@p procedure resume_iteration;
label not_found,exit;
var @!p,@!q:pointer; {link registers}
begin p:=loop_type(loop_ptr);
if p>void then {|p| points to a progression node}
  begin cur_exp:=value(p);
  if @<The arithmetic progression has ended@> then goto not_found;
  cur_type:=known; q:=stash_cur_exp; {make |q| an \&{expr} argument}
  value(p):=cur_exp+step_size(p); {set |value(p)| for the next iteration}
  end
else if p<void then
  begin p:=loop_list(loop_ptr);
  if p=null then goto not_found;
  loop_list(loop_ptr):=link(p); q:=info(p); free_avail(p);
  end
else  begin begin_token_list(info(loop_ptr),forever_text); return;
  end;
begin_token_list(info(loop_ptr),loop_text);
stack_argument(q);
if internal[tracing_commands]>unity then @<Trace the start of a loop@>;
return;
not_found:stop_iteration;
exit:end;

@ @<The arithmetic progression has ended@>=
((step_size(p)>0)and(cur_exp>final_value(p)))or@|
 ((step_size(p)<0)and(cur_exp<final_value(p)))

@ @<Trace the start of a loop@>=
begin begin_diagnostic; print_nl("{loop value=");
@.loop value=n@>
if (q<>null)and(link(q)=void) then print_exp(q,1)
else show_token_list(q,null,50,0);
print_char("}"); end_diagnostic(false);
end

@ A level of loop control disappears when |resume_iteration| has decided
not to resume, or when an \&{exitif} construction has removed the loop text
from the input stack.

@p procedure stop_iteration;
var @!p,@!q:pointer; {the usual}
begin p:=loop_type(loop_ptr);
if p>void then free_node(p,progression_node_size)
else if p<void then
  begin q:=loop_list(loop_ptr);
  while q<>null do
    begin p:=info(q);
    if p<>null then
      if link(p)=void then {it's an \&{expr} parameter}
        begin recycle_value(p); free_node(p,value_node_size);
        end
      else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
    p:=q; q:=link(q); free_avail(p);
    end;
  end;
p:=loop_ptr; loop_ptr:=link(p); flush_token_list(info(p));
free_node(p,loop_node_size);
end;

@ Now that we know all about loop control, we can finish up
the missing portion of |begin_iteration| and we'll be done.

The following code is performed after the `\.=' has been scanned in
a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
(if |m=suffix_base|).

@<Scan the values to be used in the loop@>=
loop_type(s):=null; q:=loop_list_loc(s); link(q):=null; {|link(q)=loop_list(s)|}
repeat get_x_next;
if m<>expr_base then scan_suffix
else  begin if cur_cmd>=colon then if cur_cmd<=comma then goto continue;
  scan_expression;
  if cur_cmd=step_token then if q=loop_list_loc(s) then
    @<Prepare for step-until construction and |goto done|@>;
  cur_exp:=stash_cur_exp;
  end;
link(q):=get_avail; q:=link(q); info(q):=cur_exp; cur_type:=vacuous;
continue: until cur_cmd<>comma;
done:

@ @<Prepare for step-until construction and |goto done|@>=
begin if cur_type<>known then bad_for("initial value");
pp:=get_node(progression_node_size); value(pp):=cur_exp;@/
get_x_next; scan_expression;
if cur_type<>known then bad_for("step size");
step_size(pp):=cur_exp;
if cur_cmd<>until_token then
  begin missing_err("until");@/
@.Missing `until'@>
  help2("I assume you meant to say `until' after `step'.")@/
    ("So I'll look for the final value and colon next.");
  back_error;
  end;
get_x_next; scan_expression;
if cur_type<>known then bad_for("final value");
final_value(pp):=cur_exp; loop_type(s):=pp; goto done;
end

@* \[38] File names.
It's time now to fret about file names.  Besides the fact that different
operating systems treat files in different ways, we must cope with the
fact that completely different naming conventions are used by different
groups of people. The following programs show what is required for one
particular operating system; similar routines for other systems are not
difficult to devise.
@^system dependencies@>

\MF\ assumes that a file name has three parts: the name proper; its
``extension''; and a ``file area'' where it is found in an external file
system.  The extension of an input file is assumed to be
`\.{.mf}' unless otherwise specified; it is `\.{.log}' on the
transcript file that records each run of \MF; it is `\.{.tfm}' on the font
metric files that describe characters in the fonts \MF\ creates; it is
`\.{.gf}' on the output files that specify generic font information; and it
is `\.{.base}' on the base files written by \.{INIMF} to initialize \MF.
The file area can be arbitrary on input files, but files are usually
output to the user's current area.  If an input file cannot be
found on the specified area, \MF\ will look for it on a special system
area; this special area is intended for commonly used input files.

Simple uses of \MF\ refer only to file names that have no explicit
extension or area. For example, a person usually says `\.{input} \.{cmr10}'
instead of `\.{input} \.{cmr10.new}'. Simple file
names are best, because they make the \MF\ source files portable;
whenever a file name consists entirely of letters and digits, it should be
treated in the same way by all implementations of \MF. However, users
need the ability to refer to other files in their environment, especially
when responding to error messages concerning unopenable files; therefore
we want to let them use the syntax that appears in their favorite
operating system.

@ \MF\ uses the same conventions that have proved to be satisfactory for
\TeX. In order to isolate the system-dependent aspects of file names, the
@^system dependencies@>
system-independent parts of \MF\ are expressed in terms
of three system-dependent
procedures called |begin_name|, |more_name|, and |end_name|. In
essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
the system-independent driver program does the operations
$$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
\,|end_name|.$$
These three procedures communicate with each other via global variables.
Afterwards the file name will appear in the string pool as three strings
called |cur_name|\penalty10000\hskip-.05em,
|cur_area|, and |cur_ext|; the latter two are null (i.e.,
|""|), unless they were explicitly specified by the user.

Actually the situation is slightly more complicated, because \MF\ needs
to know when the file name ends. The |more_name| routine is a function
(with side effects) that returns |true| on the calls |more_name|$(c_1)$,
\dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
returns |false|; or, it returns |true| and $c_n$ is the last character
on the current input line. In other words,
|more_name| is supposed to return |true| unless it is sure that the
file name has been completely scanned; and |end_name| is supposed to be able
to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
whether $|more_name|(c_n)$ returned |true| or |false|.

@<Glob...@>=
@!cur_name:str_number; {name of file just scanned}
@!cur_area:str_number; {file area just scanned, or \.{""}}
@!cur_ext:str_number; {file extension just scanned, or \.{""}}

@ The file names we shall deal with for illustrative purposes have the
following structure:  If the name contains `\.>' or `\.:', the file area
consists of all characters up to and including the final such character;
otherwise the file area is null.  If the remaining file name contains
`\..', the file extension consists of all such characters from the first
remaining `\..' to the end, otherwise the file extension is null.
@^system dependencies@>

We can scan such file names easily by using two global variables that keep track
of the occurrences of area and extension delimiters:

@<Glob...@>=
@!area_delimiter:pool_pointer; {the most recent `\.>' or `\.:', if any}
@!ext_delimiter:pool_pointer; {the relevant `\..', if any}

@ Input files that can't be found in the user's area may appear in a standard
system area called |MF_area|.
This system area name will, of course, vary from place to place.
@^system dependencies@>

@d MF_area=="MFinputs:"
@.MFinputs@>

@ Here now is the first of the system-dependent routines for file name scanning.
@^system dependencies@>

@p procedure begin_name;
begin area_delimiter:=0; ext_delimiter:=0;
end;

@ And here's the second.
@^system dependencies@>

@p function more_name(@!c:ASCII_code):boolean;
begin if c=" " then more_name:=false
else  begin if (c=">")or(c=":") then
    begin area_delimiter:=pool_ptr; ext_delimiter:=0;
    end
  else if (c=".")and(ext_delimiter=0) then ext_delimiter:=pool_ptr;
  str_room(1); append_char(c); {contribute |c| to the current string}
  more_name:=true;
  end;
end;

@ The third.
@^system dependencies@>

@p procedure end_name;
begin if str_ptr+3>max_str_ptr then
  begin if str_ptr+3>max_strings then
    overflow("number of strings",max_strings-init_str_ptr);
@:METAFONT capacity exceeded number of strings}{\quad number of strings@>
  max_str_ptr:=str_ptr+3;
  end;
if area_delimiter=0 then cur_area:=""
else  begin cur_area:=str_ptr; incr(str_ptr);
  str_start[str_ptr]:=area_delimiter+1;
  end;
if ext_delimiter=0 then
  begin cur_ext:=""; cur_name:=make_string;
  end
else  begin cur_name:=str_ptr; incr(str_ptr);
  str_start[str_ptr]:=ext_delimiter; cur_ext:=make_string;
  end;
end;

@ Conversely, here is a routine that takes three strings and prints a file
name that might have produced them. (The routine is system dependent, because
some operating systems put the file area last instead of first.)
@^system dependencies@>

@<Basic printing...@>=
procedure print_file_name(@!n,@!a,@!e:integer);
begin slow_print(a); slow_print(n); slow_print(e);
end;

@ Another system-dependent routine is needed to convert three internal
\MF\ strings
to the |name_of_file| value that is used to open files. The present code
allows both lowercase and uppercase letters in the file name.
@^system dependencies@>

@d append_to_name(#)==begin c:=#; incr(k);
  if k<=file_name_size then name_of_file[k]:=xchr[c];
  end

@p procedure pack_file_name(@!n,@!a,@!e:str_number);
var @!k:integer; {number of positions filled in |name_of_file|}
@!c: ASCII_code; {character being packed}
@!j:pool_pointer; {index into |str_pool|}
begin k:=0;
for j:=str_start[a] to str_start[a+1]-1 do append_to_name(so(str_pool[j]));
for j:=str_start[n] to str_start[n+1]-1 do append_to_name(so(str_pool[j]));
for j:=str_start[e] to str_start[e+1]-1 do append_to_name(so(str_pool[j]));
if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
end;

@ A messier routine is also needed, since base file names must be scanned
before \MF's string mechanism has been initialized. We shall use the
global variable |MF_base_default| to supply the text for default system areas
and extensions related to base files.
@^system dependencies@>

@d base_default_length=18 {length of the |MF_base_default| string}
@d base_area_length=8 {length of its area part}
@d base_ext_length=5 {length of its `\.{.base}' part}
@d base_extension=".base" {the extension, as a \.{WEB} constant}

@<Glob...@>=
@!MF_base_default:packed array[1..base_default_length] of char;

@ @<Set init...@>=
MF_base_default:='MFbases:plain.base';
@.MFbases@>
@.plain@>
@^system dependencies@>

@ @<Check the ``constant'' values for consistency@>=
if base_default_length>file_name_size then bad:=41;

@ Here is the messy routine that was just mentioned. It sets |name_of_file|
from the first |n| characters of |MF_base_default|, followed by
|buffer[a..b]|, followed by the last |base_ext_length| characters of
|MF_base_default|.

We dare not give error messages here, since \MF\ calls this routine before
the |error| routine is ready to roll. Instead, we simply drop excess characters,
since the error will be detected in another way when a strange file name
isn't found.
@^system dependencies@>

@p procedure pack_buffered_name(@!n:small_number;@!a,@!b:integer);
var @!k:integer; {number of positions filled in |name_of_file|}
@!c: ASCII_code; {character being packed}
@!j:integer; {index into |buffer| or |MF_base_default|}
begin if n+b-a+1+base_ext_length>file_name_size then
  b:=a+file_name_size-n-1-base_ext_length;
k:=0;
for j:=1 to n do append_to_name(xord[MF_base_default[j]]);
for j:=a to b do append_to_name(buffer[j]);
for j:=base_default_length-base_ext_length+1 to base_default_length do
  append_to_name(xord[MF_base_default[j]]);
if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
end;

@ Here is the only place we use |pack_buffered_name|. This part of the program
becomes active when a ``virgin'' \MF\ is trying to get going, just after
the preliminary initialization, or when the user is substituting another
base file by typing `\.\&' after the initial `\.{**}' prompt.  The buffer
contains the first line of input in |buffer[loc..(last-1)]|, where
|loc<last| and |buffer[loc]<>" "|.

@<Declare the function called |open_base_file|@>=
function open_base_file:boolean;
label found,exit;
var @!j:0..buf_size; {the first space after the file name}
begin j:=loc;
if buffer[loc]="&" then
  begin incr(loc); j:=loc; buffer[last]:=" ";
  while buffer[j]<>" " do incr(j);
  pack_buffered_name(0,loc,j-1); {try first without the system file area}
  if w_open_in(base_file) then goto found;
  pack_buffered_name(base_area_length,loc,j-1);
    {now try the system base file area}
  if w_open_in(base_file) then goto found;
  wake_up_terminal;
  wterm_ln('Sorry, I can''t find that base;',' will try PLAIN.');
@.Sorry, I can't find...@>
  update_terminal;
  end;
  {now pull out all the stops: try for the system \.{plain} file}
pack_buffered_name(base_default_length-base_ext_length,1,0);
if not w_open_in(base_file) then
  begin wake_up_terminal;
  wterm_ln('I can''t find the PLAIN base file!');
@.I can't find PLAIN...@>
@.plain@>
  open_base_file:=false; return;
  end;
found:loc:=j; open_base_file:=true;
exit:end;

@ Operating systems often make it possible to determine the exact name (and
possible version number) of a file that has been opened. The following routine,
which simply makes a \MF\ string from the value of |name_of_file|, should
ideally be changed to deduce the full name of file~|f|, which is the file
most recently opened, if it is possible to do this in a \PASCAL\ program.
@^system dependencies@>

This routine might be called after string memory has overflowed, hence
we dare not use `|str_room|'.

@p function make_name_string:str_number;
var @!k:1..file_name_size; {index into |name_of_file|}
begin if (pool_ptr+name_length>pool_size)or(str_ptr=max_strings) then
  make_name_string:="?"
else  begin for k:=1 to name_length do append_char(xord[name_of_file[k]]);
  make_name_string:=make_string;
  end;
end;
function a_make_name_string(var @!f:alpha_file):str_number;
begin a_make_name_string:=make_name_string;
end;
function b_make_name_string(var @!f:byte_file):str_number;
begin b_make_name_string:=make_name_string;
end;
function w_make_name_string(var @!f:word_file):str_number;
begin w_make_name_string:=make_name_string;
end;

@ Now let's consider the ``driver''
routines by which \MF\ deals with file names
in a system-independent manner.  First comes a procedure that looks for a
file name in the input by taking the information from the input buffer.
(We can't use |get_next|, because the conversion to tokens would
destroy necessary information.)

This procedure doesn't allow semicolons or percent signs to be part of
file names, because of other conventions of \MF. The manual doesn't
use semicolons or percents immediately after file names, but some users
no doubt will find it natural to do so; therefore system-dependent
changes to allow such characters in file names should probably
be made with reluctance, and only when an entire file name that
includes special characters is ``quoted'' somehow.
@^system dependencies@>

@p procedure scan_file_name;
label done;
begin begin_name;
while buffer[loc]=" " do incr(loc);
loop@+begin if (buffer[loc]=";")or(buffer[loc]="%") then goto done;
  if not more_name(buffer[loc]) then goto done;
  incr(loc);
  end;
done: end_name;
end;

@ The global variable |job_name| contains the file name that was first
\&{input} by the user. This name is extended by `\.{.log}' and `\.{.gf}' and
`\.{.base}' and `\.{.tfm}' in the names of \MF's output files.

@<Glob...@>=
@!job_name:str_number; {principal file name}
@!log_opened:boolean; {has the transcript file been opened?}
@!log_name:str_number; {full name of the log file}

@ Initially |job_name=0|; it becomes nonzero as soon as the true name is known.
We have |job_name=0| if and only if the `\.{log}' file has not been opened,
except of course for a short time just after |job_name| has become nonzero.

@<Initialize the output...@>=job_name:=0; log_opened:=false;

@ Here is a routine that manufactures the output file names, assuming that
|job_name<>0|. It ignores and changes the current settings of |cur_area|
and |cur_ext|.

@d pack_cur_name==pack_file_name(cur_name,cur_area,cur_ext)

@p procedure pack_job_name(@!s:str_number); {|s = ".log"|, |".gf"|, or
  |base_extension|}
begin cur_area:=""; cur_ext:=s;
cur_name:=job_name; pack_cur_name;
end;

@ Actually the main output file extension is usually something like
|".300gf"| instead of just |".gf"|; the additional number indicates the
resolution in pixels per inch, based on the setting of |hppp| when
the file is opened.

@<Glob...@>=
@!gf_ext:str_number; {default extension for the output file}

@ If some trouble arises when \MF\ tries to open a file, the following
routine calls upon the user to supply another file name. Parameter~|s|
is used in the error message to identify the type of file; parameter~|e|
is the default extension if none is given. Upon exit from the routine,
variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
ready for another attempt at file opening.

@p procedure prompt_file_name(@!s,@!e:str_number);
label done;
var @!k:0..buf_size; {index into |buffer|}
begin if interaction=scroll_mode then wake_up_terminal;
if s="input file name" then print_err("I can't find file `")
@.I can't find file x@>
else print_err("I can't write on file `");
@.I can't write on file x@>
print_file_name(cur_name,cur_area,cur_ext); print("'.");
if e=".mf" then show_context;
print_nl("Please type another "); print(s);
@.Please type...@>
if interaction<scroll_mode then
  fatal_error("*** (job aborted, file error in nonstop mode)");
@.job aborted, file error...@>
clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
if cur_ext="" then cur_ext:=e;
pack_cur_name;
end;

@ @<Scan file name in the buffer@>=
begin begin_name; k:=first;
while (buffer[k]=" ")and(k<last) do incr(k);
loop@+  begin if k=last then goto done;
  if not more_name(buffer[k]) then goto done;
  incr(k);
  end;
done:end_name;
end

@ The |open_log_file| routine is used to open the transcript file and to help
it catch up to what has previously been printed on the terminal.

@p procedure open_log_file;
var @!old_setting:0..max_selector; {previous |selector| setting}
@!k:0..buf_size; {index into |months| and |buffer|}
@!l:0..buf_size; {end of first input line}
@!m:integer; {the current month}
@!months:packed array [1..36] of char; {abbreviations of month names}
begin old_setting:=selector;
if job_name=0 then job_name:="mfput";
pack_job_name(".log");
while not a_open_out(log_file) do @<Try to get a different log file name@>;
log_name:=a_make_name_string(log_file);
selector:=log_only; log_opened:=true;
@<Print the banner line, including the date and time@>;
input_stack[input_ptr]:=cur_input; {make sure bottom level is in memory}
print_nl("**");
@.**@>
l:=input_stack[0].limit_field-1; {last position of first line}
for k:=1 to l do print(buffer[k]);
print_ln; {now the transcript file contains the first line of input}
selector:=old_setting+2; {|log_only| or |term_and_log|}
end;

@ Sometimes |open_log_file| is called at awkward moments when \MF\ is
unable to print error messages or even to |show_context|.
The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
routine will not be invoked because |log_opened| will be false.

The normal idea of |batch_mode| is that nothing at all should be written
on the terminal. However, in the unusual case that
no log file could be opened, we make an exception and allow
an explanatory message to be seen.

Incidentally, the program always refers to the log file as a `\.{transcript
file}', because some systems cannot use the extension `\.{.log}' for
this file.

@<Try to get a different log file name@>=
begin selector:=term_only;
prompt_file_name("transcript file name",".log");
end

@ @<Print the banner...@>=
begin wlog(banner);
slow_print(base_ident); print("  ");
print_int(round_unscaled(internal[day])); print_char(" ");
months:='JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC';
m:=round_unscaled(internal[month]);
for k:=3*m-2 to 3*m do wlog(months[k]);
print_char(" "); print_int(round_unscaled(internal[year])); print_char(" ");
m:=round_unscaled(internal[time]);
print_dd(m div 60); print_char(":"); print_dd(m mod 60);
end

@ Here's an example of how these file-name-parsing routines work in practice.
We shall use the macro |set_output_file_name| when it is time to
crank up the output file.

@d set_output_file_name==
  begin if job_name=0 then open_log_file;
  pack_job_name(gf_ext);
  while not b_open_out(gf_file) do
    prompt_file_name("file name for output",gf_ext);
  output_file_name:=b_make_name_string(gf_file);
  end

@<Glob...@>=
@!gf_file: byte_file; {the generic font output goes here}
@!output_file_name: str_number; {full name of the output file}

@ @<Initialize the output...@>=output_file_name:=0;

@ Let's turn now to the procedure that is used to initiate file reading
when an `\.{input}' command is being processed.

@p procedure start_input; {\MF\ will \.{input} something}
label done;
begin @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
if cur_ext="" then cur_ext:=".mf";
pack_cur_name;
loop@+  begin begin_file_reading; {set up |cur_file| and new level of input}
  if a_open_in(cur_file) then goto done;
  if cur_area="" then
    begin pack_file_name(cur_name,MF_area,cur_ext);
    if a_open_in(cur_file) then goto done;
    end;
  end_file_reading; {remove the level that didn't work}
  prompt_file_name("input file name",".mf");
  end;
done: name:=a_make_name_string(cur_file); str_ref[cur_name]:=max_str_ref;
if job_name=0 then
  begin job_name:=cur_name; open_log_file;
  end; {|open_log_file| doesn't |show_context|, so |limit|
    and |loc| needn't be set to meaningful values yet}
if term_offset+length(name)>max_print_line-2 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
print_char("("); incr(open_parens); slow_print(name); update_terminal;
if name=str_ptr-1 then {we can conserve string pool space now}
  begin flush_string(name); name:=cur_name;
  end;
@<Read the first line of the new file@>;
end;

@ Here we have to remember to tell the |input_ln| routine not to
start with a |get|. If the file is empty, it is considered to
contain a single blank line.
@^system dependencies@>

@<Read the first line...@>=
begin line:=1;
if input_ln(cur_file,false) then do_nothing;
firm_up_the_line;
buffer[limit]:="%"; first:=limit+1; loc:=start;
end

@ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
while token_state and(loc=null) do end_token_list;
if token_state then
  begin print_err("File names can't appear within macros");
@.File names can't...@>
  help3("Sorry...I've converted what follows to tokens,")@/
    ("possibly garbaging the name you gave.")@/
    ("Please delete the tokens and insert the name again.");@/
  error;
  end;
if file_state then scan_file_name
else  begin cur_name:=""; cur_ext:=""; cur_area:="";
  end

@* \[39] Introduction to the parsing routines.
We come now to the central nervous system that sparks many of \MF's activities.
By evaluating expressions, from their primary constituents to ever larger
subexpressions, \MF\ builds the structures that ultimately define fonts of type.

Four mutually recursive subroutines are involved in this process: We call them
$$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
and |scan_expression|.}$$
@^recursion@>
Each of them is parameterless and begins with the first token to be scanned
already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
the value of the primary or secondary or tertiary or expression that was
found will appear in the global variables |cur_type| and |cur_exp|. The
token following the expression will be represented in |cur_cmd|, |cur_mod|,
and |cur_sym|.

Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
backup mechanisms have been added in order to provide reasonable error
recovery.

@<Glob...@>=
@!cur_type:small_number; {the type of the expression just found}
@!cur_exp:integer; {the value of the expression just found}

@ @<Set init...@>=
cur_exp:=0;

@ Many different kinds of expressions are possible, so it is wise to have
precise descriptions of what |cur_type| and |cur_exp| mean in all cases:

\smallskip\hang
|cur_type=vacuous| means that this expression didn't turn out to have a
value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
construction in which there was no expression before the \&{endgroup}.
In this case |cur_exp| has some irrelevant value.

\smallskip\hang
|cur_type=boolean_type| means that |cur_exp| is either |true_code|
or |false_code|.

\smallskip\hang
|cur_type=unknown_boolean| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined boolean variable.

\smallskip\hang
|cur_type=string_type| means that |cur_exp| is a string number (i.e., an
integer in the range |0<=cur_exp<str_ptr|). That string's reference count
includes this particular reference.

\smallskip\hang
|cur_type=unknown_string| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined string variable.

\smallskip\hang
|cur_type=pen_type| means that |cur_exp| points to a pen header node. This
node contains a reference count, which takes account of this particular
reference.

\smallskip\hang
|cur_type=unknown_pen| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined pen variable.

\smallskip\hang
|cur_type=future_pen| means that |cur_exp| points to a knot list that
should eventually be made into a pen. Nobody else points to this particular
knot list. The |future_pen| option occurs only as an output of |scan_primary|
and |scan_secondary|, not as an output of |scan_tertiary| or |scan_expression|.

\smallskip\hang
|cur_type=path_type| means that |cur_exp| points to a the first node of
a path; nobody else points to this particular path. The control points of
the path will have been chosen.

\smallskip\hang
|cur_type=unknown_path| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined path variable.

\smallskip\hang
|cur_type=picture_type| means that |cur_exp| points to an edges header node.
Nobody else points to this particular set of edges.

\smallskip\hang
|cur_type=unknown_picture| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined picture variable.

\smallskip\hang
|cur_type=transform_type| means that |cur_exp| points to a |transform_type|
capsule node. The |value| part of this capsule
points to a transform node that contains six numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.

\smallskip\hang
|cur_type=pair_type| means that |cur_exp| points to a capsule
node whose type is |pair_type|. The |value| part of this capsule
points to a pair node that contains two numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.

\smallskip\hang
|cur_type=known| means that |cur_exp| is a |scaled| value.

\smallskip\hang
|cur_type=dependent| means that |cur_exp| points to a capsule node whose type
is |dependent|. The |dep_list| field in this capsule points to the associated
dependency list.

\smallskip\hang
|cur_type=proto_dependent| means that |cur_exp| points to a |proto_dependent|
capsule node . The |dep_list| field in this capsule
points to the associated dependency list.

\smallskip\hang
|cur_type=independent| means that |cur_exp| points to a capsule node
whose type is |independent|. This somewhat unusual case can arise, for
example, in the expression
`$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.

\smallskip\hang
|cur_type=token_list| means that |cur_exp| points to a linked list of
tokens. This case arises only on the left-hand side of an assignment
(`\.{:=}') operation, under very special circumstances.

\smallskip\noindent
The possible settings of |cur_type| have been listed here in increasing
numerical order. Notice that |cur_type| will never be |numeric_type| or
|suffixed_macro| or |unsuffixed_macro|, although variables of those types
are allowed.  Conversely, \MF\ has no variables of type |vacuous| or
|token_list|.

@ Capsules are two-word nodes that have a similar meaning
to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
and |link<=void|; and their |type| field is one of the possibilities for
|cur_type| listed above.

The |value| field of a capsule is, in most cases, the value that
corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
However, when |cur_exp| would point to a capsule,
no extra layer of indirection is present; the |value|
field is what would have been called |value(cur_exp)| if it had not been
encapsulated.  Furthermore, if the type is |dependent| or
|proto_dependent|, the |value| field of a capsule is replaced by
|dep_list| and |prev_dep| fields, since dependency lists in capsules are
always part of the general |dep_list| structure.

The |get_x_next| routine is careful not to change the values of |cur_type|
and |cur_exp| when it gets an expanded token. However, |get_x_next| might
call a macro, which might parse an expression, which might execute lots of
commands in a group; hence it's possible that |cur_type| might change
from, say, |unknown_boolean| to |boolean_type|, or from |dependent| to
|known| or |independent|, during the time |get_x_next| is called. The
programs below are careful to stash sensitive intermediate results in
capsules, so that \MF's generality doesn't cause trouble.

Here's a procedure that illustrates these conventions. It takes
the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
and stashes them away in a
capsule. It is not used when |cur_type=token_list|.
After the operation, |cur_type=vacuous|; hence there is no need to
copy path lists or to update reference counts, etc.

The special link |void| is put on the capsule returned by
|stash_cur_exp|, because this procedure is used to store macro parameters
that must be easily distinguishable from token lists.

@<Declare the stashing/unstashing routines@>=
function stash_cur_exp:pointer;
var @!p:pointer; {the capsule that will be returned}
begin case cur_type of
unknown_types,transform_type,pair_type,dependent,proto_dependent,
  independent:p:=cur_exp;
othercases begin  p:=get_node(value_node_size); name_type(p):=capsule;
  type(p):=cur_type; value(p):=cur_exp;
  end
endcases;@/
cur_type:=vacuous; link(p):=void; stash_cur_exp:=p;
end;

@ The inverse of |stash_cur_exp| is the following procedure, which
deletes an unnecessary capsule and puts its contents into |cur_type|
and |cur_exp|.

The program steps of \MF\ can be divided into two categories: those in
which |cur_type| and |cur_exp| are ``alive'' and those in which they are
``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
information or not. It's important not to ignore them when they're alive,
and it's important not to pay attention to them when they're dead.

There's also an intermediate category: If |cur_type=vacuous|, then
|cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
and |cur_exp| are alive or dead. In such cases we say that |cur_type|
and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
only when they are alive or dormant.

The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
are alive or dormant. The \\{unstash} procedure assumes that they are
dead or dormant; it resuscitates them.

@<Declare the stashing/unstashing...@>=
procedure unstash_cur_exp(@!p:pointer);
begin cur_type:=type(p);
case cur_type of
unknown_types,transform_type,pair_type,dependent,proto_dependent,
  independent: cur_exp:=p;
othercases begin cur_exp:=value(p);
  free_node(p,value_node_size);
  end
endcases;@/
end;

@ The following procedure prints the values of expressions in an
abbreviated format. If its first parameter |p| is null, the value of
|(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
containing the desired value. The second parameter controls the amount of
output. If it is~0, dependency lists will be abbreviated to
`\.{linearform}' unless they consist of a single term.  If it is greater
than~1, complicated structures (pens, pictures, and paths) will be displayed
in full.

@<Declare subroutines for printing expressions@>=
@t\4@>@<Declare the procedure called |print_dp|@>@;
@t\4@>@<Declare the stashing/unstashing routines@>@;
procedure print_exp(@!p:pointer;@!verbosity:small_number);
var @!restore_cur_exp:boolean; {should |cur_exp| be restored?}
@!t:small_number; {the type of the expression}
@!v:integer; {the value of the expression}
@!q:pointer; {a big node being displayed}
begin if p<>null then restore_cur_exp:=false
else  begin p:=stash_cur_exp; restore_cur_exp:=true;
  end;
t:=type(p);
if t<dependent then v:=value(p)@+else if t<independent then v:=dep_list(p);
@<Print an abbreviated value of |v| with format depending on |t|@>;
if restore_cur_exp then unstash_cur_exp(p);
end;

@ @<Print an abbreviated value of |v| with format depending on |t|@>=
case t of
vacuous:print("vacuous");
boolean_type:if v=true_code then print("true")@+else print("false");
unknown_types,numeric_type:@<Display a variable
  that's been declared but not defined@>;
string_type:begin print_char(""""); slow_print(v); print_char("""");
  end;
pen_type,future_pen,path_type,picture_type:@<Display a complex type@>;
transform_type,pair_type:if v=null then print_type(t)
  else @<Display a big node@>;
known:print_scaled(v);
dependent,proto_dependent:print_dp(t,v,verbosity);
independent:print_variable_name(p);
othercases confusion("exp")
@:this can't happen exp}{\quad exp@>
endcases

@ @<Display a big node@>=
begin print_char("("); q:=v+big_node_size[t];
repeat if type(v)=known then print_scaled(value(v))
else if type(v)=independent then print_variable_name(v)
else print_dp(type(v),dep_list(v),verbosity);
v:=v+2;
if v<>q then print_char(",");
until v=q;
print_char(")");
end

@ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
in the log file only, unless the user has given a positive value to
\\{tracingonline}.

@<Display a complex type@>=
if verbosity<=1 then print_type(t)
else  begin if selector=term_and_log then
   if internal[tracing_online]<=0 then
    begin selector:=term_only;
    print_type(t); print(" (see the transcript file)");
    selector:=term_and_log;
    end;
  case t of
  pen_type:print_pen(v,"",false);
  future_pen:print_path(v," (future pen)",false);
  path_type:print_path(v,"",false);
  picture_type:begin cur_edges:=v; print_edges("",false,0,0);
    end;
  end; {there are no other cases}
  end

@ @<Declare the procedure called |print_dp|@>=
procedure print_dp(@!t:small_number;@!p:pointer;@!verbosity:small_number);
var @!q:pointer; {the node following |p|}
begin q:=link(p);
if (info(q)=null) or (verbosity>0) then print_dependency(p,t)
else print("linearform");
end;

@ The displayed name of a variable in a ring will not be a capsule unless
the ring consists entirely of capsules.

@<Display a variable that's been declared but not defined@>=
begin print_type(t);
if v<>null then
  begin print_char(" ");
  while (name_type(v)=capsule) and (v<>p) do v:=value(v);
  print_variable_name(v);
  end;
end

@ When errors are detected during parsing, it is often helpful to
display an expression just above the error message, using |exp_err|
or |disp_err| instead of |print_err|.

@d exp_err(#)==disp_err(null,#) {displays the current expression}

@<Declare subroutines for printing expressions@>=
procedure disp_err(@!p:pointer;@!s:str_number);
begin if interaction=error_stop_mode then wake_up_terminal;
print_nl(">> ");
@.>>@>
print_exp(p,1); {``medium verbose'' printing of the expression}
if s<>"" then
  begin print_nl("! "); print(s);
@.!\relax@>
  end;
end;

@ If |cur_type| and |cur_exp| contain relevant information that should
be recycled, we will use the following procedure, which changes |cur_type|
to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
and |cur_exp| as either alive or dormant after this has been done,
because |cur_exp| will not contain a pointer value.

@<Declare the procedure called |flush_cur_exp|@>=
procedure flush_cur_exp(@!v:scaled);
begin case cur_type of
unknown_types,transform_type,pair_type,@|dependent,proto_dependent,independent:
  begin recycle_value(cur_exp); free_node(cur_exp,value_node_size);
  end;
pen_type: delete_pen_ref(cur_exp);
string_type:delete_str_ref(cur_exp);
future_pen,path_type: toss_knot_list(cur_exp);
picture_type:toss_edges(cur_exp);
othercases do_nothing
endcases;@/
cur_type:=known; cur_exp:=v;
end;

@ There's a much more general procedure that is capable of releasing
the storage associated with any two-word value packet.

@<Declare the recycling subroutines@>=
procedure recycle_value(@!p:pointer);
label done;
var @!t:small_number; {a type code}
@!v:integer; {a value}
@!vv:integer; {another value}
@!q,@!r,@!s,@!pp:pointer; {link manipulation registers}
begin t:=type(p);
if t<dependent then v:=value(p);
case t of
undefined,vacuous,boolean_type,known,numeric_type:do_nothing;
unknown_types:ring_delete(p);
string_type:delete_str_ref(v);
pen_type:delete_pen_ref(v);
path_type,future_pen:toss_knot_list(v);
picture_type:toss_edges(v);
pair_type,transform_type:@<Recycle a big node@>;
dependent,proto_dependent:@<Recycle a dependency list@>;
independent:@<Recycle an independent variable@>;
token_list,structured:confusion("recycle");
@:this can't happen recycle}{\quad recycle@>
unsuffixed_macro,suffixed_macro:delete_mac_ref(value(p));
end; {there are no other cases}
type(p):=undefined;
end;

@ @<Recycle a big node@>=
if v<>null then
  begin q:=v+big_node_size[t];
  repeat q:=q-2; recycle_value(q);
  until q=v;
  free_node(v,big_node_size[t]);
  end

@ @<Recycle a dependency list@>=
begin q:=dep_list(p);
while info(q)<>null do q:=link(q);
link(prev_dep(p)):=link(q);
prev_dep(link(q)):=prev_dep(p);
link(q):=null; flush_node_list(dep_list(p));
end

@ When an independent variable disappears, it simply fades away, unless
something depends on it. In the latter case, a dependent variable whose
coefficient of dependence is maximal will take its place.
The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
as part of his Ph.D. thesis (Stanford University, December 1982).
@^Zabala Salelles, Ignacio Andres@>

For example, suppose that variable $x$ is being recycled, and that the
only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
we will print `\.{\#\#\# -2x=-y+a}'.

There's a slight complication, however: An independent variable $x$
can occur both in dependency lists and in proto-dependency lists.
This makes it necessary to be careful when deciding which coefficient
is maximal.

Furthermore, this complication is not so slight when
a proto-dependent variable is chosen to become independent. For example,
suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
large coefficient `50'.

In order to deal with these complications without wasting too much time,
we shall link together the occurrences of~$x$ among all the linear
dependencies, maintaining separate lists for the dependent and
proto-dependent cases.

@<Recycle an independent variable@>=
begin max_c[dependent]:=0; max_c[proto_dependent]:=0;@/
max_link[dependent]:=null; max_link[proto_dependent]:=null;@/
q:=link(dep_head);
while q<>dep_head do
  begin s:=value_loc(q); {now |link(s)=dep_list(q)|}
  loop@+  begin r:=link(s);
    if info(r)=null then goto done;
    if info(r)<>p then s:=r
    else  begin t:=type(q); link(s):=link(r); info(r):=q;
      if abs(value(r))>max_c[t] then
        @<Record a new maximum coefficient of type |t|@>
      else  begin link(r):=max_link[t]; max_link[t]:=r;
        end;
      end;
    end;
done:  q:=link(r);
  end;
if (max_c[dependent]>0)or(max_c[proto_dependent]>0) then
  @<Choose a dependent variable to take the place of the disappearing
    independent variable, and change all remaining dependencies
    accordingly@>;
end

@ The code for independency removal makes use of three two-word arrays.

@<Glob...@>=
@!max_c:array[dependent..proto_dependent] of integer;
  {max coefficient magnitude}
@!max_ptr:array[dependent..proto_dependent] of pointer;
  {where |p| occurs with |max_c|}
@!max_link:array[dependent..proto_dependent] of pointer;
  {other occurrences of |p|}

@ @<Record a new maximum coefficient...@>=
begin if max_c[t]>0 then
  begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
  end;
max_c[t]:=abs(value(r)); max_ptr[t]:=r;
end

@ @<Choose a dependent...@>=
begin if (max_c[dependent] div @'10000 >=
          max_c[proto_dependent]) then
  t:=dependent
else t:=proto_dependent;
@<Determine the dependency list |s| to substitute for the independent
  variable~|p|@>;
t:=dependent+proto_dependent-t; {complement |t|}
if max_c[t]>0 then {we need to pick up an unchosen dependency}
  begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
  end;
if t<>dependent then @<Substitute new dependencies in place of |p|@>
else @<Substitute new proto-dependencies in place of |p|@>;
flush_node_list(s);
if fix_needed then fix_dependencies;
check_arith;
end

@ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
and |info(s)| points to the dependent variable~|pp| of type~|t| from
whose dependency list we have removed node~|s|. We must reinsert
node~|s| into the dependency list, with coefficient $-1.0$, and with
|pp| as the new independent variable. Since |pp| will have a larger serial
number than any other variable, we can put node |s| at the head of the
list.

@<Determine the dep...@>=
s:=max_ptr[t]; pp:=info(s); v:=value(s);
if t=dependent then value(s):=-fraction_one@+else value(s):=-unity;
r:=dep_list(pp); link(s):=r;
while info(r)<>null do r:=link(r);
q:=link(r); link(r):=null;
prev_dep(q):=prev_dep(pp); link(prev_dep(pp)):=q;
new_indep(pp);
if cur_exp=pp then if cur_type=t then cur_type:=independent;
if internal[tracing_equations]>0 then @<Show the transformed dependency@>

@ Now $(-v)$ times the formerly independent variable~|p| is being replaced
by the dependency list~|s|.

@<Show the transformed...@>=
if interesting(p) then
  begin begin_diagnostic; print_nl("### ");
@:]]]\#\#\#_}{\.{\#\#\#}@>
  if v>0 then print_char("-");
  if t=dependent then vv:=round_fraction(max_c[dependent])
  else vv:=max_c[proto_dependent];
  if vv<>unity then print_scaled(vv);
  print_variable_name(p);
  while value(p) mod s_scale>0 do
    begin print("*4"); value(p):=value(p)-2;
    end;
  if t=dependent then print_char("=")@+else print(" = ");
  print_dependency(s,t);
  end_diagnostic(false);
  end

@ Finally, there are dependent and proto-dependent variables whose
dependency lists must be brought up to date.

@<Substitute new dependencies...@>=
for t:=dependent to proto_dependent do
  begin r:=max_link[t];
  while r<>null do
    begin q:=info(r);
    dep_list(q):=p_plus_fq(dep_list(q),@|
     make_fraction(value(r),-v),s,t,dependent);
    if dep_list(q)=dep_final then make_known(q,dep_final);
    q:=r; r:=link(r); free_node(q,dep_node_size);
    end;
  end

@ @<Substitute new proto...@>=
for t:=dependent to proto_dependent do
  begin r:=max_link[t];
  while r<>null do
    begin q:=info(r);
    if t=dependent then {for safety's sake, we change |q| to |proto_dependent|}
      begin if cur_exp=q then if cur_type=dependent then
        cur_type:=proto_dependent;
      dep_list(q):=p_over_v(dep_list(q),unity,dependent,proto_dependent);
      type(q):=proto_dependent; value(r):=round_fraction(value(r));
      end;
    dep_list(q):=p_plus_fq(dep_list(q),@|
     make_scaled(value(r),-v),s,proto_dependent,proto_dependent);
    if dep_list(q)=dep_final then make_known(q,dep_final);
    q:=r; r:=link(r); free_node(q,dep_node_size);
    end;
  end

@ Here are some routines that provide handy combinations of actions
that are often needed during error recovery. For example,
`|flush_error|' flushes the current expression, replaces it by
a given value, and calls |error|.

Errors often are detected after an extra token has already been scanned.
The `\\{put\_get}' routines put that token back before calling |error|;
then they get it back again. (Or perhaps they get another token, if
the user has changed things.)

@<Declare the procedure called |flush_cur_exp|@>=
procedure flush_error(@!v:scaled);@+begin error; flush_cur_exp(v);@+end;
@#
procedure@?back_error; forward;@t\2@>@/
procedure@?get_x_next; forward;@t\2@>@/
@#
procedure put_get_error;@+begin back_error; get_x_next;@+end;
@#
procedure put_get_flush_error(@!v:scaled);@+begin put_get_error;
 flush_cur_exp(v);@+end;

@ A global variable called |var_flag| is set to a special command code
just before \MF\ calls |scan_expression|, if the expression should be
treated as a variable when this command code immediately follows. For
example, |var_flag| is set to |assignment| at the beginning of a
statement, because we want to know the {\sl location\/} of a variable at
the left of `\.{:=}', not the {\sl value\/} of that variable.

The |scan_expression| subroutine calls |scan_tertiary|,
which calls |scan_secondary|, which calls |scan_primary|, which sets
|var_flag:=0|. In this way each of the scanning routines ``knows''
when it has been called with a special |var_flag|, but |var_flag| is
usually zero.

A variable preceding a command that equals |var_flag| is converted to a
token list rather than a value. Furthermore, an `\.{=}' sign following an
expression with |var_flag=assignment| is not considered to be a relation
that produces boolean expressions.


@<Glob...@>=
@!var_flag:0..max_command_code; {command that wants a variable}

@ @<Set init...@>=
var_flag:=0;

@* \[40] Parsing primary expressions.
The first parsing routine, |scan_primary|, is also the most complicated one,
since it involves so many different cases. But each case---with one
exception---is fairly simple by itself.

When |scan_primary| begins, the first token of the primary to be scanned
should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
of |cur_type| and |cur_exp| should be either dead or dormant, as explained
earlier. If |cur_cmd| is not between |min_primary_command| and
|max_primary_command|, inclusive, a syntax error will be signalled.

@<Declare the basic parsing subroutines@>=
procedure scan_primary;
label restart, done, done1, done2;
var @!p,@!q,@!r:pointer; {for list manipulation}
@!c:quarterword; {a primitive operation code}
@!my_var_flag:0..max_command_code; {initial value of |my_var_flag|}
@!l_delim,@!r_delim:pointer; {hash addresses of a delimiter pair}
@<Other local variables for |scan_primary|@>@;
begin my_var_flag:=var_flag; var_flag:=0;
restart:check_arith;
@<Supply diagnostic information, if requested@>;
case cur_cmd of
left_delimiter:@<Scan a delimited primary@>;
begin_group:@<Scan a grouped primary@>;
string_token:@<Scan a string constant@>;
numeric_token:@<Scan a primary that starts with a numeric token@>;
nullary:@<Scan a nullary operation@>;
unary,type_name,cycle,plus_or_minus:@<Scan a unary operation@>;
primary_binary:@<Scan a binary operation with `\&{of}' between its operands@>;
str_op:@<Convert a suffix to a string@>;
internal_quantity:@<Scan an internal numeric quantity@>;
capsule_token:make_exp_copy(cur_mod);
tag_token:@<Scan a variable primary;
  |goto restart| if it turns out to be a macro@>;
othercases begin bad_exp("A primary"); goto restart;
@.A primary expression...@>
  end
endcases;@/
get_x_next; {the routines |goto done| if they don't want this}
done: if cur_cmd=left_bracket then
  if cur_type>=known then @<Scan a mediation construction@>;
end;

@ Errors at the beginning of expressions are flagged by |bad_exp|.

@p procedure bad_exp(@!s:str_number);
var save_flag:0..max_command_code;
begin print_err(s); print(" expression can't begin with `");
print_cmd_mod(cur_cmd,cur_mod); print_char("'");
help4("I'm afraid I need some sort of value in order to continue,")@/
  ("so I've tentatively inserted `0'. You may want to")@/
  ("delete this zero and insert something else;")@/
  ("see Chapter 27 of The METAFONTbook for an example.");
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_input; cur_sym:=0; cur_cmd:=numeric_token; cur_mod:=0; ins_error;@/
save_flag:=var_flag; var_flag:=0; get_x_next;
var_flag:=save_flag;
end;

@ @<Supply diagnostic information, if requested@>=
debug if panicking then check_mem(false);@+gubed@;@/
if interrupt<>0 then if OK_to_interrupt then
  begin back_input; check_interrupt; get_x_next;
  end

@ @<Scan a delimited primary@>=
begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next; scan_expression;
if (cur_cmd=comma) and (cur_type>=known) then
  @<Scan the second of a pair of numerics@>
else check_delimiter(l_delim,r_delim);
end

@ The |stash_in| subroutine puts the current (numeric) expression into a field
within a ``big node.''

@p procedure stash_in(@!p:pointer);
var @!q:pointer; {temporary register}
begin type(p):=cur_type;
if cur_type=known then value(p):=cur_exp
else  begin if cur_type=independent then
    @<Stash an independent |cur_exp| into a big node@>
  else  begin mem[value_loc(p)]:=mem[value_loc(cur_exp)];
     {|dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)|}
    link(prev_dep(p)):=p;
    end;
  free_node(cur_exp,value_node_size);
  end;
cur_type:=vacuous;
end;

@ In rare cases the current expression can become |independent|. There
may be many dependency lists pointing to such an independent capsule,
so we can't simply move it into place within a big node. Instead,
we copy it, then recycle it.

@ @<Stash an independent |cur_exp|...@>=
begin q:=single_dependency(cur_exp);
if q=dep_final then
  begin type(p):=known; value(p):=0; free_node(q,dep_node_size);
  end
else  begin type(p):=dependent; new_dep(p,q);
  end;
recycle_value(cur_exp);
end

@ @<Scan the second of a pair of numerics@>=
begin p:=get_node(value_node_size); type(p):=pair_type; name_type(p):=capsule;
init_big_node(p); q:=value(p); stash_in(x_part_loc(q));@/
get_x_next; scan_expression;
if cur_type<known then
  begin exp_err("Nonnumeric ypart has been replaced by 0");
@.Nonnumeric...replaced by 0@>
  help4("I thought you were giving me a pair `(x,y)'; but")@/
    ("after finding a nice xpart `x' I found a ypart `y'")@/
    ("that isn't of numeric type. So I've changed y to zero.")@/
    ("(The y that I didn't like appears above the error message.)");
  put_get_flush_error(0);
  end;
stash_in(y_part_loc(q));
check_delimiter(l_delim,r_delim);
cur_type:=pair_type; cur_exp:=p;
end

@ The local variable |group_line| keeps track of the line
where a \&{begingroup} command occurred; this will be useful
in an error message if the group doesn't actually end.

@<Other local variables for |scan_primary|@>=
@!group_line:integer; {where a group began}

@ @<Scan a grouped primary@>=
begin group_line:=line;
if internal[tracing_commands]>0 then show_cur_cmd_mod;
save_boundary_item(p);
repeat do_statement; {ends with |cur_cmd>=semicolon|}
until cur_cmd<>semicolon;
if cur_cmd<>end_group then
  begin print_err("A group begun on line ");
@.A group...never ended@>
  print_int(group_line);
  print(" never ended");
  help2("I saw a `begingroup' back there that hasn't been matched")@/
    ("by `endgroup'. So I've inserted `endgroup' now.");
  back_error; cur_cmd:=end_group;
  end;
unsave; {this might change |cur_type|, if independent variables are recycled}
if internal[tracing_commands]>0 then show_cur_cmd_mod;
end

@ @<Scan a string constant@>=
begin cur_type:=string_type; cur_exp:=cur_mod;
end

@ Later we'll come to procedures that perform actual operations like
addition, square root, and so on; our purpose now is to do the parsing.
But we might as well mention those future procedures now, so that the
suspense won't be too bad:

\smallskip
|do_nullary(c)| does primitive operations that have no operands (e.g.,
`\&{true}' or `\&{pencircle}');

\smallskip
|do_unary(c)| applies a primitive operation to the current expression;

\smallskip
|do_binary(p,c)| applies a primitive operation to the capsule~|p|
and the current expression.

@<Scan a nullary operation@>=do_nullary(cur_mod)

@ @<Scan a unary operation@>=
begin c:=cur_mod; get_x_next; scan_primary; do_unary(c); goto done;
end

@ A numeric token might be a primary by itself, or it might be the
numerator of a fraction composed solely of numeric tokens, or it might
multiply the primary that follows (provided that the primary doesn't begin
with a plus sign or a minus sign). The code here uses the facts that
|max_primary_command=plus_or_minus| and
|max_primary_command-1=numeric_token|. If a fraction is found that is less
than unity, we try to retain higher precision when we use it in scalar
multiplication.

@<Other local variables for |scan_primary|@>=
@!num,@!denom:scaled; {for primaries that are fractions, like `1/2'}

@ @<Scan a primary that starts with a numeric token@>=
begin cur_exp:=cur_mod; cur_type:=known; get_x_next;
if cur_cmd<>slash then
  begin num:=0; denom:=0;
  end
else  begin get_x_next;
  if cur_cmd<>numeric_token then
    begin back_input;
    cur_cmd:=slash; cur_mod:=over; cur_sym:=frozen_slash;
    goto done;
    end;
  num:=cur_exp; denom:=cur_mod;
  if denom=0 then @<Protest division by zero@>
  else cur_exp:=make_scaled(num,denom);
  check_arith; get_x_next;
  end;
if cur_cmd>=min_primary_command then
 if cur_cmd<numeric_token then {in particular, |cur_cmd<>plus_or_minus|}
  begin p:=stash_cur_exp; scan_primary;
  if (abs(num)>=abs(denom))or(cur_type<pair_type) then do_binary(p,times)
  else  begin frac_mult(num,denom);
    free_node(p,value_node_size);
    end;
  end;
goto done;
end

@ @<Protest division...@>=
begin print_err("Division by zero");
@.Division by zero@>
help1("I'll pretend that you meant to divide by 1."); error;
end

@ @<Scan a binary operation with `\&{of}' between its operands@>=
begin c:=cur_mod; get_x_next; scan_expression;
if cur_cmd<>of_token then
  begin missing_err("of"); print(" for "); print_cmd_mod(primary_binary,c);
@.Missing `of'@>
  help1("I've got the first argument; will look now for the other.");
  back_error;
  end;
p:=stash_cur_exp; get_x_next; scan_primary; do_binary(p,c); goto done;
end

@ @<Convert a suffix to a string@>=
begin get_x_next; scan_suffix; old_setting:=selector; selector:=new_string;
show_token_list(cur_exp,null,100000,0); flush_token_list(cur_exp);
cur_exp:=make_string; selector:=old_setting; cur_type:=string_type;
goto done;
end

@ If an internal quantity appears all by itself on the left of an
assignment, we return a token list of length one, containing the address
of the internal quantity plus |hash_end|. (This accords with the conventions
of the save stack, as described earlier.)

@<Scan an internal...@>=
begin q:=cur_mod;
if my_var_flag=assignment then
  begin get_x_next;
  if cur_cmd=assignment then
    begin cur_exp:=get_avail;
    info(cur_exp):=q+hash_end; cur_type:=token_list; goto done;
    end;
  back_input;
  end;
cur_type:=known; cur_exp:=internal[q];
end

@ The most difficult part of |scan_primary| has been saved for last, since
it was necessary to build up some confidence first. We can now face the task
of scanning a variable.

As we scan a variable, we build a token list containing the relevant
names and subscript values, simultaneously following along in the
``collective'' structure to see if we are actually dealing with a macro
instead of a value.

The local variables |pre_head| and |post_head| will point to the beginning
of the prefix and suffix lists; |tail| will point to the end of the list
that is currently growing.

Another local variable, |tt|, contains partial information about the
declared type of the variable-so-far. If |tt>=unsuffixed_macro|, the
relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
doesn't bother to update its information about type. And if
|undefined<tt<unsuffixed_macro|, the precise value of |tt| isn't critical.

@ @<Other local variables for |scan_primary|@>=
@!pre_head,@!post_head,@!tail:pointer;
  {prefix and suffix list variables}
@!tt:small_number; {approximation to the type of the variable-so-far}
@!t:pointer; {a token}
@!macro_ref:pointer; {reference count for a suffixed macro}

@ @<Scan a variable primary...@>=
begin fast_get_avail(pre_head); tail:=pre_head; post_head:=null; tt:=vacuous;
loop@+  begin t:=cur_tok; link(tail):=t;
  if tt<>undefined then
    begin @<Find the approximate type |tt| and corresponding~|q|@>;
    if tt>=unsuffixed_macro then
      @<Either begin an unsuffixed macro call or
        prepare for a suffixed one@>;
    end;
  get_x_next; tail:=t;
  if cur_cmd=left_bracket then
    @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
  if cur_cmd>max_suffix_token then goto done1;
  if cur_cmd<min_suffix_token then goto done1;
  end; {now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token|}
done1:@<Handle unusual cases that masquerade as variables, and |goto restart|
  or |goto done| if appropriate;
  otherwise make a copy of the variable and |goto done|@>;
end

@ @<Either begin an unsuffixed macro call or...@>=
begin link(tail):=null;
if tt>unsuffixed_macro then {|tt=suffixed_macro|}
  begin post_head:=get_avail; tail:=post_head; link(tail):=t;@/
  tt:=undefined; macro_ref:=value(q); add_mac_ref(macro_ref);
  end
else @<Set up unsuffixed macro call and |goto restart|@>;
end

@ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
begin get_x_next; scan_expression;
if cur_cmd<>right_bracket then
  @<Put the left bracket and the expression back to be rescanned@>
else  begin if cur_type<>known then bad_subscript;
  cur_cmd:=numeric_token; cur_mod:=cur_exp; cur_sym:=0;
  end;
end

@ The left bracket that we thought was introducing a subscript might have
actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
So we don't issue an error message at this point; but we do want to back up
so as to avoid any embarrassment about our incorrect assumption.

@<Put the left bracket and the expression back to be rescanned@>=
begin back_input; {that was the token following the current expression}
back_expr; cur_cmd:=left_bracket; cur_mod:=0; cur_sym:=frozen_left_bracket;
end

@ Here's a routine that puts the current expression back to be read again.

@p procedure back_expr;
var @!p:pointer; {capsule token}
begin p:=stash_cur_exp; link(p):=null; back_list(p);
end;

@ Unknown subscripts lead to the following error message.

@p procedure bad_subscript;
begin exp_err("Improper subscript has been replaced by zero");
@.Improper subscript...@>
help3("A bracketed subscript must have a known numeric value;")@/
  ("unfortunately, what I found was the value that appears just")@/
  ("above this error message. So I'll try a zero subscript.");
flush_error(0);
end;

@ Every time we call |get_x_next|, there's a chance that the variable we've
been looking at will disappear. Thus, we cannot safely keep |q| pointing
into the variable structure; we need to start searching from the root each time.

@<Find the approximate type |tt| and corresponding~|q|@>=
@^inner loop@>
begin p:=link(pre_head); q:=info(p); tt:=undefined;
if eq_type(q) mod outer_tag=tag_token then
  begin q:=equiv(q);
  if q=null then goto done2;
  loop@+  begin p:=link(p);
    if p=null then
      begin tt:=type(q); goto done2;
      end;
    if type(q)<>structured then goto done2;
    q:=link(attr_head(q)); {the |collective_subscript| attribute}
    if p>=hi_mem_min then {it's not a subscript}
      begin repeat q:=link(q);
      until attr_loc(q)>=info(p);
      if attr_loc(q)>info(p) then goto done2;
      end;
    end;
  end;
done2:end

@ How do things stand now? Well, we have scanned an entire variable name,
including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
|cur_sym| represent the token that follows. If |post_head=null|, a
token list for this variable name starts at |link(pre_head)|, with all
subscripts evaluated. But if |post_head<>null|, the variable turned out
to be a suffixed macro; |pre_head| is the head of the prefix list, while
|post_head| is the head of a token list containing both `\.{\AT!}' and
the suffix.

Our immediate problem is to see if this variable still exists. (Variable
structures can change drastically whenever we call |get_x_next|; users
aren't supposed to do this, but the fact that it is possible means that
we must be cautious.)

The following procedure prints an error message when a variable
unexpectedly disappears. Its help message isn't quite right for
our present purposes, but we'll be able to fix that up.

@p procedure obliterated(@!q:pointer);
begin print_err("Variable "); show_token_list(q,null,1000,0);
print(" has been obliterated");
@.Variable...obliterated@>
help5("It seems you did a nasty thing---probably by accident,")@/
  ("but nevertheless you nearly hornswoggled me...")@/
  ("While I was evaluating the right-hand side of this")@/
  ("command, something happened, and the left-hand side")@/
  ("is no longer a variable! So I won't change anything.");
end;

@ If the variable does exist, we also need to check
for a few other special cases before deciding that a plain old ordinary
variable has, indeed, been scanned.

@<Handle unusual cases that masquerade as variables...@>=
if post_head<>null then @<Set up suffixed macro call and |goto restart|@>;
q:=link(pre_head); free_avail(pre_head);
if cur_cmd=my_var_flag then
  begin cur_type:=token_list; cur_exp:=q; goto done;
  end;
p:=find_variable(q);
if p<>null then make_exp_copy(p)
else  begin obliterated(q);@/
  help_line[2]:="While I was evaluating the suffix of this variable,";
  help_line[1]:="something was redefined, and it's no longer a variable!";
  help_line[0]:="In order to get back on my feet, I've inserted `0' instead.";
  put_get_flush_error(0);
  end;
flush_node_list(q); goto done

@ The only complication associated with macro calling is that the prefix
and ``at'' parameters must be packaged in an appropriate list of lists.

@<Set up unsuffixed macro call and |goto restart|@>=
begin p:=get_avail; info(pre_head):=link(pre_head); link(pre_head):=p;
info(p):=t; macro_call(value(q),pre_head,null); get_x_next; goto restart;
end

@ If the ``variable'' that turned out to be a suffixed macro no longer exists,
we don't care, because we have reserved a pointer (|macro_ref|) to its
token list.

@<Set up suffixed macro call and |goto restart|@>=
begin back_input; p:=get_avail; q:=link(post_head);
info(pre_head):=link(pre_head); link(pre_head):=post_head;
info(post_head):=q; link(post_head):=p; info(p):=link(q); link(q):=null;
macro_call(macro_ref,pre_head,null); decr(ref_count(macro_ref));
get_x_next; goto restart;
end

@ Our remaining job is simply to make a copy of the value that has been
found. Some cases are harder than others, but complexity arises solely
because of the multiplicity of possible cases.

@<Declare the procedure called |make_exp_copy|@>=
@t\4@>@<Declare subroutines needed by |make_exp_copy|@>@;
procedure make_exp_copy(@!p:pointer);
label restart;
var @!q,@!r,@!t:pointer; {registers for list manipulation}
begin restart: cur_type:=type(p);
case cur_type of
vacuous,boolean_type,known:cur_exp:=value(p);
unknown_types:cur_exp:=new_ring_entry(p);
string_type:begin cur_exp:=value(p); add_str_ref(cur_exp);
  end;
pen_type:begin cur_exp:=value(p); add_pen_ref(cur_exp);
  end;
picture_type:cur_exp:=copy_edges(value(p));
path_type,future_pen:cur_exp:=copy_path(value(p));
transform_type,pair_type:@<Copy the big node |p|@>;
dependent,proto_dependent:encapsulate(copy_dep_list(dep_list(p)));
numeric_type:begin new_indep(p); goto restart;
  end;
independent: begin q:=single_dependency(p);
  if q=dep_final then
    begin cur_type:=known; cur_exp:=0; free_node(q,value_node_size);
    end
  else  begin cur_type:=dependent; encapsulate(q);
    end;
  end;
othercases confusion("copy")
@:this can't happen copy}{\quad copy@>
endcases;
end;

@ The |encapsulate| subroutine assumes that |dep_final| is the
tail of dependency list~|p|.

@<Declare subroutines needed by |make_exp_copy|@>=
procedure encapsulate(@!p:pointer);
begin cur_exp:=get_node(value_node_size); type(cur_exp):=cur_type;
name_type(cur_exp):=capsule; new_dep(cur_exp,p);
end;

@ The most tedious case arises when the user refers to a
\&{pair} or \&{transform} variable; we must copy several fields,
each of which can be |independent|, |dependent|, |proto_dependent|,
or |known|.

@<Copy the big node |p|@>=
begin if value(p)=null then init_big_node(p);
t:=get_node(value_node_size); name_type(t):=capsule; type(t):=cur_type;
init_big_node(t);@/
q:=value(p)+big_node_size[cur_type]; r:=value(t)+big_node_size[cur_type];
repeat q:=q-2; r:=r-2; install(r,q);
until q=value(p);
cur_exp:=t;
end

@ The |install| procedure copies a numeric field~|q| into field~|r| of
a big node that will be part of a capsule.

@<Declare subroutines needed by |make_exp_copy|@>=
procedure install(@!r,@!q:pointer);
var p:pointer; {temporary register}
begin if type(q)=known then
  begin value(r):=value(q); type(r):=known;
  end
else  if type(q)=independent then
    begin p:=single_dependency(q);
    if p=dep_final then
      begin type(r):=known; value(r):=0; free_node(p,value_node_size);
      end
    else  begin type(r):=dependent; new_dep(r,p);
      end;
    end
  else  begin type(r):=type(q); new_dep(r,copy_dep_list(dep_list(q)));
    end;
end;

@ Expressions of the form `\.{a[b,c]}' are converted into
`\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
provided that \.a is numeric.

@<Scan a mediation...@>=
begin p:=stash_cur_exp; get_x_next; scan_expression;
if cur_cmd<>comma then
  begin @<Put the left bracket and the expression back...@>;
  unstash_cur_exp(p);
  end
else  begin q:=stash_cur_exp; get_x_next; scan_expression;
  if cur_cmd<>right_bracket then
    begin missing_err("]");@/
@.Missing `]'@>
    help3("I've scanned an expression of the form `a[b,c',")@/
      ("so a right bracket should have come next.")@/
      ("I shall pretend that one was there.");@/
    back_error;
    end;
  r:=stash_cur_exp; make_exp_copy(q);@/
  do_binary(r,minus); do_binary(p,times); do_binary(q,plus); get_x_next;
  end;
end

@ Here is a comparatively simple routine that is used to scan the
\&{suffix} parameters of a macro.

@<Declare the basic parsing subroutines@>=
procedure scan_suffix;
label done;
var @!h,@!t:pointer; {head and tail of the list being built}
@!p:pointer; {temporary register}
begin h:=get_avail; t:=h;
loop@+  begin if cur_cmd=left_bracket then
    @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
  if cur_cmd=numeric_token then p:=new_num_tok(cur_mod)
  else if (cur_cmd=tag_token)or(cur_cmd=internal_quantity) then
    begin p:=get_avail; info(p):=cur_sym;
    end
  else goto done;
  link(t):=p; t:=p; get_x_next;
  end;
done: cur_exp:=link(h); free_avail(h); cur_type:=token_list;
end;

@ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
begin get_x_next; scan_expression;
if cur_type<>known then bad_subscript;
if cur_cmd<>right_bracket then
  begin missing_err("]");@/
@.Missing `]'@>
  help3("I've seen a `[' and a subscript value, in a suffix,")@/
    ("so a right bracket should have come next.")@/
    ("I shall pretend that one was there.");@/
  back_error;
  end;
cur_cmd:=numeric_token; cur_mod:=cur_exp;
end

@* \[41] Parsing secondary and higher expressions.
After the intricacies of |scan_primary|\kern-1pt,
the |scan_secondary| routine is
refreshingly simple. It's not trivial, but the operations are relatively
straightforward; the main difficulty is, again, that expressions and data
structures might change drastically every time we call |get_x_next|, so a
cautious approach is mandatory. For example, a macro defined by
\&{primarydef} might have disappeared by the time its second argument has
been scanned; we solve this by increasing the reference count of its token
list, so that the macro can be called even after it has been clobbered.

@<Declare the basic parsing subroutines@>=
procedure scan_secondary;
label restart,continue;
var @!p:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!mac_name:pointer; {token defined with \&{primarydef}}
begin restart:if(cur_cmd<min_primary_command)or@|
 (cur_cmd>max_primary_command) then
  bad_exp("A secondary");
@.A secondary expression...@>
scan_primary;
continue: if cur_cmd<=max_secondary_command then
 if cur_cmd>=min_secondary_command then
  begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
  if d=secondary_primary_macro then
    begin mac_name:=cur_sym; add_mac_ref(c);
    end;
  get_x_next; scan_primary;
  if d<>secondary_primary_macro then do_binary(p,c)
  else  begin back_input; binary_mac(p,c,mac_name);
    decr(ref_count(c)); get_x_next; goto restart;
    end;
  goto continue;
  end;
end;

@ The following procedure calls a macro that has two parameters,
|p| and |cur_exp|.

@p procedure binary_mac(@!p,@!c,@!n:pointer);
var @!q,@!r:pointer; {nodes in the parameter list}
begin q:=get_avail; r:=get_avail; link(q):=r;@/
info(q):=p; info(r):=stash_cur_exp;@/
macro_call(c,q,n);
end;

@ The next procedure, |scan_tertiary|, is pretty much the same deal.

@<Declare the basic parsing subroutines@>=
procedure scan_tertiary;
label restart,continue;
var @!p:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!mac_name:pointer; {token defined with \&{secondarydef}}
begin restart:if(cur_cmd<min_primary_command)or@|
 (cur_cmd>max_primary_command) then
  bad_exp("A tertiary");
@.A tertiary expression...@>
scan_secondary;
if cur_type=future_pen then materialize_pen;
continue: if cur_cmd<=max_tertiary_command then
 if cur_cmd>=min_tertiary_command then
  begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
  if d=tertiary_secondary_macro then
    begin mac_name:=cur_sym; add_mac_ref(c);
    end;
  get_x_next; scan_secondary;
  if d<>tertiary_secondary_macro then do_binary(p,c)
  else  begin back_input; binary_mac(p,c,mac_name);
    decr(ref_count(c)); get_x_next; goto restart;
    end;
  goto continue;
  end;
end;

@ A |future_pen| becomes a full-fledged pen here.

@p procedure materialize_pen;
label common_ending;
var @!a_minus_b,@!a_plus_b,@!major_axis,@!minor_axis:scaled; {ellipse variables}
@!theta:angle; {amount by which the ellipse has been rotated}
@!p:pointer; {path traverser}
@!q:pointer; {the knot list to be made into a pen}
begin q:=cur_exp;
if left_type(q)=endpoint then
  begin print_err("Pen path must be a cycle");
@.Pen path must be a cycle@>
  help2("I can't make a pen from the given path.")@/
  ("So I've replaced it by the trivial path `(0,0)..cycle'.");
  put_get_error; cur_exp:=null_pen; goto common_ending;
  end
else if left_type(q)=open then
  @<Change node |q| to a path for an elliptical pen@>;
cur_exp:=make_pen(q);
common_ending: toss_knot_list(q); cur_type:=pen_type;
end;

@ We placed the three points $(0,0)$, $(1,0)$, $(0,1)$ into a \&{pencircle},
and they have now been transformed to $(u,v)$, $(A+u,B+v)$, $(C+u,D+v)$;
this gives us enough information to deduce the transformation
$(x,y)\mapsto(Ax+Cy+u,Bx+Dy+v)$.

Given ($A,B,C,D)$ we can always find $(a,b,\theta,\phi)$ such that
$$\eqalign{A&=a\cos\phi\cos\theta-b\sin\phi\sin\theta;\cr
B&=a\cos\phi\sin\theta+b\sin\phi\cos\theta;\cr
C&=-a\sin\phi\cos\theta-b\cos\phi\sin\theta;\cr
D&=-a\sin\phi\sin\theta+b\cos\phi\cos\theta.\cr}$$
In this notation, the unit circle $(\cos t,\sin t)$ is transformed into
$$\bigl(a\cos(\phi+t)\cos\theta-b\sin(\phi+t)\sin\theta,\;
a\cos(\phi+t)\sin\theta+b\sin(\phi+t)\cos\theta\bigr)\;+\;(u,v),$$
which is an ellipse with semi-axes~$(a,b)$, rotated by~$\theta$ and
shifted by~$(u,v)$. To solve the stated equations, we note that it is
necessary and sufficient to solve
$$\eqalign{A-D&=(a-b)\cos(\theta-\phi),\cr
B+C&=(a-b)\sin(\theta-\phi),\cr}
\qquad
\eqalign{A+D&=(a+b)\cos(\theta+\phi),\cr
B-C&=(a+b)\sin(\theta+\phi);\cr}$$
and it is easy to find $a-b$, $a+b$, $\theta-\phi$, and $\theta+\phi$
from these formulas.

The code below uses |(txx,tyx,txy,tyy,tx,ty)| to stand for
$(A,B,C,D,u,v)$.

@<Change node |q|...@>=
begin tx:=x_coord(q); ty:=y_coord(q);
txx:=left_x(q)-tx; tyx:=left_y(q)-ty;
txy:=right_x(q)-tx; tyy:=right_y(q)-ty;
a_minus_b:=pyth_add(txx-tyy,tyx+txy); a_plus_b:=pyth_add(txx+tyy,tyx-txy);
major_axis:=half(a_minus_b+a_plus_b); minor_axis:=half(abs(a_plus_b-a_minus_b));
if major_axis=minor_axis then theta:=0 {circle}
else theta:=half(n_arg(txx-tyy,tyx+txy)+n_arg(txx+tyy,tyx-txy));
free_node(q,knot_node_size);
q:=make_ellipse(major_axis,minor_axis,theta);
if (tx<>0)or(ty<>0) then @<Shift the coordinates of path |q|@>;
end

@ @<Shift the coordinates of path |q|@>=
begin p:=q;
repeat x_coord(p):=x_coord(p)+tx; y_coord(p):=y_coord(p)+ty; p:=link(p);
until p=q;
end

@ Finally we reach the deepest level in our quartet of parsing routines.
This one is much like the others; but it has an extra complication from
paths, which materialize here.

@d continue_path=25 {a label inside of |scan_expression|}
@d finish_path=26 {another}

@<Declare the basic parsing subroutines@>=
procedure scan_expression;
label restart,done,continue,continue_path,finish_path,exit;
var @!p,@!q,@!r,@!pp,@!qq:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!my_var_flag:0..max_command_code; {initial value of |var_flag|}
@!mac_name:pointer; {token defined with \&{tertiarydef}}
@!cycle_hit:boolean; {did a path expression just end with `\&{cycle}'?}
@!x,@!y:scaled; {explicit coordinates or tension at a path join}
@!t:endpoint..open; {knot type following a path join}
begin my_var_flag:=var_flag;
restart:if(cur_cmd<min_primary_command)or@|
 (cur_cmd>max_primary_command) then
  bad_exp("An");
@.An expression...@>
scan_tertiary;
continue: if cur_cmd<=max_expression_command then
 if cur_cmd>=min_expression_command then
  if (cur_cmd<>equals)or(my_var_flag<>assignment) then
  begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
  if d=expression_tertiary_macro then
    begin mac_name:=cur_sym; add_mac_ref(c);
    end;
  if (d<ampersand)or((d=ampersand)and@|
   ((type(p)=pair_type)or(type(p)=path_type))) then
    @<Scan a path construction operation;
      but |return| if |p| has the wrong type@>
  else  begin get_x_next; scan_tertiary;
    if d<>expression_tertiary_macro then do_binary(p,c)
    else  begin back_input; binary_mac(p,c,mac_name);
      decr(ref_count(c)); get_x_next; goto restart;
      end;
    end;
  goto continue;
  end;
exit:end;

@ The reader should review the data structure conventions for paths before
hoping to understand the next part of this code.

@<Scan a path construction operation...@>=
begin cycle_hit:=false;
@<Convert the left operand, |p|, into a partial path ending at~|q|;
  but |return| if |p| doesn't have a suitable type@>;
continue_path: @<Determine the path join parameters;
  but |goto finish_path| if there's only a direction specifier@>;
if cur_cmd=cycle then @<Get ready to close a cycle@>
else  begin scan_tertiary;
  @<Convert the right operand, |cur_exp|,
    into a partial path from |pp| to~|qq|@>;
  end;
@<Join the partial paths and reset |p| and |q| to the head and tail
  of the result@>;
if cur_cmd>=min_expression_command then
 if cur_cmd<=ampersand then if not cycle_hit then goto continue_path;
finish_path:
@<Choose control points for the path and put the result into |cur_exp|@>;
end

@ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
begin unstash_cur_exp(p);
if cur_type=pair_type then p:=new_knot
else if cur_type=path_type then p:=cur_exp
else return;
q:=p;
while link(q)<>p do q:=link(q);
if left_type(p)<>endpoint then {open up a cycle}
  begin r:=copy_knot(p); link(q):=r; q:=r;
  end;
left_type(p):=open; right_type(q):=open;
end

@ A pair of numeric values is changed into a knot node for a one-point path
when \MF\ discovers that the pair is part of a path.

@p@t\4@>@<Declare the procedure called |known_pair|@>@;
function new_knot:pointer; {convert a pair to a knot with two endpoints}
var @!q:pointer; {the new node}
begin q:=get_node(knot_node_size); left_type(q):=endpoint;
right_type(q):=endpoint; link(q):=q;@/
known_pair; x_coord(q):=cur_x; y_coord(q):=cur_y;
new_knot:=q;
end;

@ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
of the current expression, assuming that the current expression is a
pair of known numerics. Unknown components are zeroed, and the
current expression is flushed.

@<Declare the procedure called |known_pair|@>=
procedure known_pair;
var @!p:pointer; {the pair node}
begin if cur_type<>pair_type then
  begin exp_err("Undefined coordinates have been replaced by (0,0)");
@.Undefined coordinates...@>
  help5("I need x and y numbers for this part of the path.")@/
    ("The value I found (see above) was no good;")@/
    ("so I'll try to keep going by using zero instead.")@/
    ("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
    ("you might want to type `I ???' now.)");
  put_get_flush_error(0); cur_x:=0; cur_y:=0;
  end
else  begin p:=value(cur_exp);
  @<Make sure that both |x| and |y| parts of |p| are known;
    copy them into |cur_x| and |cur_y|@>;
  flush_cur_exp(0);
  end;
end;

@ @<Make sure that both |x| and |y| parts of |p| are known...@>=
if type(x_part_loc(p))=known then cur_x:=value(x_part_loc(p))
else  begin disp_err(x_part_loc(p),
    "Undefined x coordinate has been replaced by 0");
@.Undefined coordinates...@>
  help5("I need a `known' x value for this part of the path.")@/
    ("The value I found (see above) was no good;")@/
    ("so I'll try to keep going by using zero instead.")@/
    ("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
    ("you might want to type `I ???' now.)");
  put_get_error; recycle_value(x_part_loc(p)); cur_x:=0;
  end;
if type(y_part_loc(p))=known then cur_y:=value(y_part_loc(p))
else  begin disp_err(y_part_loc(p),
    "Undefined y coordinate has been replaced by 0");
  help5("I need a `known' y value for this part of the path.")@/
    ("The value I found (see above) was no good;")@/
    ("so I'll try to keep going by using zero instead.")@/
    ("(Chapter 27 of The METAFONTbook explains that")@/
    ("you might want to type `I ???' now.)");
  put_get_error; recycle_value(y_part_loc(p)); cur_y:=0;
  end

@ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.

@<Determine the path join parameters...@>=
if cur_cmd=left_brace then
  @<Put the pre-join direction information into node |q|@>;
d:=cur_cmd;
if d=path_join then @<Determine the tension and/or control points@>
else if d<>ampersand then goto finish_path;
get_x_next;
if cur_cmd=left_brace then
  @<Put the post-join direction information into |x| and |t|@>
else if right_type(q)<>explicit then
  begin t:=open; x:=0;
  end

@ The |scan_direction| subroutine looks at the directional information
that is enclosed in braces, and also scans ahead to the following character.
A type code is returned, either |open| (if the direction was $(0,0)$),
or |curl| (if the direction was a curl of known value |cur_exp|), or
|given| (if the direction is given by the |angle| value that now
appears in |cur_exp|).

There's nothing difficult about this subroutine, but the program is rather
lengthy because a variety of potential errors need to be nipped in the bud.

@p function scan_direction:small_number;
var @!t:given..open; {the type of information found}
@!x:scaled; {an |x| coordinate}
begin get_x_next;
if cur_cmd=curl_command then @<Scan a curl specification@>
else @<Scan a given direction@>;
if cur_cmd<>right_brace then
  begin missing_err("}");@/
@.Missing `\char`\}'@>
  help3("I've scanned a direction spec for part of a path,")@/
    ("so a right brace should have come next.")@/
    ("I shall pretend that one was there.");@/
  back_error;
  end;
get_x_next; scan_direction:=t;
end;

@ @<Scan a curl specification@>=
begin get_x_next; scan_expression;
if (cur_type<>known)or(cur_exp<0) then
  begin exp_err("Improper curl has been replaced by 1");
@.Improper curl@>
  help1("A curl must be a known, nonnegative number.");
  put_get_flush_error(unity);
  end;
t:=curl;
end

@ @<Scan a given direction@>=
begin scan_expression;
if cur_type>pair_type then @<Get given directions separated by commas@>
else known_pair;
if (cur_x=0)and(cur_y=0) then t:=open
else  begin t:=given; cur_exp:=n_arg(cur_x,cur_y);
  end;
end

@ @<Get given directions separated by commas@>=
begin if cur_type<>known then
  begin exp_err("Undefined x coordinate has been replaced by 0");
@.Undefined coordinates...@>
  help5("I need a `known' x value for this part of the path.")@/
    ("The value I found (see above) was no good;")@/
    ("so I'll try to keep going by using zero instead.")@/
    ("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
    ("you might want to type `I ???' now.)");
  put_get_flush_error(0);
  end;
x:=cur_exp;
if cur_cmd<>comma then
  begin missing_err(",");@/
@.Missing `,'@>
  help2("I've got the x coordinate of a path direction;")@/
    ("will look for the y coordinate next.");
  back_error;
  end;
get_x_next; scan_expression;
if cur_type<>known then
  begin exp_err("Undefined y coordinate has been replaced by 0");
  help5("I need a `known' y value for this part of the path.")@/
    ("The value I found (see above) was no good;")@/
    ("so I'll try to keep going by using zero instead.")@/
    ("(Chapter 27 of The METAFONTbook explains that")@/
    ("you might want to type `I ???' now.)");
  put_get_flush_error(0);
  end;
cur_y:=cur_exp; cur_x:=x;
end

@ At this point |right_type(q)| is usually |open|, but it may have been
set to some other value by a previous splicing operation. We must maintain
the value of |right_type(q)| in unusual cases such as
`\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.

@<Put the pre-join...@>=
begin t:=scan_direction;
if t<>open then
  begin right_type(q):=t; right_given(q):=cur_exp;
  if left_type(q)=open then
    begin left_type(q):=t; left_given(q):=cur_exp;
    end; {note that |left_given(q)=left_curl(q)|}
  end;
end

@ Since |left_tension| and |left_y| share the same position in knot nodes,
and since |left_given| is similarly equivalent to |left_x|, we use
|x| and |y| to hold the given direction and tension information when
there are no explicit control points.

@<Put the post-join...@>=
begin t:=scan_direction;
if right_type(q)<>explicit then x:=cur_exp
else t:=explicit; {the direction information is superfluous}
end

@ @<Determine the tension and/or...@>=
begin get_x_next;
if cur_cmd=tension then @<Set explicit tensions@>
else if cur_cmd=controls then @<Set explicit control points@>
else  begin right_tension(q):=unity; y:=unity; back_input; {default tension}
  goto done;
  end;
if cur_cmd<>path_join then
  begin missing_err("..");@/
@.Missing `..'@>
  help1("A path join command should end with two dots.");
  back_error;
  end;
done:end

@ @<Set explicit tensions@>=
begin get_x_next; y:=cur_cmd;
if cur_cmd=at_least then get_x_next;
scan_primary;
@<Make sure that the current expression is a valid tension setting@>;
if y=at_least then negate(cur_exp);
right_tension(q):=cur_exp;
if cur_cmd=and_command then
  begin get_x_next; y:=cur_cmd;
  if cur_cmd=at_least then get_x_next;
  scan_primary;
  @<Make sure that the current expression is a valid tension setting@>;
  if y=at_least then negate(cur_exp);
  end;
y:=cur_exp;
end

@ @d min_tension==three_quarter_unit

@<Make sure that the current expression is a valid tension setting@>=
if (cur_type<>known)or(cur_exp<min_tension) then
  begin exp_err("Improper tension has been set to 1");
@.Improper tension@>
  help1("The expression above should have been a number >=3/4.");
  put_get_flush_error(unity);
  end

@ @<Set explicit control points@>=
begin right_type(q):=explicit; t:=explicit; get_x_next; scan_primary;@/
known_pair; right_x(q):=cur_x; right_y(q):=cur_y;
if cur_cmd<>and_command then
  begin x:=right_x(q); y:=right_y(q);
  end
else  begin get_x_next; scan_primary;@/
  known_pair; x:=cur_x; y:=cur_y;
  end;
end

@ @<Convert the right operand, |cur_exp|, into a partial path...@>=
begin if cur_type<>path_type then pp:=new_knot
else pp:=cur_exp;
qq:=pp;
while link(qq)<>pp do qq:=link(qq);
if left_type(pp)<>endpoint then {open up a cycle}
  begin r:=copy_knot(pp); link(qq):=r; qq:=r;
  end;
left_type(pp):=open; right_type(qq):=open;
end

@ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
we silently change the specification to `\.{(x,y)..cycle}', since a cycle
shouldn't have length zero.

@<Get ready to close a cycle@>=
begin cycle_hit:=true; get_x_next; pp:=p; qq:=p;
if d=ampersand then if p=q then
  begin d:=path_join; right_tension(q):=unity; y:=unity;
  end;
end

@ @<Join the partial paths and reset |p| and |q|...@>=
begin if d=ampersand then
 if (x_coord(q)<>x_coord(pp))or(y_coord(q)<>y_coord(pp)) then
  begin print_err("Paths don't touch; `&' will be changed to `..'");
@.Paths don't touch@>
  help3("When you join paths `p&q', the ending point of p")@/
    ("must be exactly equal to the starting point of q.")@/
    ("So I'm going to pretend that you said `p..q' instead.");
  put_get_error; d:=path_join; right_tension(q):=unity; y:=unity;
  end;
@<Plug an opening in |right_type(pp)|, if possible@>;
if d=ampersand then @<Splice independent paths together@>
else  begin @<Plug an opening in |right_type(q)|, if possible@>;
  link(q):=pp; left_y(pp):=y;
  if t<>open then
    begin left_x(pp):=x; left_type(pp):=t;
    end;
  end;
q:=qq;
end

@ @<Plug an opening in |right_type(q)|...@>=
if right_type(q)=open then
  if (left_type(q)=curl)or(left_type(q)=given) then
    begin right_type(q):=left_type(q); right_given(q):=left_given(q);
    end

@ @<Plug an opening in |right_type(pp)|...@>=
if right_type(pp)=open then
  if (t=curl)or(t=given) then
    begin right_type(pp):=t; right_given(pp):=x;
    end

@ @<Splice independent paths together@>=
begin if left_type(q)=open then if right_type(q)=open then
    begin left_type(q):=curl; left_curl(q):=unity;
    end;
if right_type(pp)=open then if t=open then
  begin right_type(pp):=curl; right_curl(pp):=unity;
  end;
right_type(q):=right_type(pp); link(q):=link(pp);@/
right_x(q):=right_x(pp); right_y(q):=right_y(pp);
free_node(pp,knot_node_size);
if qq=pp then qq:=q;
end

@ @<Choose control points for the path...@>=
if cycle_hit then
  begin if d=ampersand then p:=q;
  end
else  begin left_type(p):=endpoint;
  if right_type(p)=open then
    begin right_type(p):=curl; right_curl(p):=unity;
    end;
  right_type(q):=endpoint;
  if left_type(q)=open then
    begin left_type(q):=curl; left_curl(q):=unity;
    end;
  link(q):=p;
  end;
make_choices(p);
cur_type:=path_type; cur_exp:=p

@ Finally, we sometimes need to scan an expression whose value is
supposed to be either |true_code| or |false_code|.

@<Declare the basic parsing subroutines@>=
procedure get_boolean;
begin get_x_next; scan_expression;
if cur_type<>boolean_type then
  begin exp_err("Undefined condition will be treated as `false'");
@.Undefined condition...@>
  help2("The expression shown above should have had a definite")@/
    ("true-or-false value. I'm changing it to `false'.");@/
  put_get_flush_error(false_code); cur_type:=boolean_type;
  end;
end;

@* \[42] Doing the operations.
The purpose of parsing is primarily to permit people to avoid piles of
parentheses. But the real work is done after the structure of an expression
has been recognized; that's when new expressions are generated. We
turn now to the guts of \MF, which handles individual operators that
have come through the parsing mechanism.

We'll start with the easy ones that take no operands, then work our way
up to operators with one and ultimately two arguments. In other words,
we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
that are invoked periodically by the expression scanners.

First let's make sure that all of the primitive operators are in the
hash table. Although |scan_primary| and its relatives made use of the
\\{cmd} code for these operators, the \\{do} routines base everything
on the \\{mod} code. For example, |do_binary| doesn't care whether the
operation it performs is a |primary_binary| or |secondary_binary|, etc.

@<Put each...@>=
primitive("true",nullary,true_code);@/
@!@:true_}{\&{true} primitive@>
primitive("false",nullary,false_code);@/
@!@:false_}{\&{false} primitive@>
primitive("nullpicture",nullary,null_picture_code);@/
@!@:null_picture_}{\&{nullpicture} primitive@>
primitive("nullpen",nullary,null_pen_code);@/
@!@:null_pen_}{\&{nullpen} primitive@>
primitive("jobname",nullary,job_name_op);@/
@!@:job_name_}{\&{jobname} primitive@>
primitive("readstring",nullary,read_string_op);@/
@!@:read_string_}{\&{readstring} primitive@>
primitive("pencircle",nullary,pen_circle);@/
@!@:pen_circle_}{\&{pencircle} primitive@>
primitive("normaldeviate",nullary,normal_deviate);@/
@!@:normal_deviate_}{\&{normaldeviate} primitive@>
primitive("odd",unary,odd_op);@/
@!@:odd_}{\&{odd} primitive@>
primitive("known",unary,known_op);@/
@!@:known_}{\&{known} primitive@>
primitive("unknown",unary,unknown_op);@/
@!@:unknown_}{\&{unknown} primitive@>
primitive("not",unary,not_op);@/
@!@:not_}{\&{not} primitive@>
primitive("decimal",unary,decimal);@/
@!@:decimal_}{\&{decimal} primitive@>
primitive("reverse",unary,reverse);@/
@!@:reverse_}{\&{reverse} primitive@>
primitive("makepath",unary,make_path_op);@/
@!@:make_path_}{\&{makepath} primitive@>
primitive("makepen",unary,make_pen_op);@/
@!@:make_pen_}{\&{makepen} primitive@>
primitive("totalweight",unary,total_weight_op);@/
@!@:total_weight_}{\&{totalweight} primitive@>
primitive("oct",unary,oct_op);@/
@!@:oct_}{\&{oct} primitive@>
primitive("hex",unary,hex_op);@/
@!@:hex_}{\&{hex} primitive@>
primitive("ASCII",unary,ASCII_op);@/
@!@:ASCII_}{\&{ASCII} primitive@>
primitive("char",unary,char_op);@/
@!@:char_}{\&{char} primitive@>
primitive("length",unary,length_op);@/
@!@:length_}{\&{length} primitive@>
primitive("turningnumber",unary,turning_op);@/
@!@:turning_number_}{\&{turningnumber} primitive@>
primitive("xpart",unary,x_part);@/
@!@:x_part_}{\&{xpart} primitive@>
primitive("ypart",unary,y_part);@/
@!@:y_part_}{\&{ypart} primitive@>
primitive("xxpart",unary,xx_part);@/
@!@:xx_part_}{\&{xxpart} primitive@>
primitive("xypart",unary,xy_part);@/
@!@:xy_part_}{\&{xypart} primitive@>
primitive("yxpart",unary,yx_part);@/
@!@:yx_part_}{\&{yxpart} primitive@>
primitive("yypart",unary,yy_part);@/
@!@:yy_part_}{\&{yypart} primitive@>
primitive("sqrt",unary,sqrt_op);@/
@!@:sqrt_}{\&{sqrt} primitive@>
primitive("mexp",unary,m_exp_op);@/
@!@:m_exp_}{\&{mexp} primitive@>
primitive("mlog",unary,m_log_op);@/
@!@:m_log_}{\&{mlog} primitive@>
primitive("sind",unary,sin_d_op);@/
@!@:sin_d_}{\&{sind} primitive@>
primitive("cosd",unary,cos_d_op);@/
@!@:cos_d_}{\&{cosd} primitive@>
primitive("floor",unary,floor_op);@/
@!@:floor_}{\&{floor} primitive@>
primitive("uniformdeviate",unary,uniform_deviate);@/
@!@:uniform_deviate_}{\&{uniformdeviate} primitive@>
primitive("charexists",unary,char_exists_op);@/
@!@:char_exists_}{\&{charexists} primitive@>
primitive("angle",unary,angle_op);@/
@!@:angle_}{\&{angle} primitive@>
primitive("cycle",cycle,cycle_op);@/
@!@:cycle_}{\&{cycle} primitive@>
primitive("+",plus_or_minus,plus);@/
@!@:+ }{\.{+} primitive@>
primitive("-",plus_or_minus,minus);@/
@!@:- }{\.{-} primitive@>
primitive("*",secondary_binary,times);@/
@!@:* }{\.{*} primitive@>
primitive("/",slash,over); eqtb[frozen_slash]:=eqtb[cur_sym];@/
@!@:/ }{\.{/} primitive@>
primitive("++",tertiary_binary,pythag_add);@/
@!@:++_}{\.{++} primitive@>
primitive("+-+",tertiary_binary,pythag_sub);@/
@!@:+-+_}{\.{+-+} primitive@>
primitive("and",and_command,and_op);@/
@!@:and_}{\&{and} primitive@>
primitive("or",tertiary_binary,or_op);@/
@!@:or_}{\&{or} primitive@>
primitive("<",expression_binary,less_than);@/
@!@:< }{\.{<} primitive@>
primitive("<=",expression_binary,less_or_equal);@/
@!@:<=_}{\.{<=} primitive@>
primitive(">",expression_binary,greater_than);@/
@!@:> }{\.{>} primitive@>
primitive(">=",expression_binary,greater_or_equal);@/
@!@:>=_}{\.{>=} primitive@>
primitive("=",equals,equal_to);@/
@!@:= }{\.{=} primitive@>
primitive("<>",expression_binary,unequal_to);@/
@!@:<>_}{\.{<>} primitive@>
primitive("substring",primary_binary,substring_of);@/
@!@:substring_}{\&{substring} primitive@>
primitive("subpath",primary_binary,subpath_of);@/
@!@:subpath_}{\&{subpath} primitive@>
primitive("directiontime",primary_binary,direction_time_of);@/
@!@:direction_time_}{\&{directiontime} primitive@>
primitive("point",primary_binary,point_of);@/
@!@:point_}{\&{point} primitive@>
primitive("precontrol",primary_binary,precontrol_of);@/
@!@:precontrol_}{\&{precontrol} primitive@>
primitive("postcontrol",primary_binary,postcontrol_of);@/
@!@:postcontrol_}{\&{postcontrol} primitive@>
primitive("penoffset",primary_binary,pen_offset_of);@/
@!@:pen_offset_}{\&{penoffset} primitive@>
primitive("&",ampersand,concatenate);@/
@!@:!!!}{\.{\&} primitive@>
primitive("rotated",secondary_binary,rotated_by);@/
@!@:rotated_}{\&{rotated} primitive@>
primitive("slanted",secondary_binary,slanted_by);@/
@!@:slanted_}{\&{slanted} primitive@>
primitive("scaled",secondary_binary,scaled_by);@/
@!@:scaled_}{\&{scaled} primitive@>
primitive("shifted",secondary_binary,shifted_by);@/
@!@:shifted_}{\&{shifted} primitive@>
primitive("transformed",secondary_binary,transformed_by);@/
@!@:transformed_}{\&{transformed} primitive@>
primitive("xscaled",secondary_binary,x_scaled);@/
@!@:x_scaled_}{\&{xscaled} primitive@>
primitive("yscaled",secondary_binary,y_scaled);@/
@!@:y_scaled_}{\&{yscaled} primitive@>
primitive("zscaled",secondary_binary,z_scaled);@/
@!@:z_scaled_}{\&{zscaled} primitive@>
primitive("intersectiontimes",tertiary_binary,intersect);@/
@!@:intersection_times_}{\&{intersectiontimes} primitive@>

@ @<Cases of |print_cmd...@>=
nullary,unary,primary_binary,secondary_binary,tertiary_binary,
 expression_binary,cycle,plus_or_minus,slash,ampersand,equals,and_command:
  print_op(m);

@ OK, let's look at the simplest \\{do} procedure first.

@p procedure do_nullary(@!c:quarterword);
var @!k:integer; {all-purpose loop index}
begin check_arith;
if internal[tracing_commands]>two then
  show_cmd_mod(nullary,c);
case c of
true_code,false_code:begin cur_type:=boolean_type; cur_exp:=c;
  end;
null_picture_code:begin cur_type:=picture_type;
  cur_exp:=get_node(edge_header_size); init_edges(cur_exp);
  end;
null_pen_code:begin cur_type:=pen_type; cur_exp:=null_pen;
  end;
normal_deviate:begin cur_type:=known; cur_exp:=norm_rand;
  end;
pen_circle:@<Make a special knot node for \&{pencircle}@>;
job_name_op: begin if job_name=0 then open_log_file;
  cur_type:=string_type; cur_exp:=job_name;
  end;
read_string_op:@<Read a string from the terminal@>;
end; {there are no other cases}
check_arith;
end;

@ @<Make a special knot node for \&{pencircle}@>=
begin cur_type:=future_pen; cur_exp:=get_node(knot_node_size);
left_type(cur_exp):=open; right_type(cur_exp):=open;
link(cur_exp):=cur_exp;@/
x_coord(cur_exp):=0; y_coord(cur_exp):=0;@/
left_x(cur_exp):=unity; left_y(cur_exp):=0;@/
right_x(cur_exp):=0; right_y(cur_exp):=unity;@/
end

@ @<Read a string...@>=
begin if interaction<=nonstop_mode then
  fatal_error("*** (cannot readstring in nonstop modes)");
begin_file_reading; name:=1; prompt_input("");
str_room(last-start);
for k:=start to last-1 do append_char(buffer[k]);
end_file_reading; cur_type:=string_type; cur_exp:=make_string;
end

@ Things get a bit more interesting when there's an operand. The
operand to |do_unary| appears in |cur_type| and |cur_exp|.

@p @t\4@>@<Declare unary action procedures@>@;
procedure do_unary(@!c:quarterword);
var @!p,@!q:pointer; {for list manipulation}
@!x:integer; {a temporary register}
begin check_arith;
if internal[tracing_commands]>two then
  @<Trace the current unary operation@>;
case c of
plus:if cur_type<pair_type then
  if cur_type<>picture_type then bad_unary(plus);
minus:@<Negate the current expression@>;
@t\4@>@<Additional cases of unary operators@>@;
end; {there are no other cases}
check_arith;
end;

@ The |nice_pair| function returns |true| if both components of a pair
are known.

@<Declare unary action procedures@>=
function nice_pair(@!p:integer;@!t:quarterword):boolean;
label exit;
begin if t=pair_type then
  begin p:=value(p);
  if type(x_part_loc(p))=known then
   if type(y_part_loc(p))=known then
    begin nice_pair:=true; return;
    end;
  end;
nice_pair:=false;
exit:end;

@ @<Declare unary action...@>=
procedure print_known_or_unknown_type(@!t:small_number;@!v:integer);
begin print_char("(");
if t<dependent then
  if t<>pair_type then print_type(t)
  else if nice_pair(v,pair_type) then print("pair")
  else print("unknown pair")
else print("unknown numeric");
print_char(")");
end;

@ @<Declare unary action...@>=
procedure bad_unary(@!c:quarterword);
begin exp_err("Not implemented: "); print_op(c);
@.Not implemented...@>
print_known_or_unknown_type(cur_type,cur_exp);
help3("I'm afraid I don't know how to apply that operation to that")@/
  ("particular type. Continue, and I'll simply return the")@/
  ("argument (shown above) as the result of the operation.");
put_get_error;
end;

@ @<Trace the current unary operation@>=
begin begin_diagnostic; print_nl("{"); print_op(c); print_char("(");@/
print_exp(null,0); {show the operand, but not verbosely}
print(")}"); end_diagnostic(false);
end

@ Negation is easy except when the current expression
is of type |independent|, or when it is a pair with one or more
|independent| components.

It is tempting to argue that the negative of an independent variable
is an independent variable, hence we don't have to do anything when
negating it. The fallacy is that other dependent variables pointing
to the current expression must change the sign of their
coefficients if we make no change to the current expression.

Instead, we work around the problem by copying the current expression
and recycling it afterwards (cf.~the |stash_in| routine).

@<Negate the current expression@>=
case cur_type of
pair_type,independent: begin q:=cur_exp; make_exp_copy(q);
  if cur_type=dependent then negate_dep_list(dep_list(cur_exp))
  else if cur_type=pair_type then
    begin p:=value(cur_exp);
    if type(x_part_loc(p))=known then negate(value(x_part_loc(p)))
    else negate_dep_list(dep_list(x_part_loc(p)));
    if type(y_part_loc(p))=known then negate(value(y_part_loc(p)))
    else negate_dep_list(dep_list(y_part_loc(p)));
    end; {if |cur_type=known| then |cur_exp=0|}
  recycle_value(q); free_node(q,value_node_size);
  end;
dependent,proto_dependent:negate_dep_list(dep_list(cur_exp));
known:negate(cur_exp);
picture_type:negate_edges(cur_exp);
othercases bad_unary(minus)
endcases

@ @<Declare unary action...@>=
procedure negate_dep_list(@!p:pointer);
label exit;
begin loop@+begin negate(value(p));
  if info(p)=null then return;
  p:=link(p);
  end;
exit:end;

@ @<Additional cases of unary operators@>=
not_op: if cur_type<>boolean_type then bad_unary(not_op)
  else cur_exp:=true_code+false_code-cur_exp;

@ @d three_sixty_units==23592960 {that's |360*unity|}
@d boolean_reset(#)==if # then cur_exp:=true_code@+else cur_exp:=false_code

@<Additional cases of unary operators@>=
sqrt_op,m_exp_op,m_log_op,sin_d_op,cos_d_op,floor_op,
 uniform_deviate,odd_op,char_exists_op:@t@>@;@/
  if cur_type<>known then bad_unary(c)
  else case c of
  sqrt_op:cur_exp:=square_rt(cur_exp);
  m_exp_op:cur_exp:=m_exp(cur_exp);
  m_log_op:cur_exp:=m_log(cur_exp);
  sin_d_op,cos_d_op:begin n_sin_cos((cur_exp mod three_sixty_units)*16);
    if c=sin_d_op then cur_exp:=round_fraction(n_sin)
    else cur_exp:=round_fraction(n_cos);
    end;
  floor_op:cur_exp:=floor_scaled(cur_exp);
  uniform_deviate:cur_exp:=unif_rand(cur_exp);
  odd_op: begin boolean_reset(odd(round_unscaled(cur_exp)));
    cur_type:=boolean_type;
    end;
  char_exists_op:@<Determine if a character has been shipped out@>;
  end; {there are no other cases}

@ @<Additional cases of unary operators@>=
angle_op:if nice_pair(cur_exp,cur_type) then
    begin p:=value(cur_exp);
    x:=n_arg(value(x_part_loc(p)),value(y_part_loc(p)));
    if x>=0 then flush_cur_exp((x+8)div 16)
    else flush_cur_exp(-((-x+8)div 16));
    end
  else bad_unary(angle_op);

@ If the current expression is a pair, but the context wants it to
be a path, we call |pair_to_path|.

@<Declare unary action...@>=
procedure pair_to_path;
begin cur_exp:=new_knot; cur_type:=path_type;
end;

@ @<Additional cases of unary operators@>=
x_part,y_part:if (cur_type<=pair_type)and(cur_type>=transform_type) then
    take_part(c)
  else bad_unary(c);
xx_part,xy_part,yx_part,yy_part: if cur_type=transform_type then take_part(c)
  else bad_unary(c);

@ In the following procedure, |cur_exp| points to a capsule, which points to
a big node. We want to delete all but one part of the big node.

@<Declare unary action...@>=
procedure take_part(@!c:quarterword);
var @!p:pointer; {the big node}
begin p:=value(cur_exp); value(temp_val):=p; type(temp_val):=cur_type;
link(p):=temp_val; free_node(cur_exp,value_node_size);
make_exp_copy(p+2*(c-x_part));
recycle_value(temp_val);
end;

@ @<Initialize table entries...@>=
name_type(temp_val):=capsule;

@ @<Additional cases of unary...@>=
char_op: if cur_type<>known then bad_unary(char_op)
  else  begin cur_exp:=round_unscaled(cur_exp) mod 256; cur_type:=string_type;
    if cur_exp<0 then cur_exp:=cur_exp+256;
    if length(cur_exp)<>1 then
      begin str_room(1); append_char(cur_exp); cur_exp:=make_string;
      end;
    end;
decimal: if cur_type<>known then bad_unary(decimal)
  else  begin old_setting:=selector; selector:=new_string;
    print_scaled(cur_exp); cur_exp:=make_string;
    selector:=old_setting; cur_type:=string_type;
    end;
oct_op,hex_op,ASCII_op: if cur_type<>string_type then bad_unary(c)
  else str_to_num(c);

@ @<Declare unary action...@>=
procedure str_to_num(@!c:quarterword); {converts a string to a number}
var @!n:integer; {accumulator}
@!m:ASCII_code; {current character}
@!k:pool_pointer; {index into |str_pool|}
@!b:8..16; {radix of conversion}
@!bad_char:boolean; {did the string contain an invalid digit?}
begin if c=ASCII_op then
  if length(cur_exp)=0 then n:=-1
  else n:=so(str_pool[str_start[cur_exp]])
else  begin if c=oct_op then b:=8@+else b:=16;
  n:=0; bad_char:=false;
  for k:=str_start[cur_exp] to str_start[cur_exp+1]-1 do
    begin m:=so(str_pool[k]);
    if (m>="0")and(m<="9") then m:=m-"0"
    else if (m>="A")and(m<="F") then m:=m-"A"+10
    else if (m>="a")and(m<="f") then m:=m-"a"+10
    else  begin bad_char:=true; m:=0;
      end;
    if m>=b then
      begin bad_char:=true; m:=0;
      end;
    if n<32768 div b then n:=n*b+m@+else n:=32767;
    end;
  @<Give error messages if |bad_char| or |n>=4096|@>;
  end;
flush_cur_exp(n*unity);
end;

@ @<Give error messages if |bad_char|...@>=
if bad_char then
  begin exp_err("String contains illegal digits");
@.String contains illegal digits@>
  if c=oct_op then
    help1("I zeroed out characters that weren't in the range 0..7.")
  else help1("I zeroed out characters that weren't hex digits.");
  put_get_error;
  end;
if n>4095 then
  begin print_err("Number too large ("); print_int(n); print_char(")");
@.Number too large@>
  help1("I have trouble with numbers greater than 4095; watch out.");
  put_get_error;
  end

@ The length operation is somewhat unusual in that it applies to a variety
of different types of operands.

@<Additional cases of unary...@>=
length_op: if cur_type=string_type then flush_cur_exp(length(cur_exp)*unity)
  else if cur_type=path_type then flush_cur_exp(path_length)
  else if cur_type=known then cur_exp:=abs(cur_exp)
  else if nice_pair(cur_exp,cur_type) then
    flush_cur_exp(pyth_add(value(x_part_loc(value(cur_exp))),@|
      value(y_part_loc(value(cur_exp)))))
  else bad_unary(c);

@ @<Declare unary action...@>=
function path_length:scaled; {computes the length of the current path}
var @!n:scaled; {the path length so far}
@!p:pointer; {traverser}
begin p:=cur_exp;
if left_type(p)=endpoint then n:=-unity@+else n:=0;
repeat p:=link(p); n:=n+unity;
until p=cur_exp;
path_length:=n;
end;

@ The turning number is computed only with respect to null pens. A different
pen might affect the turning number, in degenerate cases, because autorounding
will produce a slightly different path, or because excessively large coordinates
might be truncated.

@<Additional cases of unary...@>=
turning_op:if cur_type=pair_type then flush_cur_exp(0)
  else if cur_type<>path_type then bad_unary(turning_op)
  else if left_type(cur_exp)=endpoint then
     flush_cur_exp(0) {not a cyclic path}
  else  begin cur_pen:=null_pen; cur_path_type:=contour_code;
    cur_exp:=make_spec(cur_exp,
      fraction_one-half_unit-1-el_gordo,0);
    flush_cur_exp(turning_number*unity); {convert to |scaled|}
    end;

@ @d type_test_end== flush_cur_exp(true_code)
  else flush_cur_exp(false_code);
  cur_type:=boolean_type;
  end
@d type_range_end(#)==(cur_type<=#) then type_test_end
@d type_range(#)==begin if (cur_type>=#) and type_range_end
@d type_test(#)==begin if cur_type=# then type_test_end

@<Additional cases of unary operators@>=
boolean_type: type_range(boolean_type)(unknown_boolean);
string_type: type_range(string_type)(unknown_string);
pen_type: type_range(pen_type)(future_pen);
path_type: type_range(path_type)(unknown_path);
picture_type: type_range(picture_type)(unknown_picture);
transform_type,pair_type: type_test(c);
numeric_type: type_range(known)(independent);
known_op,unknown_op: test_known(c);

@ @<Declare unary action procedures@>=
procedure test_known(@!c:quarterword);
label done;
var @!b:true_code..false_code; {is the current expression known?}
@!p,@!q:pointer; {locations in a big node}
begin b:=false_code;
case cur_type of
vacuous,boolean_type,string_type,pen_type,future_pen,path_type,picture_type,
 known: b:=true_code;
transform_type,pair_type:begin p:=value(cur_exp); q:=p+big_node_size[cur_type];
  repeat q:=q-2;
  if type(q)<>known then goto done;
  until q=p;
  b:=true_code;
done:  end;
othercases do_nothing
endcases;
if c=known_op then flush_cur_exp(b)
else flush_cur_exp(true_code+false_code-b);
cur_type:=boolean_type;
end;

@ @<Additional cases of unary operators@>=
cycle_op: begin if cur_type<>path_type then flush_cur_exp(false_code)
  else if left_type(cur_exp)<>endpoint then flush_cur_exp(true_code)
  else flush_cur_exp(false_code);
  cur_type:=boolean_type;
  end;

@ @<Additional cases of unary operators@>=
make_pen_op: begin if cur_type=pair_type then pair_to_path;
  if cur_type=path_type then cur_type:=future_pen
  else bad_unary(make_pen_op);
  end;
make_path_op: begin if cur_type=future_pen then materialize_pen;
  if cur_type<>pen_type then bad_unary(make_path_op)
  else  begin flush_cur_exp(make_path(cur_exp)); cur_type:=path_type;
    end;
  end;
total_weight_op: if cur_type<>picture_type then bad_unary(total_weight_op)
  else flush_cur_exp(total_weight(cur_exp));
reverse: if cur_type=path_type then
    begin p:=htap_ypoc(cur_exp);
    if right_type(p)=endpoint then p:=link(p);
    toss_knot_list(cur_exp); cur_exp:=p;
    end
  else if cur_type=pair_type then pair_to_path
  else bad_unary(reverse);

@ Finally, we have the operations that combine a capsule~|p|
with the current expression.

@p @t\4@>@<Declare binary action procedures@>@;
procedure do_binary(@!p:pointer;@!c:quarterword);
label done,done1,exit;
var @!q,@!r,@!rr:pointer; {for list manipulation}
@!old_p,@!old_exp:pointer; {capsules to recycle}
@!v:integer; {for numeric manipulation}
begin check_arith;
if internal[tracing_commands]>two then
  @<Trace the current binary operation@>;
@<Sidestep |independent| cases in capsule |p|@>;
@<Sidestep |independent| cases in the current expression@>;
case c of
plus,minus:@<Add or subtract the current expression from |p|@>;
@t\4@>@<Additional cases of binary operators@>@;
end; {there are no other cases}
recycle_value(p); free_node(p,value_node_size); {|return| to avoid this}
exit:check_arith; @<Recycle any sidestepped |independent| capsules@>;
end;

@ @<Declare binary action...@>=
procedure bad_binary(@!p:pointer;@!c:quarterword);
begin disp_err(p,"");
exp_err("Not implemented: ");
@.Not implemented...@>
if c>=min_of then print_op(c);
print_known_or_unknown_type(type(p),p);
if c>=min_of then print("of")@+else print_op(c);
print_known_or_unknown_type(cur_type,cur_exp);@/
help3("I'm afraid I don't know how to apply that operation to that")@/
  ("combination of types. Continue, and I'll return the second")@/
  ("argument (see above) as the result of the operation.");
put_get_error;
end;

@ @<Trace the current binary operation@>=
begin begin_diagnostic; print_nl("{(");
print_exp(p,0); {show the operand, but not verbosely}
print_char(")"); print_op(c); print_char("(");@/
print_exp(null,0); print(")}"); end_diagnostic(false);
end

@ Several of the binary operations are potentially complicated by the
fact that |independent| values can sneak into capsules. For example,
we've seen an instance of this difficulty in the unary operation
of negation. In order to reduce the number of cases that need to be
handled, we first change the two operands (if necessary)
to rid them of |independent| components. The original operands are
put into capsules called |old_p| and |old_exp|, which will be
recycled after the binary operation has been safely carried out.

@<Recycle any sidestepped |independent| capsules@>=
if old_p<>null then
  begin recycle_value(old_p); free_node(old_p,value_node_size);
  end;
if old_exp<>null then
  begin recycle_value(old_exp); free_node(old_exp,value_node_size);
  end

@ A big node is considered to be ``tarnished'' if it contains at least one
independent component. We will define a simple function called `|tarnished|'
that returns |null| if and only if its argument is not tarnished.

@<Sidestep |independent| cases in capsule |p|@>=
case type(p) of
transform_type,pair_type: old_p:=tarnished(p);
independent: old_p:=void;
othercases old_p:=null
endcases;
if old_p<>null then
  begin q:=stash_cur_exp; old_p:=p; make_exp_copy(old_p);
  p:=stash_cur_exp; unstash_cur_exp(q);
  end;

@ @<Sidestep |independent| cases in the current expression@>=
case cur_type of
transform_type,pair_type:old_exp:=tarnished(cur_exp);
independent:old_exp:=void;
othercases old_exp:=null
endcases;
if old_exp<>null then
  begin old_exp:=cur_exp; make_exp_copy(old_exp);
  end

@ @<Declare binary action...@>=
function tarnished(@!p:pointer):pointer;
label exit;
var @!q:pointer; {beginning of the big node}
@!r:pointer; {current position in the big node}
begin q:=value(p); r:=q+big_node_size[type(p)];
repeat r:=r-2;
if type(r)=independent then
  begin tarnished:=void; return;
  end;
until r=q;
tarnished:=null;
exit:end;

@ @<Add or subtract the current expression from |p|@>=
if (cur_type<pair_type)or(type(p)<pair_type) then
  if (cur_type=picture_type)and(type(p)=picture_type) then
    begin if c=minus then negate_edges(cur_exp);
    cur_edges:=cur_exp; merge_edges(value(p));
    end
  else bad_binary(p,c)
else  if cur_type=pair_type then
    if type(p)<>pair_type then bad_binary(p,c)
    else  begin q:=value(p); r:=value(cur_exp);
      add_or_subtract(x_part_loc(q),x_part_loc(r),c);
      add_or_subtract(y_part_loc(q),y_part_loc(r),c);
      end
  else  if type(p)=pair_type then bad_binary(p,c)
    else add_or_subtract(p,null,c)

@ The first argument to |add_or_subtract| is the location of a value node
in a capsule or pair node that will soon be recycled. The second argument
is either a location within a pair or transform node of |cur_exp|,
or it is null (which means that |cur_exp| itself should be the second
argument).  The third argument is either |plus| or |minus|.

The sum or difference of the numeric quantities will replace the second
operand.  Arithmetic overflow may go undetected; users aren't supposed to
be monkeying around with really big values.

@<Declare binary action...@>=
@t\4@>@<Declare the procedure called |dep_finish|@>@;
procedure add_or_subtract(@!p,@!q:pointer;@!c:quarterword);
label done,exit;
var @!s,@!t:small_number; {operand types}
@!r:pointer; {list traverser}
@!v:integer; {second operand value}
begin if q=null then
  begin t:=cur_type;
  if t<dependent then v:=cur_exp@+else v:=dep_list(cur_exp);
  end
else  begin t:=type(q);
  if t<dependent then v:=value(q)@+else v:=dep_list(q);
  end;
if t=known then
  begin if c=minus then negate(v);
  if type(p)=known then
    begin v:=slow_add(value(p),v);
    if q=null then cur_exp:=v@+else value(q):=v;
    return;
    end;
  @<Add a known value to the constant term of |dep_list(p)|@>;
  end
else  begin if c=minus then negate_dep_list(v);
  @<Add operand |p| to the dependency list |v|@>;
  end;
exit:end;

@ @<Add a known value to the constant term of |dep_list(p)|@>=
r:=dep_list(p);
while info(r)<>null do r:=link(r);
value(r):=slow_add(value(r),v);
if q=null then
  begin q:=get_node(value_node_size); cur_exp:=q; cur_type:=type(p);
  name_type(q):=capsule;
  end;
dep_list(q):=dep_list(p); type(q):=type(p);
prev_dep(q):=prev_dep(p); link(prev_dep(p)):=q;
type(p):=known; {this will keep the recycler from collecting non-garbage}

@ We prefer |dependent| lists to |proto_dependent| ones, because it is
nice to retain the extra accuracy of |fraction| coefficients.
But we have to handle both kinds, and mixtures too.

@<Add operand |p| to the dependency list |v|@>=
if type(p)=known then
  @<Add the known |value(p)| to the constant term of |v|@>
else  begin s:=type(p); r:=dep_list(p);
  if t=dependent then
    begin if s=dependent then
     if max_coef(r)+max_coef(v)<coef_bound then
      begin v:=p_plus_q(v,r,dependent); goto done;
      end; {|fix_needed| will necessarily be false}
    t:=proto_dependent; v:=p_over_v(v,unity,dependent,proto_dependent);
    end;
  if s=proto_dependent then v:=p_plus_q(v,r,proto_dependent)
  else v:=p_plus_fq(v,unity,r,proto_dependent,dependent);
 done:  @<Output the answer, |v| (which might have become |known|)@>;
  end

@ @<Add the known |value(p)| to the constant term of |v|@>=
begin while info(v)<>null do v:=link(v);
value(v):=slow_add(value(p),value(v));
end

@ @<Output the answer, |v| (which might have become |known|)@>=
if q<>null then dep_finish(v,q,t)
else  begin cur_type:=t; dep_finish(v,null,t);
  end

@ Here's the current situation: The dependency list |v| of type |t|
should either be put into the current expression (if |q=null|) or
into location |q| within a pair node (otherwise). The destination (|cur_exp|
or |q|) formerly held a dependency list with the same
final pointer as the list |v|.

@<Declare the procedure called |dep_finish|@>=
procedure dep_finish(@!v,@!q:pointer;@!t:small_number);
var @!p:pointer; {the destination}
@!vv:scaled; {the value, if it is |known|}
begin if q=null then p:=cur_exp@+else p:=q;
dep_list(p):=v; type(p):=t;
if info(v)=null then
  begin vv:=value(v);
  if q=null then flush_cur_exp(vv)
  else  begin recycle_value(p); type(q):=known; value(q):=vv;
    end;
  end
else if q=null then cur_type:=t;
if fix_needed then fix_dependencies;
end;

@ Let's turn now to the six basic relations of comparison.

@<Additional cases of binary operators@>=
less_than,less_or_equal,greater_than,greater_or_equal,equal_to,unequal_to:
  begin@t@>@;
  if (cur_type>pair_type)and(type(p)>pair_type) then
    add_or_subtract(p,null,minus) {|cur_exp:=(p)-cur_exp|}
  else if cur_type<>type(p) then
    begin bad_binary(p,c); goto done;
    end
  else if cur_type=string_type then
    flush_cur_exp(str_vs_str(value(p),cur_exp))
  else if (cur_type=unknown_string)or(cur_type=unknown_boolean) then
    @<Check if unknowns have been equated@>
  else if (cur_type=pair_type)or(cur_type=transform_type) then
    @<Reduce comparison of big nodes to comparison of scalars@>
  else if cur_type=boolean_type then flush_cur_exp(cur_exp-value(p))
  else  begin bad_binary(p,c); goto done;
    end;
  @<Compare the current expression with zero@>;
done:  end;

@ @<Compare the current expression with zero@>=
if cur_type<>known then
  begin if cur_type<known then
    begin disp_err(p,"");
    help1("The quantities shown above have not been equated.")@/
    end
  else  help2("Oh dear. I can't decide if the expression above is positive,")@/
    ("negative, or zero. So this comparison test won't be `true'.");
  exp_err("Unknown relation will be considered false");
@.Unknown relation...@>
  put_get_flush_error(false_code);
  end
else case c of
  less_than: boolean_reset(cur_exp<0);
  less_or_equal: boolean_reset(cur_exp<=0);
  greater_than: boolean_reset(cur_exp>0);
  greater_or_equal: boolean_reset(cur_exp>=0);
  equal_to: boolean_reset(cur_exp=0);
  unequal_to: boolean_reset(cur_exp<>0);
  end; {there are no other cases}
 cur_type:=boolean_type

@ When two unknown strings are in the same ring, we know that they are
equal. Otherwise, we don't know whether they are equal or not, so we
make no change.

@<Check if unknowns have been equated@>=
begin q:=value(cur_exp);
while (q<>cur_exp)and(q<>p) do q:=value(q);
if q=p then flush_cur_exp(0);
end

@ @<Reduce comparison of big nodes to comparison of scalars@>=
begin q:=value(p); r:=value(cur_exp);
rr:=r+big_node_size[cur_type]-2;
loop@+  begin add_or_subtract(q,r,minus);
  if type(r)<>known then goto done1;
  if value(r)<>0 then goto done1;
  if r=rr then goto done1;
  q:=q+2; r:=r+2;
  end;
done1:take_part(x_part+half(r-value(cur_exp)));
end

@ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.

@<Additional cases of binary operators@>=
and_op,or_op: if (type(p)<>boolean_type)or(cur_type<>boolean_type) then
    bad_binary(p,c)
  else if value(p)=c+false_code-and_op then cur_exp:=value(p);

@ @<Additional cases of binary operators@>=
times: if (cur_type<pair_type)or(type(p)<pair_type) then bad_binary(p,times)
  else if (cur_type=known)or(type(p)=known) then
    @<Multiply when at least one operand is known@>
  else if (nice_pair(p,type(p))and(cur_type>pair_type))
      or(nice_pair(cur_exp,cur_type)and(type(p)>pair_type)) then
    begin hard_times(p); return;
    end
  else bad_binary(p,times);

@ @<Multiply when at least one operand is known@>=
begin if type(p)=known then
  begin v:=value(p); free_node(p,value_node_size);
  end
else  begin v:=cur_exp; unstash_cur_exp(p);
  end;
if cur_type=known then cur_exp:=take_scaled(cur_exp,v)
else if cur_type=pair_type then
  begin p:=value(cur_exp);
  dep_mult(x_part_loc(p),v,true);
  dep_mult(y_part_loc(p),v,true);
  end
else dep_mult(null,v,true);
return;
end

@ @<Declare binary action...@>=
procedure dep_mult(@!p:pointer;@!v:integer;@!v_is_scaled:boolean);
label exit;
var @!q:pointer; {the dependency list being multiplied by |v|}
@!s,@!t:small_number; {its type, before and after}
begin if p=null then q:=cur_exp
else if type(p)<>known then q:=p
else  begin if v_is_scaled then value(p):=take_scaled(value(p),v)
  else value(p):=take_fraction(value(p),v);
  return;
  end;
t:=type(q); q:=dep_list(q); s:=t;
if t=dependent then if v_is_scaled then
  if ab_vs_cd(max_coef(q),abs(v),coef_bound-1,unity)>=0 then t:=proto_dependent;
q:=p_times_v(q,v,s,t,v_is_scaled); dep_finish(q,p,t);
exit:end;

@ Here is a routine that is similar to |times|; but it is invoked only
internally, when |v| is a |fraction| whose magnitude is at most~1,
and when |cur_type>=pair_type|.

@p procedure frac_mult(@!n,@!d:scaled); {multiplies |cur_exp| by |n/d|}
var @!p:pointer; {a pair node}
@!old_exp:pointer; {a capsule to recycle}
@!v:fraction; {|n/d|}
begin if internal[tracing_commands]>two then
  @<Trace the fraction multiplication@>;
case cur_type of
transform_type,pair_type:old_exp:=tarnished(cur_exp);
independent:old_exp:=void;
othercases old_exp:=null
endcases;
if old_exp<>null then
  begin old_exp:=cur_exp; make_exp_copy(old_exp);
  end;
v:=make_fraction(n,d);
if cur_type=known then cur_exp:=take_fraction(cur_exp,v)
else if cur_type=pair_type then
  begin p:=value(cur_exp);
  dep_mult(x_part_loc(p),v,false);
  dep_mult(y_part_loc(p),v,false);
  end
else dep_mult(null,v,false);
if old_exp<>null then
  begin recycle_value(old_exp); free_node(old_exp,value_node_size);
  end
end;

@ @<Trace the fraction multiplication@>=
begin begin_diagnostic; print_nl("{("); print_scaled(n); print_char("/");
print_scaled(d); print(")*("); print_exp(null,0); print(")}");
end_diagnostic(false);
end

@ The |hard_times| routine multiplies a nice pair by a dependency list.

@<Declare binary action procedures@>=
procedure hard_times(@!p:pointer);
var @!q:pointer; {a copy of the dependent variable |p|}
@!r:pointer; {the big node for the nice pair}
@!u,@!v:scaled; {the known values of the nice pair}
begin if type(p)=pair_type then
  begin q:=stash_cur_exp; unstash_cur_exp(p); p:=q;
  end; {now |cur_type=pair_type|}
r:=value(cur_exp); u:=value(x_part_loc(r)); v:=value(y_part_loc(r));
@<Move the dependent variable |p| into both parts of the pair node |r|@>;
dep_mult(x_part_loc(r),u,true); dep_mult(y_part_loc(r),v,true);
end;

@ @<Move the dependent variable |p|...@>=
type(y_part_loc(r)):=type(p);
new_dep(y_part_loc(r),copy_dep_list(dep_list(p)));@/
type(x_part_loc(r)):=type(p);
mem[value_loc(x_part_loc(r))]:=mem[value_loc(p)];
link(prev_dep(p)):=x_part_loc(r);
free_node(p,value_node_size)

@ @<Additional cases of binary operators@>=
over: if (cur_type<>known)or(type(p)<pair_type) then bad_binary(p,over)
  else  begin v:=cur_exp; unstash_cur_exp(p);
    if v=0 then @<Squeal about division by zero@>
    else  begin if cur_type=known then cur_exp:=make_scaled(cur_exp,v)
      else if cur_type=pair_type then
        begin p:=value(cur_exp);
        dep_div(x_part_loc(p),v);
        dep_div(y_part_loc(p),v);
        end
      else dep_div(null,v);
      end;
    return;
    end;

@ @<Declare binary action...@>=
procedure dep_div(@!p:pointer;@!v:scaled);
label exit;
var @!q:pointer; {the dependency list being divided by |v|}
@!s,@!t:small_number; {its type, before and after}
begin if p=null then q:=cur_exp
else if type(p)<>known then q:=p
else  begin value(p):=make_scaled(value(p),v); return;
  end;
t:=type(q); q:=dep_list(q); s:=t;
if t=dependent then
  if ab_vs_cd(max_coef(q),unity,coef_bound-1,abs(v))>=0 then t:=proto_dependent;
q:=p_over_v(q,v,s,t); dep_finish(q,p,t);
exit:end;

@ @<Squeal about division by zero@>=
begin exp_err("Division by zero");
@.Division by zero@>
help2("You're trying to divide the quantity shown above the error")@/
  ("message by zero. I'm going to divide it by one instead.");
put_get_error;
end

@ @<Additional cases of binary operators@>=
pythag_add,pythag_sub: if (cur_type=known)and(type(p)=known) then
    if c=pythag_add then cur_exp:=pyth_add(value(p),cur_exp)
    else cur_exp:=pyth_sub(value(p),cur_exp)
  else bad_binary(p,c);

@ The next few sections of the program deal with affine transformations
of coordinate data.

@<Additional cases of binary operators@>=
rotated_by,slanted_by,scaled_by,shifted_by,transformed_by,
 x_scaled,y_scaled,z_scaled: @t@>@;@/
  if (type(p)=path_type)or(type(p)=future_pen)or(type(p)=pen_type) then
    begin path_trans(p,c); return;
    end
  else if (type(p)=pair_type)or(type(p)=transform_type) then big_trans(p,c)
  else if type(p)=picture_type then
    begin edges_trans(p,c); return;
    end
  else bad_binary(p,c);

@ Let |c| be one of the eight transform operators. The procedure call
|set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
|c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
change at all if |c=transformed_by|.)

Then, if all components of the resulting transform are |known|, they are
moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
and |cur_exp| is changed to the known value zero.

@<Declare binary action...@>=
procedure set_up_trans(@!c:quarterword);
label done,exit;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin if (c<>transformed_by)or(cur_type<>transform_type) then
  @<Put the current transform into |cur_exp|@>;
@<If the current transform is entirely known, stash it in global variables;
  otherwise |return|@>;
exit:end;

@ @<Glob...@>=
@!txx,@!txy,@!tyx,@!tyy,@!tx,@!ty:scaled; {current transform coefficients}

@ @<Put the current transform...@>=
begin p:=stash_cur_exp; cur_exp:=id_transform; cur_type:=transform_type;
q:=value(cur_exp);
case c of
@<For each of the eight cases, change the relevant fields of |cur_exp|
  and |goto done|;
  but do nothing if capsule |p| doesn't have the appropriate type@>@;
end; {there are no other cases}
disp_err(p,"Improper transformation argument");
@.Improper transformation argument@>
help3("The expression shown above has the wrong type,")@/
  ("so I can't transform anything using it.")@/
  ("Proceed, and I'll omit the transformation.");
put_get_error;
done: recycle_value(p); free_node(p,value_node_size);
end

@ @<If the current transform is entirely known, ...@>=
q:=value(cur_exp); r:=q+transform_node_size;
repeat r:=r-2;
if type(r)<>known then return;
until r=q;
txx:=value(xx_part_loc(q));
txy:=value(xy_part_loc(q));
tyx:=value(yx_part_loc(q));
tyy:=value(yy_part_loc(q));
tx:=value(x_part_loc(q));
ty:=value(y_part_loc(q));
flush_cur_exp(0)

@ @<For each of the eight cases...@>=
rotated_by:if type(p)=known then
  @<Install sines and cosines, then |goto done|@>;
slanted_by:if type(p)>pair_type then
  begin install(xy_part_loc(q),p); goto done;
  end;
scaled_by:if type(p)>pair_type then
  begin install(xx_part_loc(q),p); install(yy_part_loc(q),p); goto done;
  end;
shifted_by:if type(p)=pair_type then
  begin r:=value(p); install(x_part_loc(q),x_part_loc(r));
  install(y_part_loc(q),y_part_loc(r)); goto done;
  end;
x_scaled:if type(p)>pair_type then
  begin install(xx_part_loc(q),p); goto done;
  end;
y_scaled:if type(p)>pair_type then
  begin install(yy_part_loc(q),p); goto done;
  end;
z_scaled:if type(p)=pair_type then
  @<Install a complex multiplier, then |goto done|@>;
transformed_by:do_nothing;

@ @<Install sines and cosines, then |goto done|@>=
begin n_sin_cos((value(p) mod three_sixty_units)*16);
value(xx_part_loc(q)):=round_fraction(n_cos);
value(yx_part_loc(q)):=round_fraction(n_sin);
value(xy_part_loc(q)):=-value(yx_part_loc(q));
value(yy_part_loc(q)):=value(xx_part_loc(q));
goto done;
end

@ @<Install a complex multiplier, then |goto done|@>=
begin r:=value(p);
install(xx_part_loc(q),x_part_loc(r));
install(yy_part_loc(q),x_part_loc(r));
install(yx_part_loc(q),y_part_loc(r));
if type(y_part_loc(r))=known then negate(value(y_part_loc(r)))
else negate_dep_list(dep_list(y_part_loc(r)));
install(xy_part_loc(q),y_part_loc(r));
goto done;
end

@ Procedure |set_up_known_trans| is like |set_up_trans|, but it
insists that the transformation be entirely known.

@<Declare binary action...@>=
procedure set_up_known_trans(@!c:quarterword);
begin set_up_trans(c);
if cur_type<>known then
  begin exp_err("Transform components aren't all known");
@.Transform components...@>
  help3("I'm unable to apply a partially specified transformation")@/
    ("except to a fully known pair or transform.")@/
    ("Proceed, and I'll omit the transformation.");
  put_get_flush_error(0);
  txx:=unity; txy:=0; tyx:=0; tyy:=unity; tx:=0; ty:=0;
  end;
end;

@ Here's a procedure that applies the transform |txx..ty| to a pair of
coordinates in locations |p| and~|q|.

@<Declare binary action...@>=
procedure trans(@!p,@!q:pointer);
var @!v:scaled; {the new |x| value}
begin v:=take_scaled(mem[p].sc,txx)+take_scaled(mem[q].sc,txy)+tx;
mem[q].sc:=take_scaled(mem[p].sc,tyx)+take_scaled(mem[q].sc,tyy)+ty;
mem[p].sc:=v;
end;

@ The simplest transformation procedure applies a transform to all
coordinates of a path. The |null_pen| remains unchanged if it isn't
being shifted.

@<Declare binary action...@>=
procedure path_trans(@!p:pointer;@!c:quarterword);
label exit;
var @!q:pointer; {list traverser}
begin set_up_known_trans(c); unstash_cur_exp(p);
if cur_type=pen_type then
  begin if max_offset(cur_exp)=0 then if tx=0 then if ty=0 then return;
  flush_cur_exp(make_path(cur_exp)); cur_type:=future_pen;
  end;
q:=cur_exp;
repeat if left_type(q)<>endpoint then
  trans(q+3,q+4); {that's |left_x| and |left_y|}
trans(q+1,q+2); {that's |x_coord| and |y_coord|}
if right_type(q)<>endpoint then
  trans(q+5,q+6); {that's |right_x| and |right_y|}
q:=link(q);
until q=cur_exp;
exit:end;

@ The next simplest transformation procedure applies to edges.
It is simple primarily because \MF\ doesn't allow very general
transformations to be made, and because the tricky subroutines
for edge transformation have already been written.

@<Declare binary action...@>=
procedure edges_trans(@!p:pointer;@!c:quarterword);
label exit;
begin set_up_known_trans(c); unstash_cur_exp(p); cur_edges:=cur_exp;
if empty_edges(cur_edges) then return; {the empty set is easy to transform}
if txx=0 then if tyy=0 then
 if txy mod unity=0 then if tyx mod unity=0 then
  begin xy_swap_edges; txx:=txy; tyy:=tyx; txy:=0; tyx:=0;
  if empty_edges(cur_edges) then return;
  end;
if txy=0 then if tyx=0 then
 if txx mod unity=0 then if tyy mod unity=0 then
  @<Scale the edges, shift them, and |return|@>;
print_err("That transformation is too hard");
@.That transformation...@>
help3("I can apply complicated transformations to paths,")@/
  ("but I can only do integer operations on pictures.")@/
  ("Proceed, and I'll omit the transformation.");
put_get_error;
exit:end;

@ @<Scale the edges, shift them, and |return|@>=
begin if (txx=0)or(tyy=0) then
  begin toss_edges(cur_edges);
  cur_exp:=get_node(edge_header_size); init_edges(cur_exp);
  end
else  begin if txx<0 then
    begin x_reflect_edges; txx:=-txx;
    end;
  if tyy<0 then
    begin y_reflect_edges; tyy:=-tyy;
    end;
  if txx<>unity then x_scale_edges(txx div unity);
  if tyy<>unity then y_scale_edges(tyy div unity);
  @<Shift the edges by |(tx,ty)|, rounded@>;
  end;
return;
end

@ @<Shift the edges...@>=
tx:=round_unscaled(tx); ty:=round_unscaled(ty);
if (m_min(cur_edges)+tx<=0)or(m_max(cur_edges)+tx>=8192)or@|
 (n_min(cur_edges)+ty<=0)or(n_max(cur_edges)+ty>=8191)or@|
 (abs(tx)>=4096)or(abs(ty)>=4096) then
  begin print_err("Too far to shift");
@.Too far to shift@>
  help3("I can't shift the picture as requested---it would")@/
    ("make some coordinates too large or too small.")@/
    ("Proceed, and I'll omit the transformation.");
  put_get_error;
  end
else  begin if tx<>0 then
    begin if not valid_range(m_offset(cur_edges)-tx) then fix_offset;
    m_min(cur_edges):=m_min(cur_edges)+tx;
    m_max(cur_edges):=m_max(cur_edges)+tx;
    m_offset(cur_edges):=m_offset(cur_edges)-tx;
    last_window_time(cur_edges):=0;
    end;
  if ty<>0 then
    begin n_min(cur_edges):=n_min(cur_edges)+ty;
    n_max(cur_edges):=n_max(cur_edges)+ty;
    n_pos(cur_edges):=n_pos(cur_edges)+ty;
    last_window_time(cur_edges):=0;
    end;
  end

@ The hard cases of transformation occur when big nodes are involved,
and when some of their components are unknown.

@<Declare binary action...@>=
@t\4@>@<Declare subroutines needed by |big_trans|@>@;
procedure big_trans(@!p:pointer;@!c:quarterword);
label exit;
var @!q,@!r,@!pp,@!qq:pointer; {list manipulation registers}
@!s:small_number; {size of a big node}
begin s:=big_node_size[type(p)]; q:=value(p); r:=q+s;
repeat r:=r-2;
if type(r)<>known then @<Transform an unknown big node and |return|@>;
until r=q;
@<Transform a known big node@>;
exit:end; {node |p| will now be recycled by |do_binary|}

@ @<Transform an unknown big node and |return|@>=
begin set_up_known_trans(c); make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
  begin bilin1(yy_part_loc(r),tyy,xy_part_loc(q),tyx,0);
  bilin1(yx_part_loc(r),tyy,xx_part_loc(q),tyx,0);
  bilin1(xy_part_loc(r),txx,yy_part_loc(q),txy,0);
  bilin1(xx_part_loc(r),txx,yx_part_loc(q),txy,0);
  end;
bilin1(y_part_loc(r),tyy,x_part_loc(q),tyx,ty);
bilin1(x_part_loc(r),txx,y_part_loc(q),txy,tx);
return;
end

@ Let |p| point to a two-word value field inside a big node of |cur_exp|,
and let |q| point to a another value field. The |bilin1| procedure
replaces |p| by $p\cdot t+q\cdot u+\delta$.

@<Declare subroutines needed by |big_trans|@>=
procedure bilin1(@!p:pointer;@!t:scaled;@!q:pointer;@!u,@!delta:scaled);
var @!r:pointer; {list traverser}
begin if t<>unity then dep_mult(p,t,true);
if u<>0 then
  if type(q)=known then delta:=delta+take_scaled(value(q),u)
  else  begin @<Ensure that |type(p)=proto_dependent|@>;
    dep_list(p):=p_plus_fq(dep_list(p),u,dep_list(q),proto_dependent,type(q));
    end;
if type(p)=known then value(p):=value(p)+delta
else  begin r:=dep_list(p);
  while info(r)<>null do r:=link(r);
  delta:=value(r)+delta;
  if r<>dep_list(p) then value(r):=delta
  else  begin recycle_value(p); type(p):=known; value(p):=delta;
    end;
  end;
if fix_needed then fix_dependencies;
end;

@ @<Ensure that |type(p)=proto_dependent|@>=
if type(p)<>proto_dependent then
  begin if type(p)=known then new_dep(p,const_dependency(value(p)))
  else dep_list(p):=p_times_v(dep_list(p),unity,dependent,proto_dependent,true);
  type(p):=proto_dependent;
  end

@ @<Transform a known big node@>=
set_up_trans(c);
if cur_type=known then @<Transform known by known@>
else  begin pp:=stash_cur_exp; qq:=value(pp);
  make_exp_copy(p); r:=value(cur_exp);
  if cur_type=transform_type then
    begin bilin2(yy_part_loc(r),yy_part_loc(qq),
      value(xy_part_loc(q)),yx_part_loc(qq),null);
    bilin2(yx_part_loc(r),yy_part_loc(qq),
      value(xx_part_loc(q)),yx_part_loc(qq),null);
    bilin2(xy_part_loc(r),xx_part_loc(qq),
      value(yy_part_loc(q)),xy_part_loc(qq),null);
    bilin2(xx_part_loc(r),xx_part_loc(qq),
      value(yx_part_loc(q)),xy_part_loc(qq),null);
    end;
  bilin2(y_part_loc(r),yy_part_loc(qq),
    value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
  bilin2(x_part_loc(r),xx_part_loc(qq),
    value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
  recycle_value(pp); free_node(pp,value_node_size);
  end;

@ Let |p| be a |proto_dependent| value whose dependency list ends
at |dep_final|. The following procedure adds |v| times another
numeric quantity to~|p|.

@<Declare subroutines needed by |big_trans|@>=
procedure add_mult_dep(@!p:pointer;@!v:scaled;@!r:pointer);
begin if type(r)=known then
  value(dep_final):=value(dep_final)+take_scaled(value(r),v)
else  begin dep_list(p):=
   p_plus_fq(dep_list(p),v,dep_list(r),proto_dependent,type(r));
  if fix_needed then fix_dependencies;
  end;
end;

@ The |bilin2| procedure is something like |bilin1|, but with known
and unknown quantities reversed. Parameter |p| points to a value field
within the big node for |cur_exp|; and |type(p)=known|. Parameters
|t| and~|u| point to value fields elsewhere; so does parameter~|q|,
unless it is |null| (which stands for zero). Location~|p| will be
replaced by $p\cdot t+v\cdot u+q$.

@<Declare subroutines needed by |big_trans|@>=
procedure bilin2(@!p,@!t:pointer;@!v:scaled;@!u,@!q:pointer);
var @!vv:scaled; {temporary storage for |value(p)|}
begin vv:=value(p); type(p):=proto_dependent;
new_dep(p,const_dependency(0)); {this sets |dep_final|}
if vv<>0 then add_mult_dep(p,vv,t); {|dep_final| doesn't change}
if v<>0 then add_mult_dep(p,v,u);
if q<>null then add_mult_dep(p,unity,q);
if dep_list(p)=dep_final then
  begin vv:=value(dep_final); recycle_value(p);
  type(p):=known; value(p):=vv;
  end;
end;

@ @<Transform known by known@>=
begin make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
  begin bilin3(yy_part_loc(r),tyy,value(xy_part_loc(q)),tyx,0);
  bilin3(yx_part_loc(r),tyy,value(xx_part_loc(q)),tyx,0);
  bilin3(xy_part_loc(r),txx,value(yy_part_loc(q)),txy,0);
  bilin3(xx_part_loc(r),txx,value(yx_part_loc(q)),txy,0);
  end;
bilin3(y_part_loc(r),tyy,value(x_part_loc(q)),tyx,ty);
bilin3(x_part_loc(r),txx,value(y_part_loc(q)),txy,tx);
end

@ Finally, in |bilin3| everything is |known|.

@<Declare subroutines needed by |big_trans|@>=
procedure bilin3(@!p:pointer;@!t,@!v,@!u,@!delta:scaled);
begin if t<>unity then delta:=delta+take_scaled(value(p),t)
else delta:=delta+value(p);
if u<>0 then value(p):=delta+take_scaled(v,u)
else value(p):=delta;
end;

@ @<Additional cases of binary operators@>=
concatenate: if (cur_type=string_type)and(type(p)=string_type) then cat(p)
  else bad_binary(p,concatenate);
substring_of: if nice_pair(p,type(p))and(cur_type=string_type) then
    chop_string(value(p))
  else bad_binary(p,substring_of);
subpath_of: begin if cur_type=pair_type then pair_to_path;
  if nice_pair(p,type(p))and(cur_type=path_type) then
    chop_path(value(p))
  else bad_binary(p,subpath_of);
  end;

@ @<Declare binary action...@>=
procedure cat(@!p:pointer);
var @!a,@!b:str_number; {the strings being concatenated}
@!k:pool_pointer; {index into |str_pool|}
begin a:=value(p); b:=cur_exp; str_room(length(a)+length(b));
for k:=str_start[a] to str_start[a+1]-1 do append_char(so(str_pool[k]));
for k:=str_start[b] to str_start[b+1]-1 do append_char(so(str_pool[k]));
cur_exp:=make_string; delete_str_ref(b);
end;

@ @<Declare binary action...@>=
procedure chop_string(@!p:pointer);
var @!a,@!b:integer; {start and stop points}
@!l:integer; {length of the original string}
@!k:integer; {runs from |a| to |b|}
@!s:str_number; {the original string}
@!reversed:boolean; {was |a>b|?}
begin a:=round_unscaled(value(x_part_loc(p)));
b:=round_unscaled(value(y_part_loc(p)));
if a<=b then reversed:=false
else  begin reversed:=true; k:=a; a:=b; b:=k;
  end;
s:=cur_exp; l:=length(s);
if a<0 then
  begin a:=0;
  if b<0 then b:=0;
  end;
if b>l then
  begin b:=l;
  if a>l then a:=l;
  end;
str_room(b-a);
if reversed then
  for k:=str_start[s]+b-1 downto str_start[s]+a do append_char(so(str_pool[k]))
else for k:=str_start[s]+a to str_start[s]+b-1 do append_char(so(str_pool[k]));
cur_exp:=make_string; delete_str_ref(s);
end;

@ @<Declare binary action...@>=
procedure chop_path(@!p:pointer);
var @!q:pointer; {a knot in the original path}
@!pp,@!qq,@!rr,@!ss:pointer; {link variables for copies of path nodes}
@!a,@!b,@!k,@!l:scaled; {indices for chopping}
@!reversed:boolean; {was |a>b|?}
begin l:=path_length; a:=value(x_part_loc(p)); b:=value(y_part_loc(p));
if a<=b then reversed:=false
else  begin reversed:=true; k:=a; a:=b; b:=k;
  end;
@<Dispense with the cases |a<0| and/or |b>l|@>;
q:=cur_exp;
while a>=unity do
  begin q:=link(q); a:=a-unity; b:=b-unity;
  end;
if b=a then @<Construct a path from |pp| to |qq| of length zero@>
else @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
left_type(pp):=endpoint; right_type(qq):=endpoint; link(qq):=pp;
toss_knot_list(cur_exp);
if reversed then
  begin cur_exp:=link(htap_ypoc(pp)); toss_knot_list(pp);
  end
else cur_exp:=pp;
end;

@ @<Dispense with the cases |a<0| and/or |b>l|@>=
if a<0 then
  if left_type(cur_exp)=endpoint then
    begin a:=0; if b<0 then b:=0;
    end
  else  repeat a:=a+l; b:=b+l;
    until a>=0; {a cycle always has length |l>0|}
if b>l then if left_type(cur_exp)=endpoint then
    begin b:=l; if a>l then a:=l;
    end
  else while a>=l do
    begin a:=a-l; b:=b-l;
    end

@ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
begin pp:=copy_knot(q); qq:=pp;
repeat q:=link(q); rr:=qq; qq:=copy_knot(q); link(rr):=qq; b:=b-unity;
until b<=0;
if a>0 then
  begin ss:=pp; pp:=link(pp);
  split_cubic(ss,a*@'10000,x_coord(pp),y_coord(pp)); pp:=link(ss);
  free_node(ss,knot_node_size);
  if rr=ss then
    begin b:=make_scaled(b,unity-a); rr:=pp;
    end;
  end;
if b<0 then
  begin split_cubic(rr,(b+unity)*@'10000,x_coord(qq),y_coord(qq));
  free_node(qq,knot_node_size);
  qq:=link(rr);
  end;
end

@ @<Construct a path from |pp| to |qq| of length zero@>=
begin if a>0 then
  begin qq:=link(q);
  split_cubic(q,a*@'10000,x_coord(qq),y_coord(qq)); q:=link(q);
  end;
pp:=copy_knot(q); qq:=pp;
end

@ The |pair_value| routine changes the current expression to a
given ordered pair of values.

@<Declare binary action...@>=
procedure pair_value(@!x,@!y:scaled);
var @!p:pointer; {a pair node}
begin p:=get_node(value_node_size); flush_cur_exp(p); cur_type:=pair_type;
type(p):=pair_type; name_type(p):=capsule; init_big_node(p);
p:=value(p);@/
type(x_part_loc(p)):=known; value(x_part_loc(p)):=x;@/
type(y_part_loc(p)):=known; value(y_part_loc(p)):=y;@/
end;

@ @<Additional cases of binary operators@>=
point_of,precontrol_of,postcontrol_of: begin if cur_type=pair_type then
     pair_to_path;
  if (cur_type=path_type)and(type(p)=known) then
    find_point(value(p),c)
  else bad_binary(p,c);
  end;
pen_offset_of: begin if cur_type=future_pen then materialize_pen;
  if (cur_type=pen_type)and nice_pair(p,type(p)) then
    set_up_offset(value(p))
  else bad_binary(p,pen_offset_of);
  end;
direction_time_of: begin if cur_type=pair_type then pair_to_path;
  if (cur_type=path_type)and nice_pair(p,type(p)) then
    set_up_direction_time(value(p))
  else bad_binary(p,direction_time_of);
  end;

@ @<Declare binary action...@>=
procedure set_up_offset(@!p:pointer);
begin find_offset(value(x_part_loc(p)),value(y_part_loc(p)),cur_exp);
pair_value(cur_x,cur_y);
end;
@#
procedure set_up_direction_time(@!p:pointer);
begin flush_cur_exp(find_direction_time(value(x_part_loc(p)),
  value(y_part_loc(p)),cur_exp));
end;

@ @<Declare binary action...@>=
procedure find_point(@!v:scaled;@!c:quarterword);
var @!p:pointer; {the path}
@!n:scaled; {its length}
@!q:pointer; {successor of |p|}
begin p:=cur_exp;@/
if left_type(p)=endpoint then n:=-unity@+else n:=0;
repeat p:=link(p); n:=n+unity;
until p=cur_exp;
if n=0 then v:=0
else if v<0 then
  if left_type(p)=endpoint then v:=0
  else v:=n-1-((-v-1) mod n)
else if v>n then
  if left_type(p)=endpoint then v:=n
  else v:=v mod n;
p:=cur_exp;
while v>=unity do
  begin p:=link(p); v:=v-unity;
  end;
if v<>0 then @<Insert a fractional node by splitting the cubic@>;
@<Set the current expression to the desired path coordinates@>;
end;

@ @<Insert a fractional node...@>=
begin q:=link(p); split_cubic(p,v*@'10000,x_coord(q),y_coord(q)); p:=link(p);
end

@ @<Set the current expression to the desired path coordinates...@>=
case c of
point_of: pair_value(x_coord(p),y_coord(p));
precontrol_of: if left_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
  else pair_value(left_x(p),left_y(p));
postcontrol_of: if right_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
  else pair_value(right_x(p),right_y(p));
end {there are no other cases}

@ @<Additional cases of bin...@>=
intersect: begin if type(p)=pair_type then
    begin q:=stash_cur_exp; unstash_cur_exp(p);
    pair_to_path; p:=stash_cur_exp; unstash_cur_exp(q);
    end;
  if cur_type=pair_type then pair_to_path;
  if (cur_type=path_type)and(type(p)=path_type) then
    begin path_intersection(value(p),cur_exp);
    pair_value(cur_t,cur_tt);
    end
  else bad_binary(p,intersect);
  end;

@* \[43] Statements and commands.
The chief executive of \MF\ is the |do_statement| routine, which
contains the master switch that causes all the various pieces of \MF\
to do their things, in the right order.

In a sense, this is the grand climax of the program: It applies all the
tools that we have worked so hard to construct. In another sense, this is
the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can't fully understand what is
going on without paging back and forth to be reminded of conventions that
are defined elsewhere. We are now at the hub of the web.

The structure of |do_statement| itself is quite simple.  The first token
of the statement is fetched using |get_x_next|.  If it can be the first
token of an expression, we look for an equation, an assignment, or a
title. Otherwise we use a \&{case} construction to branch at high speed to
the appropriate routine for various and sundry other types of commands,
each of which has an ``action procedure'' that does the necessary work.

The program uses the fact that
$$\hbox{|min_primary_command=max_statement_command=type_name|}$$
to interpret a statement that starts with, e.g., `\&{string}',
as a type declaration rather than a boolean expression.

@p @t\4@>@<Declare generic font output procedures@>@;
@t\4@>@<Declare action procedures for use by |do_statement|@>@;
procedure do_statement; {governs \MF's activities}
begin cur_type:=vacuous; get_x_next;
if cur_cmd>max_primary_command then @<Worry about bad statement@>
else if cur_cmd>max_statement_command then
  @<Do an equation, assignment, title, or
   `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>
else @<Do a statement that doesn't begin with an expression@>;
if cur_cmd<semicolon then
  @<Flush unparsable junk that was found after the statement@>;
error_count:=0;
end;

@ The only command codes |>max_primary_command| that can be present
at the beginning of a statement are |semicolon| and higher; these
occur when the statement is null.

@<Worry about bad statement@>=
begin if cur_cmd<semicolon then
  begin print_err("A statement can't begin with `");
@.A statement can't begin with x@>
  print_cmd_mod(cur_cmd,cur_mod); print_char("'");
  help5("I was looking for the beginning of a new statement.")@/
    ("If you just proceed without changing anything, I'll ignore")@/
    ("everything up to the next `;'. Please insert a semicolon")@/
    ("now in front of anything that you don't want me to delete.")@/
    ("(See Chapter 27 of The METAFONTbook for an example.)");@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
  back_error; get_x_next;
  end;
end

@ The help message printed here says that everything is flushed up to
a semicolon, but actually the commands |end_group| and |stop| will
also terminate a statement.

@<Flush unparsable junk that was found after the statement@>=
begin print_err("Extra tokens will be flushed");
@.Extra tokens will be flushed@>
help6("I've just read as much of that statement as I could fathom,")@/
("so a semicolon should have been next. It's very puzzling...")@/
("but I'll try to get myself back together, by ignoring")@/
("everything up to the next `;'. Please insert a semicolon")@/
("now in front of anything that you don't want me to delete.")@/
("(See Chapter 27 of The METAFONTbook for an example.)");@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_error; scanner_status:=flushing;
repeat get_next;
@<Decrease the string reference count...@>;
until end_of_statement; {|cur_cmd=semicolon|, |end_group|, or |stop|}
scanner_status:=normal;
end

@ If |do_statement| ends with |cur_cmd=end_group|, we should have
|cur_type=vacuous| unless the statement was simply an expression;
in the latter case, |cur_type| and |cur_exp| should represent that
expression.

@<Do a statement that doesn't...@>=
begin if internal[tracing_commands]>0 then show_cur_cmd_mod;
case cur_cmd of
type_name:do_type_declaration;
macro_def:if cur_mod>var_def then make_op_def
  else if cur_mod>end_def then scan_def;
@t\4@>@<Cases of |do_statement| that invoke particular commands@>@;
end; {there are no other cases}
cur_type:=vacuous;
end

@ The most important statements begin with expressions.

@<Do an equation, assignment, title, or...@>=
begin var_flag:=assignment; scan_expression;
if cur_cmd<end_group then
  begin if cur_cmd=equals then do_equation
  else if cur_cmd=assignment then do_assignment
  else if cur_type=string_type then @<Do a title@>
  else if cur_type<>vacuous then
    begin exp_err("Isolated expression");
@.Isolated expression@>
    help3("I couldn't find an `=' or `:=' after the")@/
      ("expression that is shown above this error message,")@/
      ("so I guess I'll just ignore it and carry on.");
    put_get_error;
    end;
  flush_cur_exp(0); cur_type:=vacuous;
  end;
end

@ @<Do a title@>=
begin if internal[tracing_titles]>0 then
  begin print_nl(""); slow_print(cur_exp); update_terminal;
  end;
if internal[proofing]>0 then
  @<Send the current expression as a title to the output file@>;
end

@ Equations and assignments are performed by the pair of mutually recursive
@^recursion@>
routines |do_equation| and |do_assignment|. These routines are called when
|cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
side is in |cur_type| and |cur_exp|, while the right-hand side is yet
to be scanned. After the routines are finished, |cur_type| and |cur_exp|
will be equal to the right-hand side (which will normally be equal
to the left-hand side).

@<Declare action procedures for use by |do_statement|@>=
@t\4@>@<Declare the procedure called |try_eq|@>@;
@t\4@>@<Declare the procedure called |make_eq|@>@;
procedure@?do_assignment; forward;@t\2@>@/
procedure do_equation;
var @!lhs:pointer; {capsule for the left-hand side}
@!p:pointer; {temporary register}
begin lhs:=stash_cur_exp; get_x_next; var_flag:=assignment; scan_expression;
if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment;
if internal[tracing_commands]>two then @<Trace the current equation@>;
if cur_type=unknown_path then if type(lhs)=pair_type then
  begin p:=stash_cur_exp; unstash_cur_exp(lhs); lhs:=p;
  end; {in this case |make_eq| will change the pair to a path}
make_eq(lhs); {equate |lhs| to |(cur_type,cur_exp)|}
end;

@ And |do_assignment| is similar to |do_expression|:

@<Declare action procedures for use by |do_statement|@>=
procedure do_assignment;
var @!lhs:pointer; {token list for the left-hand side}
@!p:pointer; {where the left-hand value is stored}
@!q:pointer; {temporary capsule for the right-hand value}
begin if cur_type<>token_list then
  begin exp_err("Improper `:=' will be changed to `='");
@.Improper `:='@>
  help2("I didn't find a variable name at the left of the `:=',")@/
    ("so I'm going to pretend that you said `=' instead.");@/
  error; do_equation;
  end
else  begin lhs:=cur_exp; cur_type:=vacuous;@/
  get_x_next; var_flag:=assignment; scan_expression;
  if cur_cmd=equals then do_equation
  else if cur_cmd=assignment then do_assignment;
  if internal[tracing_commands]>two then @<Trace the current assignment@>;
  if info(lhs)>hash_end then
    @<Assign the current expression to an internal variable@>
  else @<Assign the current expression to the variable |lhs|@>;
  flush_node_list(lhs);
  end;
end;

@ @<Trace the current equation@>=
begin begin_diagnostic; print_nl("{("); print_exp(lhs,0);
print(")=("); print_exp(null,0); print(")}"); end_diagnostic(false);
end

@ @<Trace the current assignment@>=
begin begin_diagnostic; print_nl("{");
if info(lhs)>hash_end then slow_print(int_name[info(lhs)-(hash_end)])
else show_token_list(lhs,null,1000,0);
print(":="); print_exp(null,0); print_char("}"); end_diagnostic(false);
end

@ @<Assign the current expression to an internal variable@>=
if cur_type=known then internal[info(lhs)-(hash_end)]:=cur_exp
else  begin exp_err("Internal quantity `");
@.Internal quantity...@>
  slow_print(int_name[info(lhs)-(hash_end)]);
  print("' must receive a known value");
  help2("I can't set an internal quantity to anything but a known")@/
    ("numeric value, so I'll have to ignore this assignment.");
  put_get_error;
  end

@ @<Assign the current expression to the variable |lhs|@>=
begin p:=find_variable(lhs);
if p<>null then
  begin q:=stash_cur_exp; cur_type:=und_type(p); recycle_value(p);
  type(p):=cur_type; value(p):=null; make_exp_copy(p);
  p:=stash_cur_exp; unstash_cur_exp(q); make_eq(p);
  end
else  begin obliterated(lhs); put_get_error;
  end;
end


@ And now we get to the nitty-gritty. The |make_eq| procedure is given
a pointer to a capsule that is to be equated to the current expression.

@<Declare the procedure called |make_eq|@>=
procedure make_eq(@!lhs:pointer);
label restart,done, not_found;
var @!t:small_number; {type of the left-hand side}
@!v:integer; {value of the left-hand side}
@!p,@!q:pointer; {pointers inside of big nodes}
begin restart: t:=type(lhs);
if t<=pair_type then v:=value(lhs);
case t of
@t\4@>@<For each type |t|, make an equation and |goto done| unless |cur_type|
  is incompatible with~|t|@>@;
end; {all cases have been listed}
@<Announce that the equation cannot be performed@>;
done:check_arith; recycle_value(lhs); free_node(lhs,value_node_size);
end;

@ @<Announce that the equation cannot be performed@>=
disp_err(lhs,""); exp_err("Equation cannot be performed (");
@.Equation cannot be performed@>
if type(lhs)<=pair_type then print_type(type(lhs))@+else print("numeric");
print_char("=");
if cur_type<=pair_type then print_type(cur_type)@+else print("numeric");
print_char(")");@/
help2("I'm sorry, but I don't know how to make such things equal.")@/
  ("(See the two expressions just above the error message.)");
put_get_error

@ @<For each type |t|, make an equation and |goto done| unless...@>=
boolean_type,string_type,pen_type,path_type,picture_type:
  if cur_type=t+unknown_tag then
    begin nonlinear_eq(v,cur_exp,false); goto done;
    end
  else if cur_type=t then
    @<Report redundant or inconsistent equation and |goto done|@>;
unknown_types:if cur_type=t-unknown_tag then
    begin nonlinear_eq(cur_exp,lhs,true); goto done;
    end
  else if cur_type=t then
    begin ring_merge(lhs,cur_exp); goto done;
    end
  else if cur_type=pair_type then if t=unknown_path then
    begin pair_to_path; goto restart;
    end;
transform_type,pair_type:if cur_type=t then
    @<Do multiple equations and |goto done|@>;
known,dependent,proto_dependent,independent:if cur_type>=known then
    begin try_eq(lhs,null); goto done;
    end;
vacuous:do_nothing;

@ @<Report redundant or inconsistent equation and |goto done|@>=
begin if cur_type<=string_type then
  begin if cur_type=string_type then
    begin if str_vs_str(v,cur_exp)<>0 then goto not_found;
    end
  else if v<>cur_exp then goto not_found;
  @<Exclaim about a redundant equation@>; goto done;
  end;
print_err("Redundant or inconsistent equation");
@.Redundant or inconsistent equation@>
help2("An equation between already-known quantities can't help.")@/
  ("But don't worry; continue and I'll just ignore it.");
put_get_error; goto done;
not_found: print_err("Inconsistent equation");
@.Inconsistent equation@>
help2("The equation I just read contradicts what was said before.")@/
  ("But don't worry; continue and I'll just ignore it.");
put_get_error; goto done;
end

@ @<Do multiple equations and |goto done|@>=
begin p:=v+big_node_size[t]; q:=value(cur_exp)+big_node_size[t];
repeat p:=p-2; q:=q-2; try_eq(p,q);
until p=v;
goto done;
end

@ The first argument to |try_eq| is the location of a value node
in a capsule that will soon be recycled. The second argument is
either a location within a pair or transform node pointed to by
|cur_exp|, or it is |null| (which means that |cur_exp| itself
serves as the second argument). The idea is to leave |cur_exp| unchanged,
but to equate the two operands.

@<Declare the procedure called |try_eq|@>=
procedure try_eq(@!l,@!r:pointer);
label done,done1;
var @!p:pointer; {dependency list for right operand minus left operand}
@!t:known..independent; {the type of list |p|}
@!q:pointer; {the constant term of |p| is here}
@!pp:pointer; {dependency list for right operand}
@!tt:dependent..independent; {the type of list |pp|}
@!copied:boolean; {have we copied a list that ought to be recycled?}
begin @<Remove the left operand from its container, negate it, and
  put it into dependency list~|p| with constant term~|q|@>;
@<Add the right operand to list |p|@>;
if info(p)=null then @<Deal with redundant or inconsistent equation@>
else  begin linear_eq(p,t);
  if r=null then if cur_type<>known then if type(cur_exp)=known then
    begin pp:=cur_exp; cur_exp:=value(cur_exp); cur_type:=known;
    free_node(pp,value_node_size);
    end;
  end;
end;

@ @<Remove the left operand from its container, negate it, and...@>=
t:=type(l);
if t=known then
  begin t:=dependent; p:=const_dependency(-value(l)); q:=p;
  end
else if t=independent then
  begin t:=dependent; p:=single_dependency(l); negate(value(p));
  q:=dep_final;
  end
else  begin p:=dep_list(l); q:=p;
  loop@+  begin negate(value(q));
    if info(q)=null then goto done;
    q:=link(q);
    end;
 done:  link(prev_dep(l)):=link(q); prev_dep(link(q)):=prev_dep(l);
  type(l):=known;
  end

@ @<Deal with redundant or inconsistent equation@>=
begin if abs(value(p))>64 then {off by .001 or more}
  begin print_err("Inconsistent equation");@/
@.Inconsistent equation@>
  print(" (off by "); print_scaled(value(p)); print_char(")");
  help2("The equation I just read contradicts what was said before.")@/
    ("But don't worry; continue and I'll just ignore it.");
  put_get_error;
  end
else if r=null then @<Exclaim about a redundant equation@>;
free_node(p,dep_node_size);
end

@ @<Add the right operand to list |p|@>=
if r=null then
  if cur_type=known then
    begin value(q):=value(q)+cur_exp; goto done1;
    end
  else  begin tt:=cur_type;
    if tt=independent then pp:=single_dependency(cur_exp)
    else pp:=dep_list(cur_exp);
    end
else  if type(r)=known then
    begin value(q):=value(q)+value(r); goto done1;
    end
  else  begin tt:=type(r);
    if tt=independent then pp:=single_dependency(r)
    else pp:=dep_list(r);
    end;
if tt<>independent then copied:=false
else  begin copied:=true; tt:=dependent;
  end;
@<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
if copied then flush_node_list(pp);
done1:

@ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
watch_coefs:=false;
if t=tt then p:=p_plus_q(p,pp,t)
else if t=proto_dependent then
  p:=p_plus_fq(p,unity,pp,proto_dependent,dependent)
else  begin q:=p;
  while info(q)<>null do
    begin value(q):=round_fraction(value(q)); q:=link(q);
    end;
  t:=proto_dependent; p:=p_plus_q(p,pp,t);
  end;
watch_coefs:=true;

@ Our next goal is to process type declarations. For this purpose it's
convenient to have a procedure that scans a $\langle\,$declared
variable$\,\rangle$ and returns the corresponding token list. After the
following procedure has acted, the token after the declared variable
will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
and~|cur_sym|.

@<Declare the function called |scan_declared_variable|@>=
function scan_declared_variable:pointer;
label done;
var @!x:pointer; {hash address of the variable's root}
@!h,@!t:pointer; {head and tail of the token list to be returned}
@!l:pointer; {hash address of left bracket}
begin get_symbol; x:=cur_sym;
if cur_cmd<>tag_token then clear_symbol(x,false);
h:=get_avail; info(h):=x; t:=h;@/
loop@+  begin get_x_next;
  if cur_sym=0 then goto done;
  if cur_cmd<>tag_token then if cur_cmd<>internal_quantity then
    if cur_cmd=left_bracket then @<Descend past a collective subscript@>
    else goto done;
  link(t):=get_avail; t:=link(t); info(t):=cur_sym;
  end;
done: if eq_type(x)<>tag_token then clear_symbol(x,false);
if equiv(x)=null then new_root(x);
scan_declared_variable:=h;
end;

@ If the subscript isn't collective, we don't accept it as part of the
declared variable.

@<Descend past a collective subscript@>=
begin l:=cur_sym; get_x_next;
if cur_cmd<>right_bracket then
  begin back_input; cur_sym:=l; cur_cmd:=left_bracket; goto done;
  end
else cur_sym:=collective_subscript;
end

@ Type declarations are introduced by the following primitive operations.

@<Put each...@>=
primitive("numeric",type_name,numeric_type);@/
@!@:numeric_}{\&{numeric} primitive@>
primitive("string",type_name,string_type);@/
@!@:string_}{\&{string} primitive@>
primitive("boolean",type_name,boolean_type);@/
@!@:boolean_}{\&{boolean} primitive@>
primitive("path",type_name,path_type);@/
@!@:path_}{\&{path} primitive@>
primitive("pen",type_name,pen_type);@/
@!@:pen_}{\&{pen} primitive@>
primitive("picture",type_name,picture_type);@/
@!@:picture_}{\&{picture} primitive@>
primitive("transform",type_name,transform_type);@/
@!@:transform_}{\&{transform} primitive@>
primitive("pair",type_name,pair_type);@/
@!@:pair_}{\&{pair} primitive@>

@ @<Cases of |print_cmd...@>=
type_name: print_type(m);

@ Now we are ready to handle type declarations, assuming that a
|type_name| has just been scanned.

@<Declare action procedures for use by |do_statement|@>=
procedure do_type_declaration;
var @!t:small_number; {the type being declared}
@!p:pointer; {token list for a declared variable}
@!q:pointer; {value node for the variable}
begin if cur_mod>=transform_type then t:=cur_mod@+else t:=cur_mod+unknown_tag;
repeat p:=scan_declared_variable;
flush_variable(equiv(info(p)),link(p),false);@/
q:=find_variable(p);
if q<>null then
  begin type(q):=t; value(q):=null;
  end
else  begin print_err("Declared variable conflicts with previous vardef");
@.Declared variable conflicts...@>
  help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")@/
    ("Proceed, and I'll ignore the illegal redeclaration.");
  put_get_error;
  end;
flush_list(p);
if cur_cmd<comma then @<Flush spurious symbols after the declared variable@>;
until end_of_statement;
end;

@ @<Flush spurious symbols after the declared variable@>=
begin print_err("Illegal suffix of declared variable will be flushed");
@.Illegal suffix...flushed@>
help5("Variables in declarations must consist entirely of")@/
  ("names and collective subscripts, e.g., `x[]a'.")@/
  ("Are you trying to use a reserved word in a variable name?")@/
  ("I'm going to discard the junk I found here,")@/
  ("up to the next comma or the end of the declaration.");
if cur_cmd=numeric_token then
  help_line[2]:="Explicit subscripts like `x15a' aren't permitted.";
put_get_error; scanner_status:=flushing;
repeat get_next;
@<Decrease the string reference count...@>;
until cur_cmd>=comma; {either |end_of_statement| or |cur_cmd=comma|}
scanner_status:=normal;
end

@ \MF's |main_control| procedure just calls |do_statement| repeatedly
until coming to the end of the user's program.
Each execution of |do_statement| concludes with
|cur_cmd=semicolon|, |end_group|, or |stop|.

@p procedure main_control;
begin repeat do_statement;
if cur_cmd=end_group then
  begin print_err("Extra `endgroup'");
@.Extra `endgroup'@>
  help2("I'm not currently working on a `begingroup',")@/
    ("so I had better not try to end anything.");
  flush_error(0);
  end;
until cur_cmd=stop;
end;

@ @<Put each...@>=
primitive("end",stop,0);@/
@!@:end_}{\&{end} primitive@>
primitive("dump",stop,1);@/
@!@:dump_}{\&{dump} primitive@>

@ @<Cases of |print_cmd...@>=
stop:if m=0 then print("end")@+else print("dump");

@* \[44] Commands.
Let's turn now to statements that are classified as ``commands'' because
of their imperative nature. We'll begin with simple ones, so that it
will be clear how to hook command processing into the |do_statement| routine;
then we'll tackle the tougher commands.

Here's one of the simplest:

@<Cases of |do_statement|...@>=
random_seed: do_random_seed;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_random_seed;
begin get_x_next;
if cur_cmd<>assignment then
  begin missing_err(":=");
@.Missing `:='@>
  help1("Always say `randomseed:=<numeric expression>'.");
  back_error;
  end;
get_x_next; scan_expression;
if cur_type<>known then
  begin exp_err("Unknown value will be ignored");
@.Unknown value...ignored@>
  help2("Your expression was too random for me to handle,")@/
    ("so I won't change the random seed just now.");@/
  put_get_flush_error(0);
  end
else @<Initialize the random seed to |cur_exp|@>;
end;

@ @<Initialize the random seed to |cur_exp|@>=
begin init_randoms(cur_exp);
if selector>=log_only then
  begin old_setting:=selector; selector:=log_only;
  print_nl("{randomseed:="); print_scaled(cur_exp); print_char("}");
  print_nl(""); selector:=old_setting;
  end;
end

@ And here's another simple one (somewhat different in flavor):

@<Cases of |do_statement|...@>=
mode_command: begin print_ln; interaction:=cur_mod;
  @<Initialize the print |selector| based on |interaction|@>;
  if log_opened then selector:=selector+2;
  get_x_next;
  end;

@ @<Put each...@>=
primitive("batchmode",mode_command,batch_mode);
@!@:batch_mode_}{\&{batchmode} primitive@>
primitive("nonstopmode",mode_command,nonstop_mode);
@!@:nonstop_mode_}{\&{nonstopmode} primitive@>
primitive("scrollmode",mode_command,scroll_mode);
@!@:scroll_mode_}{\&{scrollmode} primitive@>
primitive("errorstopmode",mode_command,error_stop_mode);
@!@:error_stop_mode_}{\&{errorstopmode} primitive@>

@ @<Cases of |print_cmd_mod|...@>=
mode_command: case m of
  batch_mode: print("batchmode");
  nonstop_mode: print("nonstopmode");
  scroll_mode: print("scrollmode");
  othercases print("errorstopmode")
  endcases;

@ The `\&{inner}' and `\&{outer}' commands are only slightly harder.

@<Cases of |do_statement|...@>=
protection_command: do_protection;

@ @<Put each...@>=
primitive("inner",protection_command,0);@/
@!@:inner_}{\&{inner} primitive@>
primitive("outer",protection_command,1);@/
@!@:outer_}{\&{outer} primitive@>

@ @<Cases of |print_cmd...@>=
protection_command: if m=0 then print("inner")@+else print("outer");

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_protection;
var @!m:0..1; {0 to unprotect, 1 to protect}
@!t:halfword; {the |eq_type| before we change it}
begin m:=cur_mod;
repeat get_symbol; t:=eq_type(cur_sym);
  if m=0 then
    begin if t>=outer_tag then eq_type(cur_sym):=t-outer_tag;
    end
  else if t<outer_tag then eq_type(cur_sym):=t+outer_tag;
  get_x_next;
until cur_cmd<>comma;
end;

@ \MF\ never defines the tokens `\.(' and `\.)' to be primitives, but
plain \MF\ begins with the declaration `\&{delimiters} \.{()}'. Such a
declaration assigns the command code |left_delimiter| to `\.{(}' and
|right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
hash address of its mate.

@<Cases of |do_statement|...@>=
delimiters: def_delims;

@ @<Declare action procedures for use by |do_statement|@>=
procedure def_delims;
var l_delim,r_delim:pointer; {the new delimiter pair}
begin get_clear_symbol; l_delim:=cur_sym;@/
get_clear_symbol; r_delim:=cur_sym;@/
eq_type(l_delim):=left_delimiter; equiv(l_delim):=r_delim;@/
eq_type(r_delim):=right_delimiter; equiv(r_delim):=l_delim;@/
get_x_next;
end;

@ Here is a procedure that is called when \MF\ has reached a point
where some right delimiter is mandatory.

@<Declare the procedure called |check_delimiter|@>=
procedure check_delimiter(@!l_delim,@!r_delim:pointer);
label exit;
begin if cur_cmd=right_delimiter then if cur_mod=l_delim then return;
if cur_sym<>r_delim then
  begin  missing_err(text(r_delim));@/
@.Missing `)'@>
  help2("I found no right delimiter to match a left one. So I've")@/
    ("put one in, behind the scenes; this may fix the problem.");
  back_error;
  end
else  begin print_err("The token `"); slow_print(text(r_delim));
@.The token...delimiter@>
  print("' is no longer a right delimiter");
  help3("Strange: This token has lost its former meaning!")@/
    ("I'll read it as a right delimiter this time;")@/
    ("but watch out, I'll probably miss it later.");
  error;
  end;
exit:end;

@ The next four commands save or change the values associated with tokens.

@<Cases of |do_statement|...@>=
save_command: repeat get_symbol; save_variable(cur_sym); get_x_next;
  until cur_cmd<>comma;
interim_command: do_interim;
let_command: do_let;
new_internal: do_new_internal;

@ @<Declare action procedures for use by |do_statement|@>=
procedure@?do_statement; forward;@t\2@>@/
procedure do_interim;
begin get_x_next;
if cur_cmd<>internal_quantity then
  begin print_err("The token `");
@.The token...quantity@>
  if cur_sym=0 then print("(%CAPSULE)")
  else slow_print(text(cur_sym));
  print("' isn't an internal quantity");
  help1("Something like `tracingonline' should follow `interim'.");
  back_error;
  end
else  begin save_internal(cur_mod); back_input;
  end;
do_statement;
end;

@ The following procedure is careful not to undefine the left-hand symbol
too soon, lest commands like `{\tt let x=x}' have a surprising effect.

@<Declare action procedures for use by |do_statement|@>=
procedure do_let;
var @!l:pointer; {hash location of the left-hand symbol}
begin get_symbol; l:=cur_sym; get_x_next;
if cur_cmd<>equals then if cur_cmd<>assignment then
  begin missing_err("=");
@.Missing `='@>
  help3("You should have said `let symbol = something'.")@/
    ("But don't worry; I'll pretend that an equals sign")@/
    ("was present. The next token I read will be `something'.");
  back_error;
  end;
get_symbol;
case cur_cmd of
defined_macro,secondary_primary_macro,tertiary_secondary_macro,
 expression_tertiary_macro: add_mac_ref(cur_mod);
othercases do_nothing
endcases;@/
clear_symbol(l,false); eq_type(l):=cur_cmd;
if cur_cmd=tag_token then equiv(l):=null
else equiv(l):=cur_mod;
get_x_next;
end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_new_internal;
begin repeat if int_ptr=max_internal then
  overflow("number of internals",max_internal);
@:METAFONT capacity exceeded number of int}{\quad number of internals@>
get_clear_symbol; incr(int_ptr);
eq_type(cur_sym):=internal_quantity; equiv(cur_sym):=int_ptr;
int_name[int_ptr]:=text(cur_sym); internal[int_ptr]:=0;
get_x_next;
until cur_cmd<>comma;
end;

@ The various `\&{show}' commands are distinguished by modifier fields
in the usual way.

@d show_token_code=0 {show the meaning of a single token}
@d show_stats_code=1 {show current memory and string usage}
@d show_code=2 {show a list of expressions}
@d show_var_code=3 {show a variable and its descendents}
@d show_dependencies_code=4 {show dependent variables in terms of independents}

@<Put each...@>=
primitive("showtoken",show_command,show_token_code);@/
@!@:show_token_}{\&{showtoken} primitive@>
primitive("showstats",show_command,show_stats_code);@/
@!@:show_stats_}{\&{showstats} primitive@>
primitive("show",show_command,show_code);@/
@!@:show_}{\&{show} primitive@>
primitive("showvariable",show_command,show_var_code);@/
@!@:show_var_}{\&{showvariable} primitive@>
primitive("showdependencies",show_command,show_dependencies_code);@/
@!@:show_dependencies_}{\&{showdependencies} primitive@>

@ @<Cases of |print_cmd...@>=
show_command: case m of
  show_token_code:print("showtoken");
  show_stats_code:print("showstats");
  show_code:print("show");
  show_var_code:print("showvariable");
  othercases print("showdependencies")
  endcases;

@ @<Cases of |do_statement|...@>=
show_command:do_show_whatever;

@ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
if it's |show_code|, complicated structures are abbreviated, otherwise
they aren't.

@<Declare action procedures for use by |do_statement|@>=
procedure do_show;
begin repeat get_x_next; scan_expression;
print_nl(">> ");
@.>>@>
print_exp(null,2); flush_cur_exp(0);
until cur_cmd<>comma;
end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure disp_token;
begin print_nl("> ");
@.>\relax@>
if cur_sym=0 then @<Show a numeric or string or capsule token@>
else  begin slow_print(text(cur_sym)); print_char("=");
  if eq_type(cur_sym)>=outer_tag then print("(outer) ");
  print_cmd_mod(cur_cmd,cur_mod);
  if cur_cmd=defined_macro then
    begin print_ln; show_macro(cur_mod,null,100000);
    end; {this avoids recursion between |show_macro| and |print_cmd_mod|}
@^recursion@>
  end;
end;

@ @<Show a numeric or string or capsule token@>=
begin if cur_cmd=numeric_token then print_scaled(cur_mod)
else if cur_cmd=capsule_token then
  begin g_pointer:=cur_mod; print_capsule;
  end
else  begin print_char(""""); slow_print(cur_mod); print_char("""");
  delete_str_ref(cur_mod);
  end;
end

@ The following cases of |print_cmd_mod| might arise in connection
with |disp_token|, although they don't correspond to any
primitive tokens.

@<Cases of |print_cmd_...@>=
left_delimiter,right_delimiter: begin if c=left_delimiter then print("lef")
  else print("righ");
  print("t delimiter that matches "); slow_print(text(m));
  end;
tag_token:if m=null then print("tag")@+else print("variable");
defined_macro: print("macro:");
secondary_primary_macro,tertiary_secondary_macro,expression_tertiary_macro:
  begin print_cmd_mod(macro_def,c); print("'d macro:");
  print_ln; show_token_list(link(link(m)),null,1000,0);
  end;
repeat_loop:print("[repeat the loop]");
internal_quantity:slow_print(int_name[m]);

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_token;
begin repeat get_next; disp_token;
get_x_next;
until cur_cmd<>comma;
end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_stats;
begin print_nl("Memory usage ");
@.Memory usage...@>
@!stat print_int(var_used); print_char("&"); print_int(dyn_used);
if false then@+tats@t@>@;@/
print("unknown");
print(" ("); print_int(hi_mem_min-lo_mem_max-1);
print(" still untouched)"); print_ln;
print_nl("String usage ");
print_int(str_ptr-init_str_ptr); print_char("&");
print_int(pool_ptr-init_pool_ptr);
print(" (");
print_int(max_strings-max_str_ptr); print_char("&");
print_int(pool_size-max_pool_ptr); print(" still untouched)"); print_ln;
get_x_next;
end;

@ Here's a recursive procedure that gives an abbreviated account
of a variable, for use by |do_show_var|.

@<Declare action procedures for use by |do_statement|@>=
procedure disp_var(@!p:pointer);
var @!q:pointer; {traverses attributes and subscripts}
@!n:0..max_print_line; {amount of macro text to show}
begin if type(p)=structured then @<Descend the structure@>
else if type(p)>=unsuffixed_macro then @<Display a variable macro@>
else if type(p)<>undefined then
  begin print_nl(""); print_variable_name(p); print_char("=");
  print_exp(p,0);
  end;
end;

@ @<Descend the structure@>=
begin q:=attr_head(p);
repeat disp_var(q); q:=link(q);
until q=end_attr;
q:=subscr_head(p);
while name_type(q)=subscr do
  begin disp_var(q); q:=link(q);
  end;
end

@ @<Display a variable macro@>=
begin print_nl(""); print_variable_name(p);
if type(p)>unsuffixed_macro then print("@@#"); {|suffixed_macro|}
print("=macro:");
if file_offset>=max_print_line-20 then n:=5
else n:=max_print_line-file_offset-15;
show_macro(value(p),null,n);
end

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_var;
label done;
begin repeat get_next;
if cur_sym>0 then if cur_sym<=hash_end then
 if cur_cmd=tag_token then if cur_mod<>null then
  begin disp_var(cur_mod); goto done;
  end;
disp_token;
done:get_x_next;
until cur_cmd<>comma;
end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_dependencies;
var @!p:pointer; {link that runs through all dependencies}
begin p:=link(dep_head);
while p<>dep_head do
  begin if interesting(p) then
    begin print_nl(""); print_variable_name(p);
    if type(p)=dependent then print_char("=")
    else print(" = "); {extra spaces imply proto-dependency}
    print_dependency(dep_list(p),type(p));
    end;
  p:=dep_list(p);
  while info(p)<>null do p:=link(p);
  p:=link(p);
  end;
get_x_next;
end;

@ Finally we are ready for the procedure that governs all of the
show commands.

@<Declare action procedures for use by |do_statement|@>=
procedure do_show_whatever;
begin if interaction=error_stop_mode then wake_up_terminal;
case cur_mod of
show_token_code:do_show_token;
show_stats_code:do_show_stats;
show_code:do_show;
show_var_code:do_show_var;
show_dependencies_code:do_show_dependencies;
end; {there are no other cases}
if internal[showstopping]>0 then
  begin print_err("OK");
@.OK@>
  if interaction<error_stop_mode then
    begin help0; decr(error_count);
    end
  else help1("This isn't an error message; I'm just showing something.");
  if cur_cmd=semicolon then error@+else put_get_error;
  end;
end;

@ The `\&{addto}' command needs the following additional primitives:

@d drop_code=0 {command modifier for `\&{dropping}'}
@d keep_code=1 {command modifier for `\&{keeping}'}

@<Put each...@>=
primitive("contour",thing_to_add,contour_code);@/
@!@:contour_}{\&{contour} primitive@>
primitive("doublepath",thing_to_add,double_path_code);@/
@!@:double_path_}{\&{doublepath} primitive@>
primitive("also",thing_to_add,also_code);@/
@!@:also_}{\&{also} primitive@>
primitive("withpen",with_option,pen_type);@/
@!@:with_pen_}{\&{withpen} primitive@>
primitive("withweight",with_option,known);@/
@!@:with_weight_}{\&{withweight} primitive@>
primitive("dropping",cull_op,drop_code);@/
@!@:dropping_}{\&{dropping} primitive@>
primitive("keeping",cull_op,keep_code);@/
@!@:keeping_}{\&{keeping} primitive@>

@ @<Cases of |print_cmd...@>=
thing_to_add:if m=contour_code then print("contour")
  else if m=double_path_code then print("doublepath")
  else print("also");
with_option:if m=pen_type then print("withpen")
  else print("withweight");
cull_op:if m=drop_code then print("dropping")
  else print("keeping");

@ @<Declare action procedures for use by |do_statement|@>=
function scan_with:boolean;
var @!t:small_number; {|known| or |pen_type|}
@!result:boolean; {the value to return}
begin t:=cur_mod; cur_type:=vacuous; get_x_next; scan_expression;
result:=false;
if cur_type<>t then @<Complain about improper type@>
else if cur_type=pen_type then result:=true
else @<Check the tentative weight@>;
scan_with:=result;
end;

@ @<Complain about improper type@>=
begin exp_err("Improper type");
@.Improper type@>
help2("Next time say `withweight <known numeric expression>';")@/
  ("I'll ignore the bad `with' clause and look for another.");
if t=pen_type then
  help_line[1]:="Next time say `withpen <known pen expression>';";
put_get_flush_error(0);
end

@ @<Check the tentative weight@>=
begin cur_exp:=round_unscaled(cur_exp);
if (abs(cur_exp)<4)and(cur_exp<>0) then result:=true
else  begin print_err("Weight must be -3, -2, -1, +1, +2, or +3");
@.Weight must be...@>
  help1("I'll ignore the bad `with' clause and look for another.");
  put_get_flush_error(0);
  end;
end

@ One of the things we need to do when we've parsed an \&{addto} or
similar command is set |cur_edges| to the header of a supposed \&{picture}
variable, given a token list for that variable.

@<Declare action procedures for use by |do_statement|@>=
procedure find_edges_var(@!t:pointer);
var @!p:pointer;
begin p:=find_variable(t); cur_edges:=null;
if p=null then
  begin obliterated(t); put_get_error;
  end
else if type(p)<>picture_type then
  begin print_err("Variable "); show_token_list(t,null,1000,0);
@.Variable x is the wrong type@>
  print(" is the wrong type ("); print_type(type(p)); print_char(")");
  help2("I was looking for a ""known"" picture variable.")@/
    ("So I'll not change anything just now."); put_get_error;
  end
else cur_edges:=value(p);
flush_node_list(t);
end;

@ @<Cases of |do_statement|...@>=
add_to_command: do_add_to;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_add_to;
label done, not_found;
var @!lhs,@!rhs:pointer; {variable on left, path on right}
@!w:integer; {tentative weight}
@!p:pointer; {list manipulation register}
@!q:pointer; {beginning of second half of doubled path}
@!add_to_type:double_path_code..also_code; {modifier of \&{addto}}
begin get_x_next; var_flag:=thing_to_add; scan_primary;
if cur_type<>token_list then
  @<Abandon edges command because there's no variable@>
else  begin lhs:=cur_exp; add_to_type:=cur_mod;@/
  cur_type:=vacuous; get_x_next; scan_expression;
  if add_to_type=also_code then @<Augment some edges by others@>
  else @<Get ready to fill a contour, and fill it@>;
  end;
end;

@ @<Abandon edges command because there's no variable@>=
begin exp_err("Not a suitable variable");
@.Not a suitable variable@>
help4("At this point I needed to see the name of a picture variable.")@/
  ("(Or perhaps you have indeed presented me with one; I might")@/
  ("have missed it, if it wasn't followed by the proper token.)")@/
  ("So I'll not change anything just now.");
put_get_flush_error(0);
end

@ @<Augment some edges by others@>=
begin find_edges_var(lhs);
if cur_edges=null then flush_cur_exp(0)
else if cur_type<>picture_type then
  begin exp_err("Improper `addto'");
@.Improper `addto'@>
  help2("This expression should have specified a known picture.")@/
    ("So I'll not change anything just now."); put_get_flush_error(0);
  end
else  begin merge_edges(cur_exp); flush_cur_exp(0);
  end;
end

@ @<Get ready to fill a contour...@>=
begin if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then
  begin exp_err("Improper `addto'");
@.Improper `addto'@>
  help2("This expression should have been a known path.")@/
    ("So I'll not change anything just now.");
  put_get_flush_error(0); flush_token_list(lhs);
  end
else  begin rhs:=cur_exp; w:=1; cur_pen:=null_pen;
  while cur_cmd=with_option do
    if scan_with then
      if cur_type=known then w:=cur_exp
      else @<Change the tentative pen@>;
  @<Complete the contour filling operation@>;
  delete_pen_ref(cur_pen);
  end;
end

@ We could say `|add_pen_ref(cur_pen)|; |flush_cur_exp(0)|' after changing
|cur_pen| here.  But that would have no effect, because the current expression
will not be flushed. Thus we save a bit of code (at the risk of being too
tricky).

@<Change the tentative pen@>=
begin delete_pen_ref(cur_pen); cur_pen:=cur_exp;
end

@ @<Complete the contour filling...@>=
find_edges_var(lhs);
if cur_edges=null then toss_knot_list(rhs)
else  begin lhs:=null; cur_path_type:=add_to_type;
  if left_type(rhs)=endpoint then
    if cur_path_type=double_path_code then @<Double the path@>
    else @<Complain about non-cycle and |goto not_found|@>
  else if cur_path_type=double_path_code then lhs:=htap_ypoc(rhs);
  cur_wt:=w; rhs:=make_spec(rhs,max_offset(cur_pen),internal[tracing_specs]);
  @<Check the turning number@>;
  if max_offset(cur_pen)=0 then fill_spec(rhs)
  else fill_envelope(rhs);
  if lhs<>null then
    begin rev_turns:=true;
    lhs:=make_spec(lhs,max_offset(cur_pen),internal[tracing_specs]);
    rev_turns:=false;
    if max_offset(cur_pen)=0 then fill_spec(lhs)
    else fill_envelope(lhs);
    end;
not_found: end

@ @<Double the path@>=
if link(rhs)=rhs then @<Make a trivial one-point path cycle@>
else  begin p:=htap_ypoc(rhs); q:=link(p);@/
  right_x(path_tail):=right_x(q); right_y(path_tail):=right_y(q);
  right_type(path_tail):=right_type(q);
  link(path_tail):=link(q); free_node(q,knot_node_size);@/
  right_x(p):=right_x(rhs); right_y(p):=right_y(rhs);
  right_type(p):=right_type(rhs);
  link(p):=link(rhs); free_node(rhs,knot_node_size);@/
  rhs:=p;
  end

@ @<Make a trivial one-point path cycle@>=
begin right_x(rhs):=x_coord(rhs); right_y(rhs):=y_coord(rhs);
left_x(rhs):=x_coord(rhs); left_y(rhs):=y_coord(rhs);
left_type(rhs):=explicit; right_type(rhs):=explicit;
end

@ @<Complain about non-cycle...@>=
begin print_err("Not a cycle");
@.Not a cycle@>
help2("That contour should have ended with `..cycle' or `&cycle'.")@/
  ("So I'll not change anything just now."); put_get_error;
toss_knot_list(rhs); goto not_found;
end

@ @<Check the turning number@>=
if turning_number<=0 then
 if cur_path_type<>double_path_code then if internal[turning_check]>0 then
  if (turning_number<0)and(link(cur_pen)=null) then negate(cur_wt)
  else  begin if turning_number=0 then
      if (internal[turning_check]<=unity)and(link(cur_pen)=null) then goto done
      else print_strange("Strange path (turning number is zero)")
@.Strange path...@>
    else print_strange("Backwards path (turning number is negative)");
@.Backwards path...@>
    help3("The path doesn't have a counterclockwise orientation,")@/
      ("so I'll probably have trouble drawing it.")@/
      ("(See Chapter 27 of The METAFONTbook for more help.)");
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
    put_get_error;
    end;
done:

@ @<Cases of |do_statement|...@>=
ship_out_command: do_ship_out;
display_command: do_display;
open_window: do_open_window;
cull_command: do_cull;

@ @<Declare action procedures for use by |do_statement|@>=
@t\4@>@<Declare the function called |tfm_check|@>@;
procedure do_ship_out;
label exit;
var @!c:integer; {the character code}
begin get_x_next; var_flag:=semicolon; scan_expression;
if cur_type<>token_list then
  if cur_type=picture_type then cur_edges:=cur_exp
  else  begin @<Abandon edges command because there's no variable@>;
    return;
    end
else  begin find_edges_var(cur_exp); cur_type:=vacuous;
  end;
if cur_edges<>null then
  begin c:=round_unscaled(internal[char_code]) mod 256;
  if c<0 then c:=c+256;
  @<Store the width information for character code~|c|@>;
  if internal[proofing]>=0 then ship_out(c);
  end;
flush_cur_exp(0);
exit:end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_display;
label not_found,common_ending,exit;
var @!e:pointer; {token list for a picture variable}
begin get_x_next; var_flag:=in_window; scan_primary;
if cur_type<>token_list then
  @<Abandon edges command because there's no variable@>
else  begin e:=cur_exp; cur_type:=vacuous;
  get_x_next; scan_expression;
  if cur_type<>known then goto common_ending;
  cur_exp:=round_unscaled(cur_exp);
  if cur_exp<0 then goto not_found;
  if cur_exp>15 then goto not_found;
  if not window_open[cur_exp] then goto not_found;
  find_edges_var(e);
  if cur_edges<>null then disp_edges(cur_exp);
  return;
 not_found: cur_exp:=cur_exp*unity;
 common_ending: exp_err("Bad window number");
@.Bad window number@>
  help1("It should be the number of an open window.");
  put_get_flush_error(0); flush_token_list(e);
  end;
exit:end;

@ The only thing difficult about `\&{openwindow}' is that the syntax
allows the user to go astray in many ways. The following subroutine
helps keep the necessary program reasonably short and sweet.

@<Declare action procedures for use by |do_statement|@>=
function get_pair(@!c:command_code):boolean;
var @!p:pointer; {a pair of values that are known (we hope)}
@!b:boolean; {did we find such a pair?}
begin if cur_cmd<>c then get_pair:=false
else  begin get_x_next; scan_expression;
  if nice_pair(cur_exp,cur_type) then
    begin p:=value(cur_exp);
    cur_x:=value(x_part_loc(p)); cur_y:=value(y_part_loc(p));
    b:=true;
    end
  else b:=false;
  flush_cur_exp(0); get_pair:=b;
  end;
end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_open_window;
label not_found,exit;
var @!k:integer; {the window number in question}
@!r0,@!c0,@!r1,@!c1:scaled; {window coordinates}
begin get_x_next; scan_expression;
if cur_type<>known then goto not_found;
k:=round_unscaled(cur_exp);
if k<0 then goto not_found;
if k>15 then goto not_found;
if not get_pair(from_token) then goto not_found;
r0:=cur_x; c0:=cur_y;
if not get_pair(to_token) then goto not_found;
r1:=cur_x; c1:=cur_y;
if not get_pair(at_token) then goto not_found;
open_a_window(k,r0,c0,r1,c1,cur_x,cur_y); return;
not_found:print_err("Improper `openwindow'");
@.Improper `openwindow'@>
help2("Say `openwindow k from (r0,c0) to (r1,c1) at (x,y)',")@/
  ("where all quantities are known and k is between 0 and 15.");
put_get_error;
exit:end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_cull;
label not_found,exit;
var @!e:pointer; {token list for a picture variable}
@!keeping:drop_code..keep_code; {modifier of |cull_op|}
@!w,@!w_in,@!w_out:integer; {culling weights}
begin w:=1;
get_x_next; var_flag:=cull_op; scan_primary;
if cur_type<>token_list then
  @<Abandon edges command because there's no variable@>
else  begin e:=cur_exp; cur_type:=vacuous; keeping:=cur_mod;
  if not get_pair(cull_op) then goto not_found;
  while (cur_cmd=with_option)and(cur_mod=known) do
    if scan_with then w:=cur_exp;
  @<Set up the culling weights,
    or |goto not_found| if the thresholds are bad@>;
  find_edges_var(e);
  if cur_edges<>null then
    cull_edges(floor_unscaled(cur_x+unity-1),floor_unscaled(cur_y),w_out,w_in);
  return;
 not_found: print_err("Bad culling amounts");
@.Bad culling amounts@>
  help1("Always cull by known amounts that exclude 0.");
  put_get_error; flush_token_list(e);
  end;
exit:end;

@ @<Set up the culling weights, or |goto not_found| if the thresholds are bad@>=
if cur_x>cur_y then goto not_found;
if keeping=drop_code then
  begin if (cur_x>0)or(cur_y<0) then goto not_found;
  w_out:=w; w_in:=0;
  end
else  begin if (cur_x<=0)and(cur_y>=0) then goto not_found;
  w_out:=0; w_in:=w;
  end

@ The \&{everyjob} command simply assigns a nonzero value to the global variable
|start_sym|.

@<Cases of |do_statement|...@>=
every_job_command: begin get_symbol; start_sym:=cur_sym; get_x_next;
  end;

@ @<Glob...@>=
@!start_sym:halfword; {a symbolic token to insert at beginning of job}

@ @<Set init...@>=
start_sym:=0;

@ Finally, we have only the ``message'' commands remaining.

@d message_code=0
@d err_message_code=1
@d err_help_code=2

@<Put each...@>=
primitive("message",message_command,message_code);@/
@!@:message_}{\&{message} primitive@>
primitive("errmessage",message_command,err_message_code);@/
@!@:err_message_}{\&{errmessage} primitive@>
primitive("errhelp",message_command,err_help_code);@/
@!@:err_help_}{\&{errhelp} primitive@>

@ @<Cases of |print_cmd...@>=
message_command: if m<err_message_code then print("message")
  else if m=err_message_code then print("errmessage")
  else print("errhelp");

@ @<Cases of |do_statement|...@>=
message_command: do_message;

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_message;
var @!m:message_code..err_help_code; {the type of message}
begin m:=cur_mod; get_x_next; scan_expression;
if cur_type<>string_type then
  begin exp_err("Not a string");
@.Not a string@>
  help1("A message should be a known string expression.");
  put_get_error;
  end
else  case m of
  message_code:begin print_nl(""); slow_print(cur_exp);
    end;
  err_message_code:@<Print string |cur_exp| as an error message@>;
  err_help_code:@<Save string |cur_exp| as the |err_help|@>;
  end; {there are no other cases}
flush_cur_exp(0);
end;

@ The global variable |err_help| is zero when the user has most recently
given an empty help string, or if none has ever been given.

@<Save string |cur_exp| as the |err_help|@>=
begin if err_help<>0 then delete_str_ref(err_help);
if length(cur_exp)=0 then err_help:=0
else  begin err_help:=cur_exp; add_str_ref(err_help);
  end;
end

@ If \&{errmessage} occurs often in |scroll_mode|, without user-defined
\&{errhelp}, we don't want to give a long help message each time. So we
give a verbose explanation only once.

@<Glob...@>=
@!long_help_seen:boolean; {has the long \.{\\errmessage} help been used?}

@ @<Set init...@>=long_help_seen:=false;

@ @<Print string |cur_exp| as an error message@>=
begin print_err(""); slow_print(cur_exp);
if err_help<>0 then use_err_help:=true
else if long_help_seen then help1("(That was another `errmessage'.)")
else  begin if interaction<error_stop_mode then long_help_seen:=true;
  help4("This error message was generated by an `errmessage'")@/
  ("command, so I can't give any explicit help.")@/
  ("Pretend that you're Miss Marple: Examine all clues,")@/
@^Marple, Jane@>
  ("and deduce the truth by inspired guesses.");
  end;
put_get_error; use_err_help:=false;
end

@* \[45] Font metric data.
\TeX\ gets its knowledge about fonts from font metric files, also called
\.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
but other programs know about them too. One of \MF's duties is to
write \.{TFM} files so that the user's fonts can readily be
applied to typesetting.
@:TFM files}{\.{TFM} files@>
@^font metric files@>

The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
Since the number of bytes is always a multiple of~4, we could
also regard the file as a sequence of 32-bit words, but \MF\ uses the
byte interpretation. The format of \.{TFM} files was designed by
Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
@^Ramshaw, Lyle Harold@>
of information in a compact but useful form.

@<Glob...@>=
@!tfm_file:byte_file; {the font metric output goes here}
@!metric_file_name: str_number; {full name of the font metric file}

@ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
integers that give the lengths of the various subsequent portions
of the file. These twelve integers are, in order:
$$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
|lf|&length of the entire file, in words;\cr
|lh|&length of the header data, in words;\cr
|bc|&smallest character code in the font;\cr
|ec|&largest character code in the font;\cr
|nw|&number of words in the width table;\cr
|nh|&number of words in the height table;\cr
|nd|&number of words in the depth table;\cr
|ni|&number of words in the italic correction table;\cr
|nl|&number of words in the lig/kern table;\cr
|nk|&number of words in the kern table;\cr
|ne|&number of words in the extensible character table;\cr
|np|&number of font parameter words.\cr}}$$
They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
|ne<=256|, and
$$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
and as few as 0 characters (if |bc=ec+1|).

Incidentally, when two or more 8-bit bytes are combined to form an integer of
16 or more bits, the most significant bytes appear first in the file.
This is called BigEndian order.
@!@^BigEndian order@>

@ The rest of the \.{TFM} file may be regarded as a sequence of ten data
arrays having the informal specification
$$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
\tabskip\centering
\halign to\displaywidth{\hfil\\{#}\tabskip=0pt&$\,:\,$\arr#\hfil
 \tabskip\centering\cr
header&|[0..lh-1]@t\\{stuff}@>|\cr
char\_info&|[bc..ec]char_info_word|\cr
width&|[0..nw-1]fix_word|\cr
height&|[0..nh-1]fix_word|\cr
depth&|[0..nd-1]fix_word|\cr
italic&|[0..ni-1]fix_word|\cr
lig\_kern&|[0..nl-1]lig_kern_command|\cr
kern&|[0..nk-1]fix_word|\cr
exten&|[0..ne-1]extensible_recipe|\cr
param&|[1..np]fix_word|\cr}$$
The most important data type used here is a |@!fix_word|, which is
a 32-bit representation of a binary fraction. A |fix_word| is a signed
quantity, with the two's complement of the entire word used to represent
negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
the smallest is $-2048$. We will see below, however, that all but two of
the |fix_word| values must lie between $-16$ and $+16$.

@ The first data array is a block of header information, which contains
general facts about the font. The header must contain at least two words,
|header[0]| and |header[1]|, whose meaning is explained below.  Additional
header information of use to other software routines might also be
included, and \MF\ will generate it if the \.{headerbyte} command occurs.
For example, 16 more words of header information are in use at the Xerox
Palo Alto Research Center; the first ten specify the character coding
scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
last gives the ``face byte.''

\yskip\hang|header[0]| is a 32-bit check sum that \MF\ will copy into
the \.{GF} output file. This helps ensure consistency between files,
since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
should match the check sums on actual fonts that are used.  The actual
relation between this check sum and the rest of the \.{TFM} file is not
important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check sums.
@^check sum@>

\yskip\hang|header[1]| is a |fix_word| containing the design size of the
font, in units of \TeX\ points. This number must be at least 1.0; it is
fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
font, i.e., a font that was designed to look best at a 10-point size,
whatever that really means. When a \TeX\ user asks for a font `\.{at}
$\delta$ \.{pt}', the effect is to override the design size and replace it
by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
the font image by a factor of $\delta$ divided by the design size.  {\sl
All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
numbers in design-size units.} Thus, for example, the value of |param[6]|,
which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
since many fonts have a design size equal to one em.  The other dimensions
must be less than 16 design-size units in absolute value; thus,
|header[1]| and |param[1]| are the only |fix_word| entries in the whole
\.{TFM} file whose first byte might be something besides 0 or 255.

@ Next comes the |char_info| array, which contains one |@!char_info_word|
per character. Each word in this part of the file contains six fields
packed into four bytes as follows.

\yskip\hang first byte: |@!width_index| (8 bits)\par
\hang second byte: |@!height_index| (4 bits) times 16, plus |@!depth_index|
  (4~bits)\par
\hang third byte: |@!italic_index| (6 bits) times 4, plus |@!tag|
  (2~bits)\par
\hang fourth byte: |@!remainder| (8 bits)\par
\yskip\noindent
The actual width of a character is \\{width}|[width_index]|, in design-size
units; this is a device for compressing information, since many characters
have the same width. Since it is quite common for many characters
to have the same height, depth, or italic correction, the \.{TFM} format
imposes a limit of 16 different heights, 16 different depths, and
64 different italic corrections.

Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
\\{italic}[0]=0$ should always hold, so that an index of zero implies a
value of zero.  The |width_index| should never be zero unless the
character does not exist in the font, since a character is valid if and
only if it lies between |bc| and |ec| and has a nonzero |width_index|.

@ The |tag| field in a |char_info_word| has four values that explain how to
interpret the |remainder| field.

\yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
\hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
program starting at location |remainder| in the |lig_kern| array.\par
\hang|tag=2| (|list_tag|) means that this character is part of a chain of
characters of ascending sizes, and not the largest in the chain.  The
|remainder| field gives the character code of the next larger character.\par
\hang|tag=3| (|ext_tag|) means that this character code represents an
extensible character, i.e., a character that is built up of smaller pieces
so that it can be made arbitrarily large. The pieces are specified in
|@!exten[remainder]|.\par
\yskip\noindent
Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
unless they are used in special circumstances in math formulas. For example,
\TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
operation looks for both |list_tag| and |ext_tag|.

@d no_tag=0 {vanilla character}
@d lig_tag=1 {character has a ligature/kerning program}
@d list_tag=2 {character has a successor in a charlist}
@d ext_tag=3 {character is extensible}

@ The |lig_kern| array contains instructions in a simple programming language
that explains what to do for special letter pairs. Each word in this array is a
|@!lig_kern_command| of four bytes.

\yskip\hang first byte: |skip_byte|, indicates that this is the final program
  step if the byte is 128 or more, otherwise the next step is obtained by
  skipping this number of intervening steps.\par
\hang second byte: |next_char|, ``if |next_char| follows the current character,
  then perform the operation and stop, otherwise continue.''\par
\hang third byte: |op_byte|, indicates a ligature step if less than~128,
  a kern step otherwise.\par
\hang fourth byte: |remainder|.\par
\yskip\noindent
In a kern step, an
additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
between the current character and |next_char|. This amount is
often negative, so that the characters are brought closer together
by kerning; but it might be positive.

There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
$0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
|remainder| is inserted between the current character and |next_char|;
then the current character is deleted if $b=0$, and |next_char| is
deleted if $c=0$; then we pass over $a$~characters to reach the next
current character (which may have a ligature/kerning program of its own).

If the very first instruction of the |lig_kern| array has |skip_byte=255|,
the |next_char| byte is the so-called right boundary character of this font;
the value of |next_char| need not lie between |bc| and~|ec|.
If the very last instruction of the |lig_kern| array has |skip_byte=255|,
there is a special ligature/kerning program for a left boundary character,
beginning at location |256*op_byte+remainder|.
The interpretation is that \TeX\ puts implicit boundary characters
before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect
ligatures and kerning.

If the very first instruction of a character's |lig_kern| program has
|skip_byte>128|, the program actually begins in location
|256*op_byte+remainder|. This feature allows access to large |lig_kern|
arrays, because the first instruction must otherwise
appear in a location |<=255|.

Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
the condition
$$\hbox{|256*op_byte+remainder<nl|.}$$
If such an instruction is encountered during
normal program execution, it denotes an unconditional halt; no ligature
command is performed.

@d stop_flag=128+min_quarterword
  {value indicating `\.{STOP}' in a lig/kern program}
@d kern_flag=128+min_quarterword {op code for a kern step}
@d skip_byte(#)==lig_kern[#].b0
@d next_char(#)==lig_kern[#].b1
@d op_byte(#)==lig_kern[#].b2
@d rem_byte(#)==lig_kern[#].b3

@ Extensible characters are specified by an |@!extensible_recipe|, which
consists of four bytes called |@!top|, |@!mid|, |@!bot|, and |@!rep| (in this
order). These bytes are the character codes of individual pieces used to
build up a large symbol.  If |top|, |mid|, or |bot| are zero, they are not
present in the built-up result. For example, an extensible vertical line is
like an extensible bracket, except that the top and bottom pieces are missing.

Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
if the piece isn't present. Then the extensible characters have the form
$TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
The width of the extensible character is the width of $R$; and the
height-plus-depth is the sum of the individual height-plus-depths of the
components used, since the pieces are butted together in a vertical list.

@d ext_top(#)==exten[#].b0 {|top| piece in a recipe}
@d ext_mid(#)==exten[#].b1 {|mid| piece in a recipe}
@d ext_bot(#)==exten[#].b2 {|bot| piece in a recipe}
@d ext_rep(#)==exten[#].b3 {|rep| piece in a recipe}

@ The final portion of a \.{TFM} file is the |param| array, which is another
sequence of |fix_word| values.

\yskip\hang|param[1]=slant| is the amount of italic slant, which is used
to help position accents. For example, |slant=.25| means that when you go
up one unit, you also go .25 units to the right. The |slant| is a pure
number; it is the only |fix_word| other than the design size itself that is
not scaled by the design size.

\hang|param[2]=space| is the normal spacing between words in text.
Note that character @'40 in the font need not have anything to do with
blank spaces.

\hang|param[3]=space_stretch| is the amount of glue stretching between words.

\hang|param[4]=space_shrink| is the amount of glue shrinking between words.

\hang|param[5]=x_height| is the size of one ex in the font; it is also
the height of letters for which accents don't have to be raised or lowered.

\hang|param[6]=quad| is the size of one em in the font.

\hang|param[7]=extra_space| is the amount added to |param[2]| at the
ends of sentences.

\yskip\noindent
If fewer than seven parameters are present, \TeX\ sets the missing parameters
to zero.

@d slant_code=1
@d space_code=2
@d space_stretch_code=3
@d space_shrink_code=4
@d x_height_code=5
@d quad_code=6
@d extra_space_code=7

@ So that is what \.{TFM} files hold. One of \MF's duties is to output such
information, and it does this all at once at the end of a job.
In order to prepare for such frenetic activity, it squirrels away the
necessary facts in various arrays as information becomes available.

Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
|tfm_ital_corr|. Other information about a character (e.g., about
its ligatures or successors) is accessible via the |char_tag| and
|char_remainder| arrays. Other information about the font as a whole
is kept in additional arrays called |header_byte|, |lig_kern|,
|kern|, |exten|, and |param|.

@d undefined_label==lig_table_size {an undefined local label}

@<Glob...@>=
@!bc,@!ec:eight_bits; {smallest and largest character codes shipped out}
@!tfm_width:array[eight_bits] of scaled; {\&{charwd} values}
@!tfm_height:array[eight_bits] of scaled; {\&{charht} values}
@!tfm_depth:array[eight_bits] of scaled; {\&{chardp} values}
@!tfm_ital_corr:array[eight_bits] of scaled; {\&{charic} values}
@!char_exists:array[eight_bits] of boolean; {has this code been shipped out?}
@!char_tag:array[eight_bits] of no_tag..ext_tag; {|remainder| category}
@!char_remainder:array[eight_bits] of 0..lig_table_size; {the |remainder| byte}
@!header_byte:array[1..header_size] of -1..255;
  {bytes of the \.{TFM} header, or $-1$ if unset}
@!lig_kern:array[0..lig_table_size] of four_quarters; {the ligature/kern table}
@!nl:0..32767-256; {the number of ligature/kern steps so far}
@!kern:array[0..max_kerns] of scaled; {distinct kerning amounts}
@!nk:0..max_kerns; {the number of distinct kerns so far}
@!exten:array[eight_bits] of four_quarters; {extensible character recipes}
@!ne:0..256; {the number of extensible characters so far}
@!param:array[1..max_font_dimen] of scaled; {\&{fontinfo} parameters}
@!np:0..max_font_dimen; {the largest \&{fontinfo} parameter specified so far}
@!nw,@!nh,@!nd,@!ni:0..256; {sizes of \.{TFM} subtables}
@!skip_table:array[eight_bits] of 0..lig_table_size; {local label status}
@!lk_started:boolean; {has there been a lig/kern step in this command yet?}
@!bchar:integer; {right boundary character}
@!bch_label:0..lig_table_size; {left boundary starting location}
@!ll,@!lll:0..lig_table_size; {registers used for lig/kern processing}
@!label_loc:array[0..256] of -1..lig_table_size; {lig/kern starting addresses}
@!label_char:array[1..256] of eight_bits; {characters for |label_loc|}
@!label_ptr:0..256; {highest position occupied in |label_loc|}

@ @<Set init...@>=
for k:=0 to 255 do
  begin tfm_width[k]:=0; tfm_height[k]:=0; tfm_depth[k]:=0; tfm_ital_corr[k]:=0;
  char_exists[k]:=false; char_tag[k]:=no_tag; char_remainder[k]:=0;
  skip_table[k]:=undefined_label;
  end;
for k:=1 to header_size do header_byte[k]:=-1;
bc:=255; ec:=0; nl:=0; nk:=0; ne:=0; np:=0;@/
internal[boundary_char]:=-unity;
bch_label:=undefined_label;@/
label_loc[0]:=-1; label_ptr:=0;

@ @<Declare the function called |tfm_check|@>=
function tfm_check(@!m:small_number):scaled;
begin if abs(internal[m])>=fraction_half then
  begin print_err("Enormous "); print(int_name[m]);
@.Enormous charwd...@>
@.Enormous chardp...@>
@.Enormous charht...@>
@.Enormous charic...@>
@.Enormous designsize...@>
  print(" has been reduced");
  help1("Font metric dimensions must be less than 2048pt.");
  put_get_error;
  if internal[m]>0 then tfm_check:=fraction_half-1
  else tfm_check:=1-fraction_half;
  end
else tfm_check:=internal[m];
end;

@ @<Store the width information for character code~|c|@>=
if c<bc then bc:=c;
if c>ec then ec:=c;
char_exists[c]:=true;
gf_dx[c]:=internal[char_dx]; gf_dy[c]:=internal[char_dy];
tfm_width[c]:=tfm_check(char_wd);
tfm_height[c]:=tfm_check(char_ht);
tfm_depth[c]:=tfm_check(char_dp);
tfm_ital_corr[c]:=tfm_check(char_ic)

@ Now let's consider \MF's special \.{TFM}-oriented commands.

@<Cases of |do_statement|...@>=
tfm_command: do_tfm_command;

@ @d char_list_code=0
@d lig_table_code=1
@d extensible_code=2
@d header_byte_code=3
@d font_dimen_code=4

@<Put each...@>=
primitive("charlist",tfm_command,char_list_code);@/
@!@:char_list_}{\&{charlist} primitive@>
primitive("ligtable",tfm_command,lig_table_code);@/
@!@:lig_table_}{\&{ligtable} primitive@>
primitive("extensible",tfm_command,extensible_code);@/
@!@:extensible_}{\&{extensible} primitive@>
primitive("headerbyte",tfm_command,header_byte_code);@/
@!@:header_byte_}{\&{headerbyte} primitive@>
primitive("fontdimen",tfm_command,font_dimen_code);@/
@!@:font_dimen_}{\&{fontdimen} primitive@>

@ @<Cases of |print_cmd...@>=
tfm_command: case m of
  char_list_code:print("charlist");
  lig_table_code:print("ligtable");
  extensible_code:print("extensible");
  header_byte_code:print("headerbyte");
  othercases print("fontdimen")
  endcases;

@ @<Declare action procedures for use by |do_statement|@>=
function get_code:eight_bits; {scans a character code value}
label found;
var @!c:integer; {the code value found}
begin get_x_next; scan_expression;
if cur_type=known then
  begin c:=round_unscaled(cur_exp);
  if c>=0 then if c<256 then goto found;
  end
else if cur_type=string_type then if length(cur_exp)=1 then
  begin c:=so(str_pool[str_start[cur_exp]]); goto found;
  end;
exp_err("Invalid code has been replaced by 0");
@.Invalid code...@>
help2("I was looking for a number between 0 and 255, or for a")@/
  ("string of length 1. Didn't find it; will use 0 instead.");
put_get_flush_error(0); c:=0;
found: get_code:=c;
end;

@ @<Declare action procedures for use by |do_statement|@>=
procedure set_tag(@!c:halfword;@!t:small_number;@!r:halfword);
begin if char_tag[c]=no_tag then
  begin char_tag[c]:=t; char_remainder[c]:=r;
  if t=lig_tag then
    begin incr(label_ptr); label_loc[label_ptr]:=r; label_char[label_ptr]:=c;
    end;
  end
else @<Complain about a character tag conflict@>;
end;

@ @<Complain about a character tag conflict@>=
begin print_err("Character ");
if (c>" ")and(c<127) then print(c)
else if c=256 then print("||")
else  begin print("code "); print_int(c);
  end;
print(" is already ");
@.Character c is already...@>
case char_tag[c] of
lig_tag: print("in a ligtable");
list_tag: print("in a charlist");
ext_tag: print("extensible");
end; {there are no other cases}
help2("It's not legal to label a character more than once.")@/
  ("So I'll not change anything just now.");
put_get_error; end

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_tfm_command;
label continue,done;
var @!c,@!cc:0..256; {character codes}
@!k:0..max_kerns; {index into the |kern| array}
@!j:integer; {index into |header_byte| or |param|}
begin case cur_mod of
char_list_code: begin c:=get_code;
     {we will store a list of character successors}
  while cur_cmd=colon do
    begin cc:=get_code; set_tag(c,list_tag,cc); c:=cc;
    end;
  end;
lig_table_code: @<Store a list of ligature/kern steps@>;
extensible_code: @<Define an extensible recipe@>;
header_byte_code, font_dimen_code: begin c:=cur_mod; get_x_next;
  scan_expression;
  if (cur_type<>known)or(cur_exp<half_unit) then
    begin exp_err("Improper location");
@.Improper location@>
    help2("I was looking for a known, positive number.")@/
      ("For safety's sake I'll ignore the present command.");
    put_get_error;
    end
  else  begin j:=round_unscaled(cur_exp);
    if cur_cmd<>colon then
      begin missing_err(":");
@.Missing `:'@>
      help1("A colon should follow a headerbyte or fontinfo location.");
      back_error;
      end;
    if c=header_byte_code then @<Store a list of header bytes@>
    else @<Store a list of font dimensions@>;
    end;
  end;
end; {there are no other cases}
end;

@ @<Store a list of ligature/kern steps@>=
begin lk_started:=false;
continue: get_x_next;
if(cur_cmd=skip_to)and lk_started then
 @<Process a |skip_to| command and |goto done|@>;
if cur_cmd=bchar_label then
  begin c:=256; cur_cmd:=colon;@+end
else begin back_input; c:=get_code;@+end;
if(cur_cmd=colon)or(cur_cmd=double_colon)then
  @<Record a label in a lig/kern subprogram and |goto continue|@>;
if cur_cmd=lig_kern_token then @<Compile a ligature/kern command@>
else  begin print_err("Illegal ligtable step");
@.Illegal ligtable step@>
  help1("I was looking for `=:' or `kern' here.");
  back_error; next_char(nl):=qi(0); op_byte(nl):=qi(0); rem_byte(nl):=qi(0);@/
  skip_byte(nl):=stop_flag+1; {this specifies an unconditional stop}
  end;
if nl=lig_table_size then overflow("ligtable size",lig_table_size);
@:METAFONT capacity exceeded ligtable size}{\quad ligtable size@>
incr(nl);
if cur_cmd=comma then goto continue;
if skip_byte(nl-1)<stop_flag then skip_byte(nl-1):=stop_flag;
done:end

@ @<Put each...@>=
primitive("=:",lig_kern_token,0);
@!@:=:_}{\.{=:} primitive@>
primitive("=:|",lig_kern_token,1);
@!@:=:/_}{\.{=:\char'174} primitive@>
primitive("=:|>",lig_kern_token,5);
@!@:=:/>_}{\.{=:\char'174>} primitive@>
primitive("|=:",lig_kern_token,2);
@!@:=:/_}{\.{\char'174=:} primitive@>
primitive("|=:>",lig_kern_token,6);
@!@:=:/>_}{\.{\char'174=:>} primitive@>
primitive("|=:|",lig_kern_token,3);
@!@:=:/_}{\.{\char'174=:\char'174} primitive@>
primitive("|=:|>",lig_kern_token,7);
@!@:=:/>_}{\.{\char'174=:\char'174>} primitive@>
primitive("|=:|>>",lig_kern_token,11);
@!@:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
primitive("kern",lig_kern_token,128);
@!@:kern_}{\&{kern} primitive@>

@ @<Cases of |print_cmd...@>=
lig_kern_token: case m of
0:print("=:");
1:print("=:|");
2:print("|=:");
3:print("|=:|");
5:print("=:|>");
6:print("|=:>");
7:print("|=:|>");
11:print("|=:|>>");
othercases print("kern")
endcases;

@ Local labels are implemented by maintaining the |skip_table| array,
where |skip_table[c]| is either |undefined_label| or the address of the
most recent lig/kern instruction that skips to local label~|c|. In the
latter case, the |skip_byte| in that instruction will (temporarily)
be zero if there were no prior skips to this label, or it will be the
distance to the prior skip.

We may need to cancel skips that span more than 127 lig/kern steps.

@d cancel_skips(#)==ll:=#;
  repeat lll:=qo(skip_byte(ll)); skip_byte(ll):=stop_flag; ll:=ll-lll;
  until lll=0
@d skip_error(#)==begin print_err("Too far to skip");
@.Too far to skip@>
  help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
  error; cancel_skips(#);
  end

@<Process a |skip_to| command and |goto done|@>=
begin c:=get_code;
if nl-skip_table[c]>128 then {|skip_table[c]<<nl<=undefined_label|}
  begin skip_error(skip_table[c]); skip_table[c]:=undefined_label;
  end;
if skip_table[c]=undefined_label then skip_byte(nl-1):=qi(0)
else skip_byte(nl-1):=qi(nl-skip_table[c]-1);
skip_table[c]:=nl-1; goto done;
end

@ @<Record a label in a lig/kern subprogram and |goto continue|@>=
begin if cur_cmd=colon then
  if c=256 then bch_label:=nl
  else set_tag(c,lig_tag,nl)
else if skip_table[c]<undefined_label then
  begin ll:=skip_table[c]; skip_table[c]:=undefined_label;
  repeat lll:=qo(skip_byte(ll));
  if nl-ll>128 then
    begin skip_error(ll); goto continue;
    end;
  skip_byte(ll):=qi(nl-ll-1); ll:=ll-lll;
  until lll=0;
  end;
goto continue;
end

@ @<Compile a ligature/kern...@>=
begin next_char(nl):=qi(c); skip_byte(nl):=qi(0);
if cur_mod<128 then {ligature op}
  begin op_byte(nl):=qi(cur_mod); rem_byte(nl):=qi(get_code);
  end
else  begin get_x_next; scan_expression;
  if cur_type<>known then
    begin exp_err("Improper kern");
@.Improper kern@>
    help2("The amount of kern should be a known numeric value.")@/
      ("I'm zeroing this one. Proceed, with fingers crossed.");
    put_get_flush_error(0);
    end;
  kern[nk]:=cur_exp;
  k:=0;@+while kern[k]<>cur_exp do incr(k);
  if k=nk then
    begin if nk=max_kerns then overflow("kern",max_kerns);
@:METAFONT capacity exceeded kern}{\quad kern@>
    incr(nk);
    end;
  op_byte(nl):=kern_flag+(k div 256);
  rem_byte(nl):=qi((k mod 256));
  end;
lk_started:=true;
end

@ @d missing_extensible_punctuation(#)==
  begin missing_err(#);
@.Missing `\char`\#'@>
  help1("I'm processing `extensible c: t,m,b,r'."); back_error;
  end

@<Define an extensible recipe@>=
begin if ne=256 then overflow("extensible",256);
@:METAFONT capacity exceeded extensible}{\quad extensible@>
c:=get_code; set_tag(c,ext_tag,ne);
if cur_cmd<>colon then missing_extensible_punctuation(":");
ext_top(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_mid(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_bot(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_rep(ne):=qi(get_code);
incr(ne);
end

@ @<Store a list of header bytes@>=
repeat if j>header_size then overflow("headerbyte",header_size);
@:METAFONT capacity exceeded headerbyte}{\quad headerbyte@>
header_byte[j]:=get_code; incr(j);
until cur_cmd<>comma

@ @<Store a list of font dimensions@>=
repeat if j>max_font_dimen then overflow("fontdimen",max_font_dimen);
@:METAFONT capacity exceeded fontdimen}{\quad fontdimen@>
while j>np do
  begin incr(np); param[np]:=0;
  end;
get_x_next; scan_expression;
if cur_type<>known then
  begin exp_err("Improper font parameter");
@.Improper font parameter@>
  help1("I'm zeroing this one. Proceed, with fingers crossed.");
  put_get_flush_error(0);
  end;
param[j]:=cur_exp; incr(j);
until cur_cmd<>comma

@ OK: We've stored all the data that is needed for the \.{TFM} file.
All that remains is to output it in the correct format.

An interesting problem needs to be solved in this connection, because
the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
and 64~italic corrections. If the data has more distinct values than
this, we want to meet the necessary restrictions by perturbing the
given values as little as possible.

\MF\ solves this problem in two steps. First the values of a given
kind (widths, heights, depths, or italic corrections) are sorted;
then the list of sorted values is perturbed, if necessary.

The sorting operation is facilitated by having a special node of
essentially infinite |value| at the end of the current list.

@<Initialize table entries...@>=
value(inf_val):=fraction_four;

@ Straight linear insertion is good enough for sorting, since the lists
are usually not terribly long. As we work on the data, the current list
will start at |link(temp_head)| and end at |inf_val|; the nodes in this
list will be in increasing order of their |value| fields.

Given such a list, the |sort_in| function takes a value and returns a pointer
to where that value can be found in the list. The value is inserted in
the proper place, if necessary.

At the time we need to do these operations, most of \MF's work has been
completed, so we will have plenty of memory to play with. The value nodes
that are allocated for sorting will never be returned to free storage.

@d clear_the_list==link(temp_head):=inf_val

@p function sort_in(@!v:scaled):pointer;
label found;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=temp_head;
loop@+  begin q:=link(p);
  if v<=value(q) then goto found;
  p:=q;
  end;
found: if v<value(q) then
  begin r:=get_node(value_node_size); value(r):=v; link(r):=q; link(p):=r;
  end;
sort_in:=link(p);
end;

@ Now we come to the interesting part, where we reduce the list if necessary
until it has the required size. The |min_cover| routine is basic to this
process; it computes the minimum number~|m| such that the values of the
current sorted list can be covered by |m|~intervals of width~|d|. It
also sets the global value |perturbation| to the smallest value $d'>d$
such that the covering found by this algorithm would be different.

In particular, |min_cover(0)| returns the number of distinct values in the
current list and sets |perturbation| to the minimum distance between
adjacent values.

@p function min_cover(@!d:scaled):integer;
var @!p:pointer; {runs through the current list}
@!l:scaled; {the least element covered by the current interval}
@!m:integer; {lower bound on the size of the minimum cover}
begin m:=0; p:=link(temp_head); perturbation:=el_gordo;
while p<>inf_val do
  begin incr(m); l:=value(p);
  repeat p:=link(p);
  until value(p)>l+d;
  if value(p)-l<perturbation then perturbation:=value(p)-l;
  end;
min_cover:=m;
end;

@ @<Glob...@>=
@!perturbation:scaled; {quantity related to \.{TFM} rounding}
@!excess:integer; {the list is this much too long}

@ The smallest |d| such that a given list can be covered with |m| intervals
is determined by the |threshold| routine, which is sort of an inverse
to |min_cover|. The idea is to increase the interval size rapidly until
finding the range, then to go sequentially until the exact borderline has
been discovered.

@p function threshold(@!m:integer):scaled;
var @!d:scaled; {lower bound on the smallest interval size}
begin excess:=min_cover(0)-m;
if excess<=0 then threshold:=0
else  begin repeat d:=perturbation;
  until min_cover(d+d)<=m;
  while min_cover(d)>m do d:=perturbation;
  threshold:=d;
  end;
end;

@ The |skimp| procedure reduces the current list to at most |m| entries,
by changing values if necessary. It also sets |info(p):=k| if |value(p)|
is the |k|th distinct value on the resulting list, and it sets
|perturbation| to the maximum amount by which a |value| field has
been changed. The size of the resulting list is returned as the
value of |skimp|.

@p function skimp(@!m:integer):integer;
var @!d:scaled; {the size of intervals being coalesced}
@!p,@!q,@!r:pointer; {list manipulation registers}
@!l:scaled; {the least value in the current interval}
@!v:scaled; {a compromise value}
begin d:=threshold(m); perturbation:=0;
q:=temp_head; m:=0; p:=link(temp_head);
while p<>inf_val do
  begin incr(m); l:=value(p); info(p):=m;
  if value(link(p))<=l+d then
    @<Replace an interval of values by its midpoint@>;
  q:=p; p:=link(p);
  end;
skimp:=m;
end;

@ @<Replace an interval...@>=
begin repeat p:=link(p); info(p):=m;
decr(excess);@+if excess=0 then d:=0;
until value(link(p))>l+d;
v:=l+half(value(p)-l);
if value(p)-v>perturbation then perturbation:=value(p)-v;
r:=q;
repeat r:=link(r); value(r):=v;
until r=p;
link(q):=p; {remove duplicate values from the current list}
end

@ A warning message is issued whenever something is perturbed by
more than 1/16\thinspace pt.

@p procedure tfm_warning(@!m:small_number);
begin print_nl("(some "); print(int_name[m]);
@.some charwds...@>
@.some chardps...@>
@.some charhts...@>
@.some charics...@>
print(" values had to be adjusted by as much as ");
print_scaled(perturbation); print("pt)");
end;

@ Here's an example of how we use these routines.
The width data needs to be perturbed only if there are 256 distinct
widths, but \MF\ must check for this case even though it is
highly unusual.

An integer variable |k| will be defined when we use this code.
The |dimen_head| array will contain pointers to the sorted
lists of dimensions.

@<Massage the \.{TFM} widths@>=
clear_the_list;
for k:=bc to ec do if char_exists[k] then
  tfm_width[k]:=sort_in(tfm_width[k]);
nw:=skimp(255)+1; dimen_head[1]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_wd)

@ @<Glob...@>=
@!dimen_head:array[1..4] of pointer; {lists of \.{TFM} dimensions}

@ Heights, depths, and italic corrections are different from widths
not only because their list length is more severely restricted, but
also because zero values do not need to be put into the lists.

@<Massage the \.{TFM} heights, depths, and italic corrections@>=
clear_the_list;
for k:=bc to ec do if char_exists[k] then
  if tfm_height[k]=0 then tfm_height[k]:=zero_val
  else tfm_height[k]:=sort_in(tfm_height[k]);
nh:=skimp(15)+1; dimen_head[2]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_ht);
clear_the_list;
for k:=bc to ec do if char_exists[k] then
  if tfm_depth[k]=0 then tfm_depth[k]:=zero_val
  else tfm_depth[k]:=sort_in(tfm_depth[k]);
nd:=skimp(15)+1; dimen_head[3]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_dp);
clear_the_list;
for k:=bc to ec do if char_exists[k] then
  if tfm_ital_corr[k]=0 then tfm_ital_corr[k]:=zero_val
  else tfm_ital_corr[k]:=sort_in(tfm_ital_corr[k]);
ni:=skimp(63)+1; dimen_head[4]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_ic)

@ @<Initialize table entries...@>=
value(zero_val):=0; info(zero_val):=0;

@ Bytes 5--8 of the header are set to the design size, unless the user has
some crazy reason for specifying them differently.

Error messages are not allowed at the time this procedure is called,
so a warning is printed instead.

The value of |max_tfm_dimen| is calculated so that
$$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
 < \\{three\_bytes}.$$

@d three_bytes==@'100000000 {$2^{24}$}

@p procedure fix_design_size;
var @!d:scaled; {the design size}
begin d:=internal[design_size];
if (d<unity)or(d>=fraction_half) then
  begin if d<>0 then
    print_nl("(illegal design size has been changed to 128pt)");
@.illegal design size...@>
  d:=@'40000000; internal[design_size]:=d;
  end;
if header_byte[5]<0 then if header_byte[6]<0 then
  if header_byte[7]<0 then if header_byte[8]<0 then
  begin header_byte[5]:=d div @'4000000;
  header_byte[6]:=(d div 4096) mod 256;
  header_byte[7]:=(d div 16) mod 256;
  header_byte[8]:=(d mod 16)*16;
  end;
max_tfm_dimen:=16*internal[design_size]-internal[design_size] div @'10000000;
if max_tfm_dimen>=fraction_half then max_tfm_dimen:=fraction_half-1;
end;

@ The |dimen_out| procedure computes a |fix_word| relative to the
design size. If the data was out of range, it is corrected and the
global variable |tfm_changed| is increased by~one.

@p function dimen_out(@!x:scaled):integer;
begin if abs(x)>max_tfm_dimen then
  begin incr(tfm_changed);
  if x>0 then x:=three_bytes-1@+else x:=1-three_bytes;
  end
else x:=make_scaled(x*16,internal[design_size]);
dimen_out:=x;
end;

@ @<Glob...@>=
@!max_tfm_dimen:scaled; {bound on widths, heights, kerns, etc.}
@!tfm_changed:integer; {the number of data entries that were out of bounds}

@ If the user has not specified any of the first four header bytes,
the |fix_check_sum| procedure replaces them by a ``check sum'' computed
from the |tfm_width| data relative to the design size.
@^check sum@>

@p procedure fix_check_sum;
label exit;
var @!k:eight_bits; {runs through character codes}
@!b1,@!b2,@!b3,@!b4:eight_bits; {bytes of the check sum}
@!x:integer; {hash value used in check sum computation}
begin if header_byte[1]<0 then if header_byte[2]<0 then
  if header_byte[3]<0 then if header_byte[4]<0 then
  begin @<Compute a check sum in |(b1,b2,b3,b4)|@>;
  header_byte[1]:=b1; header_byte[2]:=b2;
  header_byte[3]:=b3; header_byte[4]:=b4; return;
  end;
for k:=1 to 4 do if header_byte[k]<0 then header_byte[k]:=0;
exit:end;

@ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
b1:=bc; b2:=ec; b3:=bc; b4:=ec; tfm_changed:=0;
for k:=bc to ec do if char_exists[k] then
  begin x:=dimen_out(value(tfm_width[k]))+(k+4)*@'20000000; {this is positive}
  b1:=(b1+b1+x) mod 255;
  b2:=(b2+b2+x) mod 253;
  b3:=(b3+b3+x) mod 251;
  b4:=(b4+b4+x) mod 247;
  end

@ Finally we're ready to actually write the \.{TFM} information.
Here are some utility routines for this purpose.

@d tfm_out(#)==write(tfm_file,#) {output one byte to |tfm_file|}

@p procedure tfm_two(@!x:integer); {output two bytes to |tfm_file|}
begin tfm_out(x div 256); tfm_out(x mod 256);
end;
@#
procedure tfm_four(@!x:integer); {output four bytes to |tfm_file|}
begin if x>=0 then tfm_out(x div three_bytes)
else  begin x:=x+@'10000000000; {use two's complement for negative values}
  x:=x+@'10000000000;
  tfm_out((x div three_bytes) + 128);
  end;
x:=x mod three_bytes; tfm_out(x div unity);
x:=x mod unity; tfm_out(x div @'400);
tfm_out(x mod @'400);
end;
@#
procedure tfm_qqqq(@!x:four_quarters); {output four quarterwords to |tfm_file|}
begin tfm_out(qo(x.b0)); tfm_out(qo(x.b1)); tfm_out(qo(x.b2));
tfm_out(qo(x.b3));
end;

@ @<Finish the \.{TFM} file@>=
if job_name=0 then open_log_file;
pack_job_name(".tfm");
while not b_open_out(tfm_file) do
  prompt_file_name("file name for font metrics",".tfm");
metric_file_name:=b_make_name_string(tfm_file);
@<Output the subfile sizes and header bytes@>;
@<Output the character information bytes, then
  output the dimensions themselves@>;
@<Output the ligature/kern program@>;
@<Output the extensible character recipes and the font metric parameters@>;
@!stat if internal[tracing_stats]>0 then
  @<Log the subfile sizes of the \.{TFM} file@>;@;@+tats@/
print_nl("Font metrics written on "); slow_print(metric_file_name);
print_char(".");
@.Font metrics written...@>
b_close(tfm_file)

@ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
this code.

@<Output the subfile sizes and header bytes@>=
k:=header_size;
while header_byte[k]<0 do decr(k);
lh:=(k+3) div 4; {this is the number of header words}
if bc>ec then bc:=1; {if there are no characters, |ec=0| and |bc=1|}
@<Compute the ligature/kern program offset and implant the
  left boundary label@>;
tfm_two(6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+lk_offset+nk+ne+np);
  {this is the total number of file words that will be output}
tfm_two(lh); tfm_two(bc); tfm_two(ec); tfm_two(nw); tfm_two(nh);
tfm_two(nd); tfm_two(ni); tfm_two(nl+lk_offset); tfm_two(nk); tfm_two(ne);
tfm_two(np);
for k:=1 to 4*lh do
  begin if header_byte[k]<0 then header_byte[k]:=0;
  tfm_out(header_byte[k]);
  end

@ @<Output the character information bytes...@>=
for k:=bc to ec do
  if not char_exists[k] then tfm_four(0)
  else  begin tfm_out(info(tfm_width[k])); {the width index}
    tfm_out((info(tfm_height[k]))*16+info(tfm_depth[k]));
    tfm_out((info(tfm_ital_corr[k]))*4+char_tag[k]);
    tfm_out(char_remainder[k]);
    end;
tfm_changed:=0;
for k:=1 to 4 do
  begin tfm_four(0); p:=dimen_head[k];
  while p<>inf_val do
    begin tfm_four(dimen_out(value(p))); p:=link(p);
    end;
  end

@ We need to output special instructions at the beginning of the
|lig_kern| array in order to specify the right boundary character
and/or to handle starting addresses that exceed 255. The |label_loc|
and |label_char| arrays have been set up to record all the
starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
\le|label_loc|[|label_ptr]|$.

@<Compute the ligature/kern program offset...@>=
bchar:=round_unscaled(internal[boundary_char]);
if(bchar<0)or(bchar>255)then
  begin bchar:=-1; lk_started:=false; lk_offset:=0;@+end
else begin lk_started:=true; lk_offset:=1;@+end;
@<Find the minimum |lk_offset| and adjust all remainders@>;
if bch_label<undefined_label then
  begin skip_byte(nl):=qi(255); next_char(nl):=qi(0);
  op_byte(nl):=qi(((bch_label+lk_offset)div 256));
  rem_byte(nl):=qi(((bch_label+lk_offset)mod 256));
  incr(nl); {possibly |nl=lig_table_size+1|}
  end

@ @<Find the minimum |lk_offset|...@>=
k:=label_ptr; {pointer to the largest unallocated label}
if label_loc[k]+lk_offset>255 then
  begin lk_offset:=0; lk_started:=false; {location 0 can do double duty}
  repeat char_remainder[label_char[k]]:=lk_offset;
  while label_loc[k-1]=label_loc[k] do
    begin decr(k); char_remainder[label_char[k]]:=lk_offset;
    end;
  incr(lk_offset); decr(k);
  until lk_offset+label_loc[k]<256;
    {N.B.: |lk_offset=256| satisfies this when |k=0|}
  end;
if lk_offset>0 then
  while k>0 do
    begin char_remainder[label_char[k]]
     :=char_remainder[label_char[k]]+lk_offset;
    decr(k);
    end

@ @<Output the ligature/kern program@>=
for k:=0 to 255 do if skip_table[k]<undefined_label then
  begin print_nl("(local label "); print_int(k); print(":: was missing)");
@.local label l:: was missing@>
  cancel_skips(skip_table[k]);
  end;
if lk_started then {|lk_offset=1| for the special |bchar|}
  begin tfm_out(255); tfm_out(bchar); tfm_two(0);
  end
else for k:=1 to lk_offset do {output the redirection specs}
  begin ll:=label_loc[label_ptr];
  if bchar<0 then
    begin tfm_out(254); tfm_out(0);
    end
  else begin tfm_out(255); tfm_out(bchar);
    end;
  tfm_two(ll+lk_offset);
  repeat decr(label_ptr);
  until label_loc[label_ptr]<ll;
  end;
for k:=0 to nl-1 do tfm_qqqq(lig_kern[k]);
for k:=0 to nk-1 do tfm_four(dimen_out(kern[k]))

@ @<Output the extensible character recipes...@>=
for k:=0 to ne-1 do tfm_qqqq(exten[k]);
for k:=1 to np do
  if k=1 then
    if abs(param[1])<fraction_half then tfm_four(param[1]*16)
    else  begin incr(tfm_changed);
      if param[1]>0 then tfm_four(el_gordo)
      else tfm_four(-el_gordo);
      end
  else tfm_four(dimen_out(param[k]));
if tfm_changed>0 then
  begin if tfm_changed=1 then print_nl("(a font metric dimension")
@.a font metric dimension...@>
  else  begin print_nl("("); print_int(tfm_changed);
@.font metric dimensions...@>
    print(" font metric dimensions");
    end;
  print(" had to be decreased)");
  end

@ @<Log the subfile sizes of the \.{TFM} file@>=
begin wlog_ln(' ');
if bch_label<undefined_label then decr(nl);
wlog_ln('(You used ',nw:1,'w,',@| nh:1,'h,',@| nd:1,'d,',@| ni:1,'i,',@|
 nl:1,'l,',@| nk:1,'k,',@| ne:1,'e,',@|
 np:1,'p metric file positions');
wlog_ln('  out of ',@| '256w,16h,16d,64i,',@|
 lig_table_size:1,'l,',max_kerns:1,'k,256e,',@|
 max_font_dimen:1,'p)');
end

@* \[46] Generic font file format.
The most important output produced by a typical run of \MF\ is the
``generic font'' (\.{GF}) file that specifies the bit patterns of the
characters that have been drawn. The term {\sl generic\/} indicates that
this file format doesn't match the conventions of any name-brand manufacturer;
but it is easy to convert \.{GF} files to the special format required by
almost all digital phototypesetting equipment. There's a strong analogy
between the \.{DVI} files written by \TeX\ and the \.{GF} files written
by \MF; and, in fact, the file formats have a lot in common.

A \.{GF} file is a stream of 8-bit bytes that may be
regarded as a series of commands in a machine-like language. The first
byte of each command is the operation code, and this code is followed by
zero or more bytes that provide parameters to the command. The parameters
themselves may consist of several consecutive bytes; for example, the
`|boc|' (beginning of character) command has six parameters, each of
which is four bytes long. Parameters are usually regarded as nonnegative
integers; but four-byte-long parameters can be either positive or
negative, hence they range in value from $-2^{31}$ to $2^{31}-1$.
As in \.{TFM} files, numbers that occupy
more than one byte position appear in BigEndian order,
and negative numbers appear in two's complement notation.

A \.{GF} file consists of a ``preamble,'' followed by a sequence of one or
more ``characters,'' followed by a ``postamble.'' The preamble is simply a
|pre| command, with its parameters that introduce the file; this must come
first.  Each ``character'' consists of a |boc| command, followed by any
number of other commands that specify ``black'' pixels,
followed by an |eoc| command. The characters appear in the order that \MF\
generated them. If we ignore no-op commands (which are allowed between any
two commands in the file), each |eoc| command is immediately followed by a
|boc| command, or by a |post| command; in the latter case, there are no
more characters in the file, and the remaining bytes form the postamble.
Further details about the postamble will be explained later.

Some parameters in \.{GF} commands are ``pointers.'' These are four-byte
quantities that give the location number of some other byte in the file;
the first file byte is number~0, then comes number~1, and so on.

@ The \.{GF} format is intended to be both compact and easily interpreted
by a machine. Compactness is achieved by making most of the information
relative instead of absolute. When a \.{GF}-reading program reads the
commands for a character, it keeps track of two quantities: (a)~the current
column number,~|m|; and (b)~the current row number,~|n|.  These are 32-bit
signed integers, although most actual font formats produced from \.{GF}
files will need to curtail this vast range because of practical
limitations. (\MF\ output will never allow $\vert m\vert$ or $\vert
n\vert$ to get extremely large, but the \.{GF} format tries to be more general.)

How do \.{GF}'s row and column numbers correspond to the conventions
of \TeX\ and \MF? Well, the ``reference point'' of a character, in \TeX's
view, is considered to be at the lower left corner of the pixel in row~0
and column~0. This point is the intersection of the baseline with the left
edge of the type; it corresponds to location $(0,0)$ in \MF\ programs.
Thus the pixel in \.{GF} row~0 and column~0 is \MF's unit square, comprising the
region of the plane whose coordinates both lie between 0 and~1. The
pixel in \.{GF} row~|n| and column~|m| consists of the points whose \MF\
coordinates |(x,y)| satisfy |m<=x<=m+1| and |n<=y<=n+1|.  Negative values of
|m| and~|x| correspond to columns of pixels {\sl left\/} of the reference
point; negative values of |n| and~|y| correspond to rows of pixels {\sl
below\/} the baseline.

Besides |m| and |n|, there's also a third aspect of the current
state, namely the @!|paint_switch|, which is always either |black| or
|white|. Each \\{paint} command advances |m| by a specified amount~|d|,
and blackens the intervening pixels if |paint_switch=black|; then
the |paint_switch| changes to the opposite state. \.{GF}'s commands are
designed so that |m| will never decrease within a row, and |n| will never
increase within a character; hence there is no way to whiten a pixel that
has been blackened.

@ Here is a list of all the commands that may appear in a \.{GF} file. Each
command is specified by its symbolic name (e.g., |boc|), its opcode byte
(e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example,
`|d[2]|' means that parameter |d| is two bytes long.

\yskip\hang|paint_0| 0. This is a \\{paint} command with |d=0|; it does
nothing but change the |paint_switch| from \\{black} to \\{white} or vice~versa.

\yskip\hang\\{paint\_1} through \\{paint\_63} (opcodes 1 to 63).
These are \\{paint} commands with |d=1| to~63, defined as follows: If
|paint_switch=black|, blacken |d|~pixels of the current row~|n|,
in columns |m| through |m+d-1| inclusive. Then, in any case,
complement the |paint_switch| and advance |m| by~|d|.

\yskip\hang|paint1| 64 |d[1]|. This is a \\{paint} command with a specified
value of~|d|; \MF\ uses it to paint when |64<=d<256|.

\yskip\hang|@!paint2| 65 |d[2]|. Same as |paint1|, but |d|~can be as high
as~65535.

\yskip\hang|@!paint3| 66 |d[3]|. Same as |paint1|, but |d|~can be as high
as $2^{24}-1$. \MF\ never needs this command, and it is hard to imagine
anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there,
anyway, just in case.

\yskip\hang|boc| 67 |c[4]| |p[4]| |min_m[4]| |max_m[4]| |min_n[4]|
|max_n[4]|. Beginning of a character:  Here |c| is the character code, and
|p| points to the previous character beginning (if any) for characters having
this code number modulo 256.  (The pointer |p| is |-1| if there was no
prior character with an equivalent code.) The values of registers |m| and |n|
defined by the instructions that follow for this character must
satisfy |min_m<=m<=max_m| and |min_n<=n<=max_n|.  (The values of |max_m| and
|min_n| need not be the tightest bounds possible.)  When a \.{GF}-reading
program sees a |boc|, it can use |min_m|, |max_m|, |min_n|, and |max_n| to
initialize the bounds of an array. Then it sets |m:=min_m|, |n:=max_n|, and
|paint_switch:=white|.

\yskip\hang|boc1| 68 |c[1]| |@!del_m[1]| |max_m[1]| |@!del_n[1]| |max_n[1]|.
Same as |boc|, but |p| is assumed to be~$-1$; also |del_m=max_m-min_m|
and |del_n=max_n-min_n| are given instead of |min_m| and |min_n|.
The one-byte parameters must be between 0 and 255, inclusive.
\ (This abbreviated |boc| saves 19~bytes per character, in common cases.)

\yskip\hang|eoc| 69. End of character: All pixels blackened so far
constitute the pattern for this character. In particular, a completely
blank character might have |eoc| immediately following |boc|.

\yskip\hang|skip0| 70. Decrease |n| by 1 and set |m:=min_m|,
|paint_switch:=white|. \ (This finishes one row and begins another,
ready to whiten the leftmost pixel in the new row.)

\yskip\hang|skip1| 71 |d[1]|. Decrease |n| by |d+1|, set |m:=min_m|, and set
|paint_switch:=white|. This is a way to produce |d| all-white rows.

\yskip\hang|@!skip2| 72 |d[2]|. Same as |skip1|, but |d| can be as large
as 65535.

\yskip\hang|@!skip3| 73 |d[3]|. Same as |skip1|, but |d| can be as large
as $2^{24}-1$. \MF\ obviously never needs this command.

\yskip\hang|new_row_0| 74. Decrease |n| by 1 and set |m:=min_m|,
|paint_switch:=black|. \ (This finishes one row and begins another,
ready to {\sl blacken\/} the leftmost pixel in the new row.)

\yskip\hang|@!new_row_1| through |@!new_row_164| (opcodes 75 to 238). Same as
|new_row_0|, but with |m:=min_m+1| through |min_m+164|, respectively.

\yskip\hang|xxx1| 239 |k[1]| |x[k]|. This command is undefined in
general; it functions as a $(k+2)$-byte |no_op| unless special \.{GF}-reading
programs are being used. \MF\ generates \\{xxx} commands when encountering
a \&{special} string; this occurs in the \.{GF} file only between
characters, after the preamble, and before the postamble. However,
\\{xxx} commands might appear within characters,
in \.{GF} files generated by other
processors. It is recommended that |x| be a string having the form of a
keyword followed by possible parameters relevant to that keyword.

\yskip\hang|@!xxx2| 240 |k[2]| |x[k]|. Like |xxx1|, but |0<=k<65536|.

\yskip\hang|xxx3| 241 |k[3]| |x[k]|. Like |xxx1|, but |0<=k<@t$2^{24}$@>|.
\MF\ uses this when sending a \&{special} string whose length exceeds~255.

\yskip\hang|@!xxx4| 242 |k[4]| |x[k]|. Like |xxx1|, but |k| can be
ridiculously large; |k| mustn't be negative.

\yskip\hang|yyy| 243 |y[4]|. This command is undefined in general;
it functions as a 5-byte |no_op| unless special \.{GF}-reading programs
are being used. \MF\ puts |scaled| numbers into |yyy|'s, as a
result of \&{numspecial} commands; the intent is to provide numeric
parameters to \\{xxx} commands that immediately precede.

\yskip\hang|@!no_op| 244. No operation, do nothing. Any number of |no_op|'s
may occur between \.{GF} commands, but a |no_op| cannot be inserted between
a command and its parameters or between two parameters.

\yskip\hang|char_loc| 245 |c[1]| |dx[4]| |dy[4]| |w[4]| |p[4]|.
This command will appear only in the postamble, which will be explained shortly.

\yskip\hang|@!char_loc0| 246 |c[1]| |@!dm[1]| |w[4]| |p[4]|.
Same as |char_loc|, except that |dy| is assumed to be zero, and the value
of~|dx| is taken to be |65536*dm|, where |0<=dm<256|.

\yskip\hang|pre| 247 |i[1]| |k[1]| |x[k]|.
Beginning of the preamble; this must come at the very beginning of the
file. Parameter |i| is an identifying number for \.{GF} format, currently
131. The other information is merely commentary; it is not given
special interpretation like \\{xxx} commands are. (Note that \\{xxx}
commands may immediately follow the preamble, before the first |boc|.)

\yskip\hang|post| 248. Beginning of the postamble, see below.

\yskip\hang|post_post| 249. Ending of the postamble, see below.

\yskip\noindent Commands 250--255 are undefined at the present time.

@d gf_id_byte=131 {identifies the kind of \.{GF} files described here}

@ \MF\ refers to the following opcodes explicitly.

@d paint_0=0 {beginning of the \\{paint} commands}
@d paint1=64 {move right a given number of columns, then
  black${}\swap{}$white}
@d boc=67 {beginning of a character}
@d boc1=68 {short form of |boc|}
@d eoc=69 {end of a character}
@d skip0=70 {skip no blank rows}
@d skip1=71 {skip over blank rows}
@d new_row_0=74 {move down one row and then right}
@d max_new_row=164 {the largest \\{new\_row} command is |new_row_164|}
@d xxx1=239 {for \&{special} strings}
@d xxx3=241 {for long \&{special} strings}
@d yyy=243 {for \&{numspecial} numbers}
@d char_loc=245 {character locators in the postamble}
@d pre=247 {preamble}
@d post=248 {postamble beginning}
@d post_post=249 {postamble ending}

@ The last character in a \.{GF} file is followed by `|post|'; this command
introduces the postamble, which summarizes important facts that \MF\ has
accumulated. The postamble has the form
$$\vbox{\halign{\hbox{#\hfil}\cr
  |post| |p[4]| |@!ds[4]| |@!cs[4]| |@!hppp[4]| |@!vppp[4]|
   |@!min_m[4]| |@!max_m[4]| |@!min_n[4]| |@!max_n[4]|\cr
  $\langle\,$character locators$\,\rangle$\cr
  |post_post| |q[4]| |i[1]| 223's$[{\G}4]$\cr}}$$
Here |p| is a pointer to the byte following the final |eoc| in the file
(or to the byte following the preamble, if there are no characters);
it can be used to locate the beginning of \\{xxx} commands
that might have preceded the postamble. The |ds| and |cs| parameters
@^design size@> @^check sum@>
give the design size and check sum, respectively, which are exactly the
values put into the header of the \.{TFM} file that \MF\ produces (or
would produce) on this run. Parameters |hppp| and |vppp| are the ratios of
pixels per point, horizontally and vertically, expressed as |scaled| integers
(i.e., multiplied by $2^{16}$); they can be used to correlate the font
with specific device resolutions, magnifications, and ``at sizes.''  Then
come |min_m|, |max_m|, |min_n|, and |max_n|, which bound the values that
registers |m| and~|n| assume in all characters in this \.{GF} file.
(These bounds need not be the best possible; |max_m| and |min_n| may, on the
other hand, be tighter than the similar bounds in |boc| commands. For
example, some character may have |min_n=-100| in its |boc|, but it might
turn out that |n| never gets lower than |-50| in any character; then
|min_n| can have any value |<=-50|. If there are no characters in the file,
it's possible to have |min_m>max_m| and/or |min_n>max_n|.)

@ Character locators are introduced by |char_loc| commands,
which specify a character residue~|c|, character escapements (|dx,dy|),
a character width~|w|, and a pointer~|p|
to the beginning of that character. (If two or more characters have the
same code~|c| modulo 256, only the last will be indicated; the others can be
located by following backpointers. Characters whose codes differ by a
multiple of 256 are assumed to share the same font metric information,
hence the \.{TFM} file contains only residues of character codes modulo~256.
This convention is intended for oriental languages, when there are many
character shapes but few distinct widths.)
@^oriental characters@>@^Chinese characters@>@^Japanese characters@>

The character escapements (|dx,dy|) are the values of \MF's \&{chardx}
and \&{chardy} parameters; they are in units of |scaled| pixels;
i.e., |dx| is in horizontal pixel units times $2^{16}$, and |dy| is in
vertical pixel units times $2^{16}$.  This is the intended amount of
displacement after typesetting the character; for \.{DVI} files, |dy|
should be zero, but other document file formats allow nonzero vertical
escapement.

The character width~|w| duplicates the information in the \.{TFM} file; it
is a |fix_word| value relative to the design size, and it should be
independent of magnification.

The backpointer |p| points to the character's |boc|, or to the first of
a sequence of consecutive \\{xxx} or |yyy| or |no_op| commands that
immediately precede the |boc|, if such commands exist; such ``special''
commands essentially belong to the characters, while the special commands
after the final character belong to the postamble (i.e., to the font
as a whole). This convention about |p| applies also to the backpointers
in |boc| commands, even though it wasn't explained in the description
of~|boc|. @^backpointers@>

Pointer |p| might be |-1| if the character exists in the \.{TFM} file
but not in the \.{GF} file. This unusual situation can arise in \MF\ output
if the user had |proofing<0| when the character was being shipped out,
but then made |proofing>=0| in order to get a \.{GF} file.

@ The last part of the postamble, following the |post_post| byte that
signifies the end of the character locators, contains |q|, a pointer to the
|post| command that started the postamble.  An identification byte, |i|,
comes next; this currently equals~131, as in the preamble.

The |i| byte is followed by four or more bytes that are all equal to
the decimal number 223 (i.e., @'337 in octal). \MF\ puts out four to seven of
these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per
word; but any number of 223's is allowed, as long as there are at least four
of them. In effect, 223 is a sort of signature that is added at the very end.
@^Fuchs, David Raymond@>

This curious way to finish off a \.{GF} file makes it feasible for
\.{GF}-reading programs to find the postamble first, on most computers,
even though \MF\ wants to write the postamble last. Most operating
systems permit random access to individual words or bytes of a file, so
the \.{GF} reader can start at the end and skip backwards over the 223's
until finding the identification byte. Then it can back up four bytes, read
|q|, and move to byte |q| of the file. This byte should, of course,
contain the value 248 (|post|); now the postamble can be read, so the
\.{GF} reader can discover all the information needed for individual characters.

Unfortunately, however, standard \PASCAL\ does not include the ability to
@^system dependencies@>
access a random position in a file, or even to determine the length of a file.
Almost all systems nowadays provide the necessary capabilities, so \.{GF}
format has been designed to work most efficiently with modern operating systems.
But if \.{GF} files have to be processed under the restrictions of standard
\PASCAL, one can simply read them from front to back. This will
be adequate for most applications. However, the postamble-first approach
would facilitate a program that merges two \.{GF} files, replacing data
from one that is overridden by corresponding data in the other.

@* \[47] Shipping characters out.
The |ship_out| procedure, to be described below, is given a pointer to
an edge structure. Its mission is to describe the the positive pixels
in \.{GF} form, outputting a ``character'' to |gf_file|.

Several global variables hold information about the font file as a whole:\
|gf_min_m|, |gf_max_m|, |gf_min_n|, and |gf_max_n| are the minimum and
maximum \.{GF} coordinates output so far; |gf_prev_ptr| is the byte number
following the preamble or the last |eoc| command in the output;
|total_chars| is the total number of characters (i.e., |boc..eoc| segments)
shipped out.  There's also an array, |char_ptr|, containing the starting
positions of each character in the file, as required for the postamble. If
character code~|c| has not yet been output, |char_ptr[c]=-1|.

@<Glob...@>=
@!gf_min_m,@!gf_max_m,@!gf_min_n,@!gf_max_n:integer; {bounding rectangle}
@!gf_prev_ptr:integer; {where the present/next character started/starts}
@!total_chars:integer; {the number of characters output so far}
@!char_ptr:array[eight_bits] of integer; {where individual characters started}
@!gf_dx,@!gf_dy:array[eight_bits] of integer; {device escapements}

@ @<Set init...@>=
gf_prev_ptr:=0; total_chars:=0;

@ The \.{GF} bytes are output to a buffer instead of being sent
byte-by-byte to |gf_file|, because this tends to save a lot of
subroutine-call overhead. \MF\ uses the same conventions for |gf_file|
as \TeX\ uses for its \\{dvi\_file}; hence if system-dependent
changes are needed, they should probably be the same for both programs.

The output buffer is divided into two parts of equal size; the bytes found
in |gf_buf[0..half_buf-1]| constitute the first half, and those in
|gf_buf[half_buf..gf_buf_size-1]| constitute the second. The global
variable |gf_ptr| points to the position that will receive the next
output byte. When |gf_ptr| reaches |gf_limit|, which is always equal
to one of the two values |half_buf| or |gf_buf_size|, the half buffer that
is about to be invaded next is sent to the output and |gf_limit| is
changed to its other value. Thus, there is always at least a half buffer's
worth of information present, except at the very beginning of the job.

Bytes of the \.{GF} file are numbered sequentially starting with 0;
the next byte to be generated will be number |gf_offset+gf_ptr|.

@<Types...@>=
@!gf_index=0..gf_buf_size; {an index into the output buffer}

@ Some systems may find it more efficient to make |gf_buf| a |packed|
array, since output of four bytes at once may be facilitated.
@^system dependencies@>

@<Glob...@>=
@!gf_buf:array[gf_index] of eight_bits; {buffer for \.{GF} output}
@!half_buf:gf_index; {half of |gf_buf_size|}
@!gf_limit:gf_index; {end of the current half buffer}
@!gf_ptr:gf_index; {the next available buffer address}
@!gf_offset:integer; {|gf_buf_size| times the number of times the
  output buffer has been fully emptied}

@ Initially the buffer is all in one piece; we will output half of it only
after it first fills up.

@<Set init...@>=
half_buf:=gf_buf_size div 2; gf_limit:=gf_buf_size; gf_ptr:=0;
gf_offset:=0;

@ The actual output of |gf_buf[a..b]| to |gf_file| is performed by calling
|write_gf(a,b)|. It is safe to assume that |a| and |b+1| will both be
multiples of 4 when |write_gf(a,b)| is called; therefore it is possible on
many machines to use efficient methods to pack four bytes per word and to
output an array of words with one system call.
@^system dependencies@>

@<Declare generic font output procedures@>=
procedure write_gf(@!a,@!b:gf_index);
var k:gf_index;
begin for k:=a to b do write(gf_file,gf_buf[k]);
end;

@ To put a byte in the buffer without paying the cost of invoking a procedure
each time, we use the macro |gf_out|.

@d gf_out(#)==@+begin gf_buf[gf_ptr]:=#; incr(gf_ptr);
  if gf_ptr=gf_limit then gf_swap;
  end

@<Declare generic font output procedures@>=
procedure gf_swap; {outputs half of the buffer}
begin if gf_limit=gf_buf_size then
  begin write_gf(0,half_buf-1); gf_limit:=half_buf;
  gf_offset:=gf_offset+gf_buf_size; gf_ptr:=0;
  end
else  begin write_gf(half_buf,gf_buf_size-1); gf_limit:=gf_buf_size;
  end;
end;

@ Here is how we clean out the buffer when \MF\ is all through; |gf_ptr|
will be a multiple of~4.

@<Empty the last bytes out of |gf_buf|@>=
if gf_limit=half_buf then write_gf(half_buf,gf_buf_size-1);
if gf_ptr>0 then write_gf(0,gf_ptr-1)

@ The |gf_four| procedure outputs four bytes in two's complement notation,
without risking arithmetic overflow.

@<Declare generic font output procedures@>=
procedure gf_four(@!x:integer);
begin if x>=0 then gf_out(x div three_bytes)
else  begin x:=x+@'10000000000;
  x:=x+@'10000000000;
  gf_out((x div three_bytes) + 128);
  end;
x:=x mod three_bytes; gf_out(x div unity);
x:=x mod unity; gf_out(x div @'400);
gf_out(x mod @'400);
end;

@ Of course, it's even easier to output just two or three bytes.

@<Declare generic font output procedures@>=
procedure gf_two(@!x:integer);
begin gf_out(x div @'400); gf_out(x mod @'400);
end;
@#
procedure gf_three(@!x:integer);
begin gf_out(x div unity); gf_out((x mod unity) div @'400);
gf_out(x mod @'400);
end;

@ We need a simple routine to generate a \\{paint}
command of the appropriate type.

@<Declare generic font output procedures@>=
procedure gf_paint(@!d:integer); {here |0<=d<65536|}
begin if d<64 then gf_out(paint_0+d)
else if d<256 then
  begin gf_out(paint1); gf_out(d);
  end
else  begin gf_out(paint1+1); gf_two(d);
  end;
end;

@ And |gf_string| outputs one or two strings. If the first string number
is nonzero, an \\{xxx} command is generated.

@<Declare generic font output procedures@>=
procedure gf_string(@!s,@!t:str_number);
var @!k:pool_pointer;
@!l:integer; {length of the strings to output}
begin if s<>0 then
  begin l:=length(s);
  if t<>0 then l:=l+length(t);
  if l<=255 then
    begin gf_out(xxx1); gf_out(l);
    end
  else  begin gf_out(xxx3); gf_three(l);
    end;
  for k:=str_start[s] to str_start[s+1]-1 do gf_out(so(str_pool[k]));
  end;
if t<>0 then for k:=str_start[t] to str_start[t+1]-1 do gf_out(so(str_pool[k]));
end;

@ The choice between |boc| commands is handled by |gf_boc|.

@d one_byte(#)== #>=0 then if #<256

@<Declare generic font output procedures@>=
procedure gf_boc(@!min_m,@!max_m,@!min_n,@!max_n:integer);
label exit;
begin if min_m<gf_min_m then gf_min_m:=min_m;
if max_n>gf_max_n then gf_max_n:=max_n;
if boc_p=-1 then if one_byte(boc_c) then
 if one_byte(max_m-min_m) then if one_byte(max_m) then
  if one_byte(max_n-min_n) then if one_byte(max_n) then
  begin gf_out(boc1); gf_out(boc_c);@/
  gf_out(max_m-min_m); gf_out(max_m);
  gf_out(max_n-min_n); gf_out(max_n); return;
  end;
gf_out(boc); gf_four(boc_c); gf_four(boc_p);@/
gf_four(min_m); gf_four(max_m); gf_four(min_n); gf_four(max_n);
exit: end;

@ Two of the parameters to |gf_boc| are global.

@<Glob...@>=
@!boc_c,@!boc_p:integer; {parameters of the next |boc| command}

@ Here is a routine that gets a \.{GF} file off to a good start.

@d check_gf==@t@>@+if output_file_name=0 then init_gf

@<Declare generic font output procedures@>=
procedure init_gf;
var @!k:eight_bits; {runs through all possible character codes}
@!t:integer; {the time of this run}
begin gf_min_m:=4096; gf_max_m:=-4096; gf_min_n:=4096; gf_max_n:=-4096;
for k:=0 to 255 do char_ptr[k]:=-1;
@<Determine the file extension, |gf_ext|@>;
set_output_file_name;
gf_out(pre); gf_out(gf_id_byte); {begin to output the preamble}
old_setting:=selector; selector:=new_string; print(" METAFONT output ");
print_int(round_unscaled(internal[year])); print_char(".");
print_dd(round_unscaled(internal[month])); print_char(".");
print_dd(round_unscaled(internal[day])); print_char(":");@/
t:=round_unscaled(internal[time]);
print_dd(t div 60); print_dd(t mod 60);@/
selector:=old_setting; gf_out(cur_length);
str_start[str_ptr+1]:=pool_ptr; gf_string(0,str_ptr);
pool_ptr:=str_start[str_ptr]; {flush that string from memory}
gf_prev_ptr:=gf_offset+gf_ptr;
end;

@ @<Determine the file extension...@>=
if internal[hppp]<=0 then gf_ext:=".gf"
else  begin old_setting:=selector; selector:=new_string; print_char(".");
  print_int(make_scaled(internal[hppp],59429463));
    {$2^{32}/72.27\approx59429463.07$}
  print("gf"); gf_ext:=make_string; selector:=old_setting;
  end

@ With those preliminaries out of the way, |ship_out| is not especially
difficult.

@<Declare generic font output procedures@>=
procedure ship_out(@!c:eight_bits);
label done;
var @!f:integer; {current character extension}
@!prev_m,@!m,@!mm:integer; {previous and current pixel column numbers}
@!prev_n,@!n:integer; {previous and current pixel row numbers}
@!p,@!q:pointer; {for list traversal}
@!prev_w,@!w,@!ww:integer; {old and new weights}
@!d:integer; {data from edge-weight node}
@!delta:integer; {number of rows to skip}
@!cur_min_m:integer; {starting column, relative to the current offset}
@!x_off,@!y_off:integer; {offsets, rounded to integers}
begin check_gf; f:=round_unscaled(internal[char_ext]);@/
x_off:=round_unscaled(internal[x_offset]);
y_off:=round_unscaled(internal[y_offset]);
if term_offset>max_print_line-9 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
print_char("["); print_int(c);
if f<>0 then
  begin print_char("."); print_int(f);
  end;
update_terminal;
boc_c:=256*f+c; boc_p:=char_ptr[c]; char_ptr[c]:=gf_prev_ptr;@/
if internal[proofing]>0 then @<Send nonzero offsets to the output file@>;
@<Output the character represented in |cur_edges|@>;
gf_out(eoc); gf_prev_ptr:=gf_offset+gf_ptr; incr(total_chars);
print_char("]"); update_terminal; {progress report}
if internal[tracing_output]>0 then
  print_edges(" (just shipped out)",true,x_off,y_off);
end;

@ @<Send nonzero offsets to the output file@>=
begin if x_off<>0 then
  begin gf_string("xoffset",0); gf_out(yyy); gf_four(x_off*unity);
  end;
if y_off<>0 then
  begin gf_string("yoffset",0); gf_out(yyy); gf_four(y_off*unity);
  end;
end

@ @<Output the character represented in |cur_edges|@>=
prev_n:=4096; p:=knil(cur_edges); n:=n_max(cur_edges)-zero_field;
while p<>cur_edges do
  begin @<Output the pixels of edge row |p| to font row |n|@>;
  p:=knil(p); decr(n);
  end;
if prev_n=4096 then @<Finish off an entirely blank character@>
else if prev_n+y_off<gf_min_n then
  gf_min_n:=prev_n+y_off

@ @<Finish off an entirely blank...@>=
begin gf_boc(0,0,0,0);
if gf_max_m<0 then gf_max_m:=0;
if gf_min_n>0 then gf_min_n:=0;
end

@ In this loop, |prev_w| represents the weight at column |prev_m|, which is
the most recent column reflected in the output so far; |w| represents the
weight at column~|m|, which is the most recent column in the edge data.
Several edges might cancel at the same column position, so we need to
look ahead to column~|mm| before actually outputting anything.

@<Output the pixels of edge row |p| to font row |n|@>=
if unsorted(p)>void then sort_edges(p);
q:=sorted(p); w:=0; prev_m:=-fraction_one; {$|fraction_one|\approx\infty$}
ww:=0; prev_w:=0; m:=prev_m;
repeat if q=sentinel then mm:=fraction_one
else  begin d:=ho(info(q)); mm:=d div 8; ww:=ww+(d mod 8)-zero_w;
  end;
if mm<>m then
  begin if prev_w<=0 then
    begin if w>0 then @<Start black at $(m,n)$@>;
    end
  else if w<=0 then @<Stop black at $(m,n)$@>;
  m:=mm;
  end;
w:=ww; q:=link(q);
until mm=fraction_one;
if w<>0 then {this should be impossible}
  print_nl("(There's unbounded black in character shipped out!)");
@.There's unbounded black...@>
if prev_m-m_offset(cur_edges)+x_off>gf_max_m then
  gf_max_m:=prev_m-m_offset(cur_edges)+x_off


@ @<Start black at $(m,n)$@>=
begin if prev_m=-fraction_one then @<Start a new row at $(m,n)$@>
else gf_paint(m-prev_m);
prev_m:=m; prev_w:=w;
end

@ @<Stop black at $(m,n)$@>=
begin gf_paint(m-prev_m); prev_m:=m; prev_w:=w;
end

@ @<Start a new row at $(m,n)$@>=
begin if prev_n=4096 then
  begin gf_boc(m_min(cur_edges)+x_off-zero_field,
    m_max(cur_edges)+x_off-zero_field,@|
    n_min(cur_edges)+y_off-zero_field,n+y_off);
  cur_min_m:=m_min(cur_edges)-zero_field+m_offset(cur_edges);
  end
else if prev_n>n+1 then @<Skip down |prev_n-n| rows@>
else @<Skip to column $m$ in the next row and |goto done|, or skip zero rows@>;
gf_paint(m-cur_min_m); {skip to column $m$, painting white}
done:prev_n:=n;
end

@ @<Skip to column $m$ in the next row...@>=
begin delta:=m-cur_min_m;
if delta>max_new_row then gf_out(skip0)
else  begin gf_out(new_row_0+delta); goto done;
  end;
end

@ @<Skip down...@>=
begin delta:=prev_n-n-1;
if delta<@'400 then
  begin gf_out(skip1); gf_out(delta);
  end
else  begin gf_out(skip1+1); gf_two(delta);
  end;
end

@ Now that we've finished |ship_out|, let's look at the other commands
by which a user can send things to the \.{GF} file.

@<Cases of |do_statement|...@>=
special_command: do_special;

@ @<Put each...@>=
primitive("special",special_command,string_type);@/
@!@:special_}{\&{special} primitive@>
primitive("numspecial",special_command,known);@/
@!@:num_special_}{\&{numspecial} primitive@>

@ @<Declare action procedures for use by |do_statement|@>=
procedure do_special;
var @!m:small_number; {either |string_type| or |known|}
begin m:=cur_mod; get_x_next; scan_expression;
if internal[proofing]>=0 then
  if cur_type<>m then @<Complain about improper special operation@>
  else  begin check_gf;
    if m=string_type then gf_string(cur_exp,0)
    else  begin gf_out(yyy); gf_four(cur_exp);
      end;
    end;
flush_cur_exp(0);
end;

@ @<Complain about improper special operation@>=
begin exp_err("Unsuitable expression");
@.Unsuitable expression@>
help1("The expression shown above has the wrong type to be output.");
put_get_error;
end

@ @<Send the current expression as a title to the output file@>=
begin check_gf; gf_string("title ",cur_exp);
end

@ @<Cases of |print_cmd...@>=
special_command:if m=known then print("numspecial")
  else print("special");

@ @<Determine if a character has been shipped out@>=
begin cur_exp:=round_unscaled(cur_exp) mod 256;
if cur_exp<0 then cur_exp:=cur_exp+256;
boolean_reset(char_exists[cur_exp]); cur_type:=boolean_type;
end

@ At the end of the program we must finish things off by writing the postamble.
The \.{TFM} information should have been computed first.

An integer variable |k| and a |scaled| variable |x| will be declared for
use by this routine.

@<Finish the \.{GF} file@>=
begin gf_out(post); {beginning of the postamble}
gf_four(gf_prev_ptr); gf_prev_ptr:=gf_offset+gf_ptr-5; {|post| location}
gf_four(internal[design_size]*16);
for k:=1 to 4 do gf_out(header_byte[k]); {the check sum}
gf_four(internal[hppp]);
gf_four(internal[vppp]);@/
gf_four(gf_min_m); gf_four(gf_max_m);
gf_four(gf_min_n); gf_four(gf_max_n);
for k:=0 to 255 do if char_exists[k] then
  begin x:=gf_dx[k] div unity;
  if (gf_dy[k]=0)and(x>=0)and(x<256)and(gf_dx[k]=x*unity) then
    begin gf_out(char_loc+1); gf_out(k); gf_out(x);
    end
  else  begin gf_out(char_loc); gf_out(k);
    gf_four(gf_dx[k]); gf_four(gf_dy[k]);
    end;
  x:=value(tfm_width[k]);
  if abs(x)>max_tfm_dimen then
    if x>0 then x:=three_bytes-1@+else x:=1-three_bytes
  else x:=make_scaled(x*16,internal[design_size]);
  gf_four(x); gf_four(char_ptr[k]);
  end;
gf_out(post_post); gf_four(gf_prev_ptr); gf_out(gf_id_byte);@/
k:=4+((gf_buf_size-gf_ptr) mod 4); {the number of 223's}
while k>0 do
  begin gf_out(223); decr(k);
  end;
@<Empty the last bytes out of |gf_buf|@>;
print_nl("Output written on "); slow_print(output_file_name);
@.Output written...@>
print(" ("); print_int(total_chars); print(" character");
if total_chars<>1 then print_char("s");
print(", "); print_int(gf_offset+gf_ptr); print(" bytes).");
b_close(gf_file);
end

@* \[48] Dumping and undumping the tables.
After \.{INIMF} has seen a collection of macros, it
can write all the necessary information on an auxiliary file so
that production versions of \MF\ are able to initialize their
memory at high speed. The present section of the program takes
care of such output and input. We shall consider simultaneously
the processes of storing and restoring,
so that the inverse relation between them is clear.
@.INIMF@>

The global variable |base_ident| is a string that is printed right
after the |banner| line when \MF\ is ready to start. For \.{INIMF} this
string says simply `\.{(INIMF)}'; for other versions of \MF\ it says,
for example, `\.{(preloaded base=plain 84.2.29)}', showing the year,
month, and day that the base file was created. We have |base_ident=0|
before \MF's tables are loaded.

@<Glob...@>=
@!base_ident:str_number;

@ @<Set init...@>=
base_ident:=0;

@ @<Initialize table entries...@>=
base_ident:=" (INIMF)";

@ @<Declare act...@>=
@!init procedure store_base_file;
var @!k:integer; {all-purpose index}
@!p,@!q: pointer; {all-purpose pointers}
@!x: integer; {something to dump}
@!w: four_quarters; {four ASCII codes}
begin @<Create the |base_ident|, open the base file,
  and inform the user that dumping has begun@>;
@<Dump constants for consistency check@>;
@<Dump the string pool@>;
@<Dump the dynamic memory@>;
@<Dump the table of equivalents and the hash table@>;
@<Dump a few more things and the closing check word@>;
@<Close the base file@>;
end;
tini

@ Corresponding to the procedure that dumps a base file, we also have a function
that reads~one~in. The function returns |false| if the dumped base is
incompatible with the present \MF\ table sizes, etc.

@d off_base=6666 {go here if the base file is unacceptable}
@d too_small(#)==begin wake_up_terminal;
  wterm_ln('---! Must increase the ',#);
@.Must increase the x@>
  goto off_base;
  end

@p @t\4@>@<Declare the function called |open_base_file|@>@;
function load_base_file:boolean;
label off_base,exit;
var @!k:integer; {all-purpose index}
@!p,@!q: pointer; {all-purpose pointers}
@!x: integer; {something undumped}
@!w: four_quarters; {four ASCII codes}
begin @<Undump constants for consistency check@>;
@<Undump the string pool@>;
@<Undump the dynamic memory@>;
@<Undump the table of equivalents and the hash table@>;
@<Undump a few more things and the closing check word@>;
load_base_file:=true; return; {it worked!}
off_base: wake_up_terminal;
  wterm_ln('(Fatal base file error; I''m stymied)');
@.Fatal base file error@>
load_base_file:=false;
exit:end;

@ Base files consist of |memory_word| items, and we use the following
macros to dump words of different types:

@d dump_wd(#)==begin base_file^:=#; put(base_file);@+end
@d dump_int(#)==begin base_file^.int:=#; put(base_file);@+end
@d dump_hh(#)==begin base_file^.hh:=#; put(base_file);@+end
@d dump_qqqq(#)==begin base_file^.qqqq:=#; put(base_file);@+end

@<Glob...@>=
@!base_file:word_file; {for input or output of base information}

@ The inverse macros are slightly more complicated, since we need to check
the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
read an integer value |x| that is supposed to be in the range |a<=x<=b|.

@d undump_wd(#)==begin get(base_file); #:=base_file^;@+end
@d undump_int(#)==begin get(base_file); #:=base_file^.int;@+end
@d undump_hh(#)==begin get(base_file); #:=base_file^.hh;@+end
@d undump_qqqq(#)==begin get(base_file); #:=base_file^.qqqq;@+end
@d undump_end_end(#)==#:=x;@+end
@d undump_end(#)==(x>#) then goto off_base@+else undump_end_end
@d undump(#)==begin undump_int(x); if (x<#) or undump_end
@d undump_size_end_end(#)==too_small(#)@+else undump_end_end
@d undump_size_end(#)==if x># then undump_size_end_end
@d undump_size(#)==begin undump_int(x);
  if x<# then goto off_base; undump_size_end

@ The next few sections of the program should make it clear how we use the
dump/undump macros.

@<Dump constants for consistency check@>=
dump_int(@$);@/
dump_int(mem_min);@/
dump_int(mem_top);@/
dump_int(hash_size);@/
dump_int(hash_prime);@/
dump_int(max_in_open)

@ Sections of a \.{WEB} program that are ``commented out'' still contribute
strings to the string pool; therefore \.{INIMF} and \MF\ will have
the same strings. (And it is, of course, a good thing that they do.)
@.WEB@>
@^string pool@>

@<Undump constants for consistency check@>=
x:=base_file^.int;
if x<>@$ then goto off_base; {check that strings are the same}
undump_int(x);
if x<>mem_min then goto off_base;
undump_int(x);
if x<>mem_top then goto off_base;
undump_int(x);
if x<>hash_size then goto off_base;
undump_int(x);
if x<>hash_prime then goto off_base;
undump_int(x);
if x<>max_in_open then goto off_base

@ @d dump_four_ASCII==
  w.b0:=qi(so(str_pool[k])); w.b1:=qi(so(str_pool[k+1]));
  w.b2:=qi(so(str_pool[k+2])); w.b3:=qi(so(str_pool[k+3]));
  dump_qqqq(w)

@<Dump the string pool@>=
dump_int(pool_ptr);
dump_int(str_ptr);
for k:=0 to str_ptr do dump_int(str_start[k]);
k:=0;
while k+4<pool_ptr do
  begin dump_four_ASCII; k:=k+4;
  end;
k:=pool_ptr-4; dump_four_ASCII;
print_ln; print_int(str_ptr); print(" strings of total length ");
print_int(pool_ptr)

@ @d undump_four_ASCII==
  undump_qqqq(w);
  str_pool[k]:=si(qo(w.b0)); str_pool[k+1]:=si(qo(w.b1));
  str_pool[k+2]:=si(qo(w.b2)); str_pool[k+3]:=si(qo(w.b3))

@<Undump the string pool@>=
undump_size(0)(pool_size)('string pool size')(pool_ptr);
undump_size(0)(max_strings)('max strings')(str_ptr);
for k:=0 to str_ptr do
  begin undump(0)(pool_ptr)(str_start[k]); str_ref[k]:=max_str_ref;
  end;
k:=0;
while k+4<pool_ptr do
  begin undump_four_ASCII; k:=k+4;
  end;
k:=pool_ptr-4; undump_four_ASCII;
init_str_ptr:=str_ptr; init_pool_ptr:=pool_ptr;
max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr

@ By sorting the list of available spaces in the variable-size portion of
|mem|, we are usually able to get by without having to dump very much
of the dynamic memory.

We recompute |var_used| and |dyn_used|, so that \.{INIMF} dumps valid
information even when it has not been gathering statistics.

@<Dump the dynamic memory@>=
sort_avail; var_used:=0;
dump_int(lo_mem_max); dump_int(rover);
p:=mem_min; q:=rover; x:=0;
repeat for k:=p to q+1 do dump_wd(mem[k]);
x:=x+q+2-p; var_used:=var_used+q-p;
p:=q+node_size(q); q:=rlink(q);
until q=rover;
var_used:=var_used+lo_mem_max-p; dyn_used:=mem_end+1-hi_mem_min;@/
for k:=p to lo_mem_max do dump_wd(mem[k]);
x:=x+lo_mem_max+1-p;
dump_int(hi_mem_min); dump_int(avail);
for k:=hi_mem_min to mem_end do dump_wd(mem[k]);
x:=x+mem_end+1-hi_mem_min;
p:=avail;
while p<>null do
  begin decr(dyn_used); p:=link(p);
  end;
dump_int(var_used); dump_int(dyn_used);
print_ln; print_int(x);
print(" memory locations dumped; current usage is ");
print_int(var_used); print_char("&"); print_int(dyn_used)

@ @<Undump the dynamic memory@>=
undump(lo_mem_stat_max+1000)(hi_mem_stat_min-1)(lo_mem_max);
undump(lo_mem_stat_max+1)(lo_mem_max)(rover);
p:=mem_min; q:=rover;
repeat for k:=p to q+1 do undump_wd(mem[k]);
p:=q+node_size(q);
if (p>lo_mem_max)or((q>=rlink(q))and(rlink(q)<>rover)) then goto off_base;
q:=rlink(q);
until q=rover;
for k:=p to lo_mem_max do undump_wd(mem[k]);
undump(lo_mem_max+1)(hi_mem_stat_min)(hi_mem_min);
undump(null)(mem_top)(avail); mem_end:=mem_top;
for k:=hi_mem_min to mem_end do undump_wd(mem[k]);
undump_int(var_used); undump_int(dyn_used)

@ A different scheme is used to compress the hash table, since its lower region
is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
packed for |p>=hash_used|, so the remaining entries are output in~a~block.

@<Dump the table of equivalents and the hash table@>=
dump_int(hash_used); st_count:=frozen_inaccessible-1-hash_used;
for p:=1 to hash_used do if text(p)<>0 then
  begin dump_int(p); dump_hh(hash[p]); dump_hh(eqtb[p]); incr(st_count);
  end;
for p:=hash_used+1 to hash_end do
  begin dump_hh(hash[p]); dump_hh(eqtb[p]);
  end;
dump_int(st_count);@/
print_ln; print_int(st_count); print(" symbolic tokens")

@ @<Undump the table of equivalents and the hash table@>=
undump(1)(frozen_inaccessible)(hash_used); p:=0;
repeat undump(p+1)(hash_used)(p); undump_hh(hash[p]); undump_hh(eqtb[p]);
until p=hash_used;
for p:=hash_used+1 to hash_end do
  begin undump_hh(hash[p]); undump_hh(eqtb[p]);
  end;
undump_int(st_count)

@ We have already printed a lot of statistics, so we set |tracing_stats:=0|
to prevent them appearing again.

@<Dump a few more things and the closing check word@>=
dump_int(int_ptr);
for k:=1 to int_ptr do
  begin dump_int(internal[k]); dump_int(int_name[k]);
  end;
dump_int(start_sym); dump_int(interaction); dump_int(base_ident);
dump_int(bg_loc); dump_int(eg_loc); dump_int(serial_no); dump_int(69069);
internal[tracing_stats]:=0

@ @<Undump a few more things and the closing check word@>=
undump(max_given_internal)(max_internal)(int_ptr);
for k:=1 to int_ptr do
  begin undump_int(internal[k]);
  undump(0)(str_ptr)(int_name[k]);
  end;
undump(0)(frozen_inaccessible)(start_sym);
undump(batch_mode)(error_stop_mode)(interaction);
undump(0)(str_ptr)(base_ident);
undump(1)(hash_end)(bg_loc);
undump(1)(hash_end)(eg_loc);
undump_int(serial_no);@/
undump_int(x);@+if (x<>69069)or eof(base_file) then goto off_base

@ @<Create the |base_ident|...@>=
selector:=new_string;
print(" (preloaded base="); print(job_name); print_char(" ");
print_int(round_unscaled(internal[year]) mod 100); print_char(".");
print_int(round_unscaled(internal[month])); print_char(".");
print_int(round_unscaled(internal[day])); print_char(")");
if interaction=batch_mode then selector:=log_only
else selector:=term_and_log;
str_room(1); base_ident:=make_string; str_ref[base_ident]:=max_str_ref;@/
pack_job_name(base_extension);
while not w_open_out(base_file) do
 prompt_file_name("base file name",base_extension);
print_nl("Beginning to dump on file ");
@.Beginning to dump...@>
slow_print(w_make_name_string(base_file)); flush_string(str_ptr-1);
print_nl(""); slow_print(base_ident)

@ @<Close the base file@>=
w_close(base_file)

@* \[49] The main program.
This is it: the part of \MF\ that executes all those procedures we have
written.

Well---almost. We haven't put the parsing subroutines into the
program yet; and we'd better leave space for a few more routines that may
have been forgotten.

@p @<Declare the basic parsing subroutines@>@;
@<Declare miscellaneous procedures that were declared |forward|@>@;
@<Last-minute procedures@>

@ We've noted that there are two versions of \MF84. One, called \.{INIMF},
@.INIMF@>
has to be run first; it initializes everything from scratch, without
reading a base file, and it has the capability of dumping a base file.
The other one is called `\.{VIRMF}'; it is a ``virgin'' program that needs
@.VIRMF@>
to input a base file in order to get started. \.{VIRMF} typically has
a bit more memory capacity than \.{INIMF}, because it does not need the
space consumed by the dumping/undumping routines and the numerous calls on
|primitive|, etc.

The \.{VIRMF} program cannot read a base file instantaneously, of course;
the best implementations therefore allow for production versions of \MF\ that
not only avoid the loading routine for \PASCAL\ object code, they also have
a base file pre-loaded. This is impossible to do if we stick to standard
\PASCAL; but there is a simple way to fool many systems into avoiding the
initialization, as follows:\quad(1)~We declare a global integer variable
called |ready_already|. The probability is negligible that this
variable holds any particular value like 314159 when \.{VIRMF} is first
loaded.\quad(2)~After we have read in a base file and initialized
everything, we set |ready_already:=314159|.\quad(3)~Soon \.{VIRMF}
will print `\.*', waiting for more input; and at this point we
interrupt the program and save its core image in some form that the
operating system can reload speedily.\quad(4)~When that core image is
activated, the program starts again at the beginning; but now
|ready_already=314159| and all the other global variables have
their initial values too. The former chastity has vanished!

In other words, if we allow ourselves to test the condition
|ready_already=314159|, before |ready_already| has been
assigned a value, we can avoid the lengthy initialization. Dirty tricks
rarely pay off so handsomely.
@^dirty \PASCAL@>
@^system dependencies@>

On systems that allow such preloading, the standard program called \.{MF}
should be the one that has \.{plain} base preloaded, since that agrees
with {\sl The {\logos METAFONT\/}book}.  Other versions, e.g., \.{cmbase},
should also be provided for commonly used bases.
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
@.cmbase@>
@.plain@>

@<Glob...@>=
@!ready_already:integer; {a sacrifice of purity for economy}

@ Now this is really it: \MF\ starts and ends here.

The initial test involving |ready_already| should be deleted if the
\PASCAL\ runtime system is smart enough to detect such a ``mistake.''
@^system dependencies@>

@p begin @!{|start_here|}
history:=fatal_error_stop; {in case we quit during initialization}
t_open_out; {open the terminal for output}
if ready_already=314159 then goto start_of_MF;
@<Check the ``constant'' values...@>@;
if bad>0 then
  begin wterm_ln('Ouch---my internal constants have been clobbered!',
    '---case ',bad:1);
@.Ouch...clobbered@>
  goto final_end;
  end;
initialize; {set global variables to their starting values}
@!init if not get_strings_started then goto final_end;
init_tab; {initialize the tables}
init_prim; {call |primitive| for each primitive}
init_str_ptr:=str_ptr; init_pool_ptr:=pool_ptr;@/
max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr; fix_date_and_time;
tini@/
ready_already:=314159;
start_of_MF: @<Initialize the output routines@>;
@<Get the first line of input and prepare to start@>;
history:=spotless; {ready to go!}
if start_sym>0 then {insert the `\&{everyjob}' symbol}
  begin cur_sym:=start_sym; back_input;
  end;
main_control; {come to life}
final_cleanup; {prepare for death}
end_of_MF: close_files_and_terminate;
final_end: ready_already:=0;
end.

@ Here we do whatever is needed to complete \MF's job gracefully on the
local operating system. The code here might come into play after a fatal
error; it must therefore consist entirely of ``safe'' operations that
cannot produce error messages. For example, it would be a mistake to call
|str_room| or |make_string| at this time, because a call on |overflow|
might lead to an infinite loop.
@^system dependencies@>

This program doesn't bother to close the input files that may still be open.

@<Last-minute...@>=
procedure close_files_and_terminate;
var @!k:integer; {all-purpose index}
@!lh:integer; {the length of the \.{TFM} header, in words}
@!lk_offset:0..256; {extra words inserted at beginning of |lig_kern| array}
@!p:pointer; {runs through a list of \.{TFM} dimensions}
@!x:scaled; {a |tfm_width| value being output to the \.{GF} file}
begin
@!stat if internal[tracing_stats]>0 then
  @<Output statistics about this job@>;@;@+tats@/
wake_up_terminal; @<Finish the \.{TFM} and \.{GF} files@>;
if log_opened then
  begin wlog_cr;
  a_close(log_file); selector:=selector-2;
  if selector=term_only then
    begin print_nl("Transcript written on ");
@.Transcript written...@>
    slow_print(log_name); print_char(".");
    end;
  end;
end;

@ We want to finish the \.{GF} file if and only if it has already been started;
this will be true if and only if |gf_prev_ptr| is positive.
We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
The \.{TFM} widths must be computed if there's a \.{GF} file, even if
there's going to be no \.{TFM}~file.

We reclaim all of the variable-size memory at this point, so that
there is no chance of another memory overflow after the memory capacity
has already been exceeded.

@<Finish the \.{TFM} and \.{GF} files@>=
if (gf_prev_ptr>0)or(internal[fontmaking]>0) then
  begin @<Make the dynamic memory into one big available node@>;
  @<Massage the \.{TFM} widths@>;
  fix_design_size; fix_check_sum;
  if internal[fontmaking]>0 then
    begin @<Massage the \.{TFM} heights, depths, and italic corrections@>;
    internal[fontmaking]:=0; {avoid loop in case of fatal error}
    @<Finish the \.{TFM} file@>;
    end;
  if gf_prev_ptr>0 then @<Finish the \.{GF} file@>;
  end

@ @<Make the dynamic memory into one big available node@>=
rover:=lo_mem_stat_max+1; link(rover):=empty_flag; lo_mem_max:=hi_mem_min-1;
if lo_mem_max-rover>max_halfword then lo_mem_max:=max_halfword+rover;
node_size(rover):=lo_mem_max-rover; llink(rover):=rover; rlink(rover):=rover;
link(lo_mem_max):=null; info(lo_mem_max):=null

@ The present section goes directly to the log file instead of using
|print| commands, because there's no need for these strings to take
up |str_pool| memory when a non-{\bf stat} version of \MF\ is being used.

@<Output statistics...@>=
if log_opened then
  begin wlog_ln(' ');
  wlog_ln('Here is how much of METAFONT''s memory',' you used:');
@.Here is how much...@>
  wlog(' ',max_str_ptr-init_str_ptr:1,' string');
  if max_str_ptr<>init_str_ptr+1 then wlog('s');
  wlog_ln(' out of ', max_strings-init_str_ptr:1);@/
  wlog_ln(' ',max_pool_ptr-init_pool_ptr:1,' string characters out of ',
    pool_size-init_pool_ptr:1);@/
  wlog_ln(' ',lo_mem_max-mem_min+mem_end-hi_mem_min+2:1,@|
    ' words of memory out of ',mem_end+1-mem_min:1);@/
  wlog_ln(' ',st_count:1,' symbolic tokens out of ',
    hash_size:1);@/
  wlog_ln(' ',max_in_stack:1,'i,',@|
    int_ptr:1,'n,',@|
    max_rounding_ptr:1,'r,',@|
    max_param_stack:1,'p,',@|
    max_buf_stack+1:1,'b stack positions out of ',@|
    stack_size:1,'i,',
    max_internal:1,'n,',
    max_wiggle:1,'r,',
    param_size:1,'p,',
    buf_size:1,'b');
  end

@ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
been scanned.

@<Last-minute...@>=
procedure final_cleanup;
label exit;
var c:small_number; {0 for \&{end}, 1 for \&{dump}}
begin c:=cur_mod;
if job_name=0 then open_log_file;
while input_ptr>0 do
  if token_state then end_token_list@+else end_file_reading;
while loop_ptr<>null do stop_iteration;
while open_parens>0 do
  begin print(" )"); decr(open_parens);
  end;
while cond_ptr<>null do
  begin print_nl("(end occurred when ");@/
@.end occurred...@>
  print_cmd_mod(fi_or_else,cur_if);
    {`\.{if}' or `\.{elseif}' or `\.{else}'}
  if if_line<>0 then
    begin print(" on line "); print_int(if_line);
    end;
  print(" was incomplete)");
  if_line:=if_line_field(cond_ptr);
  cur_if:=name_type(cond_ptr); loop_ptr:=cond_ptr;
  cond_ptr:=link(cond_ptr); free_node(loop_ptr,if_node_size);
  end;
if history<>spotless then
 if ((history=warning_issued)or(interaction<error_stop_mode)) then
  if selector=term_and_log then
  begin selector:=term_only;
  print_nl("(see the transcript file for additional information)");
@.see the transcript file...@>
  selector:=term_and_log;
  end;
if c=1 then
  begin @!init store_base_file; return;@+tini@/
  print_nl("(dump is performed only by INIMF)"); return;
@.dump...only by INIMF@>
  end;
exit:end;

@ @<Last-minute...@>=
@!init procedure init_prim; {initialize all the primitives}
begin
@<Put each...@>;
end;
@#
procedure init_tab; {initialize other tables}
var @!k:integer; {all-purpose index}
begin @<Initialize table entries (done by \.{INIMF} only)@>@;
end;
tini

@ When we begin the following code, \MF's tables may still contain garbage;
the strings might not even be present. Thus we must proceed cautiously to get
bootstrapped in.

But when we finish this part of the program, \MF\ is ready to call on the
|main_control| routine to do its work.

@<Get the first line...@>=
begin @<Initialize the input routines@>;
if (base_ident=0)or(buffer[loc]="&") then
  begin if base_ident<>0 then initialize; {erase preloaded base}
  if not open_base_file then goto final_end;
  if not load_base_file then
    begin w_close(base_file); goto final_end;
    end;
  w_close(base_file);
  while (loc<limit)and(buffer[loc]=" ") do incr(loc);
  end;
buffer[limit]:="%";@/
fix_date_and_time; init_randoms((internal[time] div unity)+internal[day]);@/
@<Initialize the print |selector|...@>;
if loc<limit then if buffer[loc]<>"\" then start_input; {\&{input} assumed}
end

@* \[50] Debugging.
Once \MF\ is working, you should be able to diagnose most errors with
the \.{show} commands and other diagnostic features. But for the initial
stages of debugging, and for the revelation of really deep mysteries, you
can compile \MF\ with a few more aids, including the \PASCAL\ runtime
checks and its debugger. An additional routine called |debug_help|
will also come into play when you type `\.D' after an error message;
|debug_help| also occurs just before a fatal error causes \MF\ to succumb.
@^debugging@>
@^system dependencies@>

The interface to |debug_help| is primitive, but it is good enough when used
with a \PASCAL\ debugger that allows you to set breakpoints and to read
variables and change their values. After getting the prompt `\.{debug \#}', you
type either a negative number (this exits |debug_help|), or zero (this
goes to a location where you can set a breakpoint, thereby entering into
dialog with the \PASCAL\ debugger), or a positive number |m| followed by
an argument |n|. The meaning of |m| and |n| will be clear from the
program below. (If |m=13|, there is an additional argument, |l|.)
@.debug \#@>

@d breakpoint=888 {place where a breakpoint is desirable}

@<Last-minute...@>=
@!debug procedure debug_help; {routine to display various things}
label breakpoint,exit;
var @!k,@!l,@!m,@!n:integer;
begin loop begin wake_up_terminal;
  print_nl("debug # (-1 to exit):"); update_terminal;
@.debug \#@>
  read(term_in,m);
  if m<0 then return
  else if m=0 then
    begin goto breakpoint;@\ {go to every label at least once}
    breakpoint: m:=0; @{'BREAKPOINT'@}@\
    end
  else  begin read(term_in,n);
    case m of
    @t\4@>@<Numbered cases for |debug_help|@>@;
    othercases print("?")
    endcases;
    end;
  end;
exit:end;
gubed

@ @<Numbered cases...@>=
1: print_word(mem[n]); {display |mem[n]| in all forms}
2: print_int(info(n));
3: print_int(link(n));
4: begin print_int(eq_type(n)); print_char(":"); print_int(equiv(n));
  end;
5: print_variable_name(n);
6: print_int(internal[n]);
7: do_show_dependencies;
9: show_token_list(n,null,100000,0);
10: slow_print(n);
11: check_mem(n>0); {check wellformedness; print new busy locations if |n>0|}
12: search_mem(n); {look for pointers to |n|}
13: begin read(term_in,l); print_cmd_mod(n,l);
  end;
14: for k:=0 to n do print(buffer[k]);
15: panicking:=not panicking;

@* \[51] System-dependent changes.
This section should be replaced, if necessary, by any special
modifications of the program
that are necessary to make \MF\ work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the published program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>

@* \[52] Index.
Here is where you can find all uses of each identifier in the program,
with underlined entries pointing to where the identifier was defined.
If the identifier is only one letter long, however, you get to see only
the underlined entries. {\sl All references are to section numbers instead of
page numbers.}

This index also lists error messages and other aspects of the program
that you might want to look up some day. For example, the entry
for ``system dependencies'' lists all sections that should receive
special attention from people who are installing \MF\ in a new
operating environment. A list of various things that can't happen appears
under ``this can't happen''.
Approximately 25 sections are listed under ``inner loop''; these account
for more than 60\pct! of \MF's running time, exclusive of input and output.

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.