Plan 9 from Bell Labs’s /usr/web/sources/patch/applied/sha1pickleman/sechash.backup

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


.TH SECHASH 2
.SH NAME
md4, md5, sha1, aes, hmac_x, hmac_md5, hmac_sha1, hmac_aes, md5pickle, md5unpickle, sha1pickle, sha1unpickle \- cryptographically secure hashes
.SH SYNOPSIS
.de Ti
.in +0.5i
.ti -0.5i
..
.B #include <u.h>
.br
.B #include <libc.h>
.br
.B #include <mp.h>
.br
.B #include <libsec.h>
.PP
.Ti
.B
DigestState*	md4(uchar *data, ulong dlen, uchar *digest, DigestState *state)
.PP
.Ti
.B
DigestState*	md5(uchar *data, ulong dlen, uchar *digest, DigestState *state)
.PP
.B
char*		md5pickle(MD5state *state)
.PP
.B
MD5state*	md5unpickle(char *p);
.PP
.Ti
.B
DigestState*	sha1(uchar *data, ulong dlen, uchar *digest, DigestState *state)
.PP
.B
char*		sha1pickle(MD5state *state)
.PP
.B
MD5state*	sha1unpickle(char *p);
.PP
.Ti
.B
DigestState*	aes(uchar *data, ulong dlen, uchar *digest, DigestState *state)
.PP
.Ti
.B
DigestState*	hmac_x(uchar *p, ulong len, uchar *key, ulong klen, uchar *digest, DigestState *s, DigestState*(*x)(uchar*, ulong, uchar*, DigestState*), int xlen)
.PP
.Ti
.B
DigestState*	hmac_md5(uchar *data, ulong dlen, uchar *key, ulong klen, uchar *digest, DigestState *state)
.PP
.Ti
.B
DigestState*	hmac_sha1(uchar *data, ulong dlen, uchar *key, ulong klen, uchar *digest, DigestState *state)
.PP
.Ti
.B
DigestState*	hmac_aes(uchar *data, ulong dlen, uchar *key, ulong klen, uchar *digest, DigestState *state)
.SH DESCRIPTION
We support several secure hash functions.  The output of a
hash is called a
.IR digest .
A hash is secure if, given the hashed data and the digest,
it is difficult to predict the change to the digest resulting
from some change to the data without rehashing
the whole data.  Therefore, if a secret is part of the hashed
data, the digest can be used as an integrity check of the data by anyone
possessing the secret.
.PP
The routines
.IR md4 ,
.IR md5 ,
.IR sha1 ,
.IR aes ,
.IR hmac_md5 ,
.IR hmac_sha1 ,
and
.I hmac_aes
differ only in the length of the resulting digest
and in the security of the hash.  Usage for each is the same.
The first call to the routine should have
.B nil
as the
.I state
parameter.  This call returns a state which can be used to chain
subsequent calls.
The last call should have digest
.RL non- nil .
.I Digest
must point to a buffer of at least the size of the digest produced.
This last call will free the state and copy the result into
.IR digest .
.PP
The constants
.IR MD4dlen ,
.IR MD5dlen ,
.IR SHA1dlen ,
and
.I AESdlen
define the lengths of the digests.
.PP
.IR Hmac_md5 ,
.IR hmac_sha1 .
and
.I hmac_aes
are used slightly differently.  These hash algorithms are keyed and require
a key to be specified on every call.
The digest lengths for these hashes are
.IR MD5dlen ,
.IR SHA1dlen ,
and
.I AESdlen
respectively.
These routines all call
.I hmac_x
internally, but
.I hmac_x
is not intended for general use.
.PP
The functions
.I md5pickle
and
.I sha1pickle
marshal the state of a digest for transmission.
.I Md5unpickle
and
.I sha1unpickle
unmarshal a pickled digest.
All four routines return a pointer to a newly
.IR malloc (2)'d
object.
.SH EXAMPLES
To hash a single buffer using
.IR md5 :
.IP
.EX
uchar digest[MD5dlen];

md5(data, len, digest, nil);
.EE
.PP
To chain a number of buffers together,
bounded on each end by some secret:
.IP
.EX
char buf[256];
uchar digest[MD5dlen];
DigestState *s;

s = md5("my password", 11, nil, nil);
while((n = read(fd, buf, 256)) > 0)
	md5(buf, n, nil, s);
md5("drowssap ym", 11, digest, s);
.EE
.SH SOURCE
.B /sys/src/libsec
.SH SEE ALSO
.IR aes (2),
.IR blowfish (2),
.IR des (2),
.IR elgamal (2),
.IR rc4 (2),
.IR rsa (2)
.br
.B /lib/rfc/rfc2104

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to webmaster@9p.io.